Energy Conservation of Mimetic Differences
TITLE:
Energy Conservation of Mimetic Differences
DATE:
Friday, April 21, 2023
TIME:
3:30 PM
LOCATION:
GMCS 314
SPEAKER:
Dr. Miguel Dumett, Computational Science, San Diego State University
ABSTRACT:
Currently there exist several versions of staggered and full-staggered mimetic discretizations, all of them satisfying energy conservation due to several properties enforced during their constructions. However, no proof about this fact exists in the literature. In the first part of the talk, mimetic differences are introduced from a general perspective. Mimetic discrete analogs of vector calculus spatial derivative operators can achieve constant high-order discretization in the whole computational domain including the grid boundaries. Moreover, high-order discrete generalized versions of the divergence theorem as well as other integral theorems are attained by specially constructed weighted inner products. The way these properties imply energy conservation of mimetic differences is demonstrated in the second part of the talk.
HOST:
Jose Castillo
VIDEO: