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Abstract

In this short course we will start by deriving the basic conservation laws for mass, momentum and energy.
We will extend the results to mixtures in general and then to multiphase flow in porous media. We will then
describe the black-oil models and the Buckley-Leverett problem. Second, we will review the basic numerical
methods for solving the differential equations that model a fluid in a porous medium. Finally, we will give
some typical problems of flow and transport and show how they can be solved numerically.
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Chapter 1

Equations of Motion.

1.1 Conservation Laws

We will start by deriving the equations of motion for a simple fluid consisting of only one phase and one

component. Assume the continuum hypothesis. Let x
∼
= (x, y, z) be a point in space.

Let v
∼
(x
∼
, t) be the velocity of a particle of fluid moving through x

∼
at time t.

Let ρ(x
∼
, t) be the mass density, so that the mass of a fluid region W is

m(W, t) =

∫

W

ρ(x
∼
, t)dV

The equations of motion are based on the following conservation principles:

1. Mass is neither created nor destroyed.

2. The rate of change of momentum equals the applied force.

3. Energy is conserved.

1. Conservation of Mass

Let W be a fixed region, the rate of change of mass in this region is

d

dt
m(W, t) =

∫

W

∂ρ

∂t
(x
∼
, t)dV.

This rate of increase (decrease) of mass in W equals the rate of mass getting into (exiting) the volume:

d

dt

∫

W

ρdV =

∮

∂W

ρv
∼
· n
∼
dA,

where ∂W is the surface of W and n
∼
is the outward unit normal vector. The divergence theorem states that:

∮

∂W

f
∼
· n
∼
dA =

∫

W

divf
∼
dV.



Applying it, we then have

∫

W

[
∂ρ

∂t
+ div

(

ρv
∼

)]

dV = 0.

This is the conservation law in integral form. Since this is valid for allW we have the differential conservation

form:

∂ρ

∂t
+ div

(

ρv
∼

)

= 0.

2. Conservation of momentum:

Let the velocity be

v
∼
(x
∼
, t) =

dx
∼
(t)

dt

and the acceleration be

a
∼
(t) =

d2x
∼
(t)

dt2
.

Then using the chain rule we have

a
∼
(t) =

∂v
∼
∂x
ẋ+

∂v
∼
∂y
ẏ +

∂v
∼
∂z
ż +

∂v
∼
∂t

= ∂tv∼
+ v

∼
· ∇v

∼
.

Let
D

Dt
= ∂t + v

∼
· ∇ be the material derivative, that is, the derivative following a fluid particle.

First let’s work with an ideal fluid: the only force is the pressure, there are no tangential stresses.

The force across the surface per unit area is p(x
∼
, t)n

∼
, where p(x

∼
, t) is the pressure and n

∼
is the outward unit

normal.

Then the total force exerted on the fluid through the boundary is

S
∼∂W

= −
∮

∂W

pn
∼
dA.
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S
∼ ∂W

n
∼

For any fixed vector e
∼
:

e
∼
· S
∼∂W

= −
∮

∂W

pe
∼
· n
∼
dA = −

∫

W

div(pe
∼
)dV = −

∫

W

(grad p) · e
∼
dV.



The second equality is obtained using the divergence theorem and the third one by using the vector identity

div(φa
∼
) = φdiva

∼
+ a

∼
· gradφ with a

∼
fixed. Therefore we have that the surface force due to the pressure is

S
∼∂W

= −
∫

W

grad p dV.

If b
∼
(x
∼
, t) is the body force per unit mass, usually only the force of gravity, then the total body force is

B
∼
=

∫

W

ρb
∼
dV.

Therefore, for any piece of material, the force per unit volume is −grad p + ρb
∼
. By Newton’s second law,

(which states that, for constant density, the force is equal to the mass times the acceleration), we have the

balance of momentum law

ρ
Dv
∼
Dt

= −grad p+ ρb
∼
.

3. Conservation of Energy

First we will deal only with mechanical energy, that is, kinetic energy. Over a volume Wt, that always

has the same molecules, it is defined as

Ek =
1

2

∫

Wt

ρ
∥
∥
∥v∼

∥
∥
∥

2

dV

Its rate of change with time is

d

dt
Ek =

d

dt

[
1

2

∫

Wt

ρ
∥
∥
∥v∼

∥
∥
∥

2

dV

]

=
1

2

∫

Wt

ρ
D
∥
∥
∥v∼

∥
∥
∥

2

Dt
dV

=

∫

Wt

ρ

(

v
∼
·
(
∂v
∼
∂t

+
(

v
∼
· ∇
)

v
∼

))

dV.

The last equality is since
1

2

D

D

∥
∥
∥v∼

∥
∥
∥

2

= v
∼
·
∂v
∼
∂t

+
(

v
∼
·
(

v
∼
· ∇
)

v
∼

)

as can be proven working component-wise.

Incompressible Flow

The rate of change of the kinetic energy equals the rate at which the pressure and body forces do work:

d

dt
Ek = −

∫

∂Wt

pv
∼
· n
∼
dA+

∫

Wt

ρv
∼
· b
∼
dV,

and using the divergence theorem we get:



∫

Wt

ρ

[

v
∼
·
(
∂v
∼
∂t

+ v
∼
· ∇v

∼

)]

dV = −
∫

Wt

div(pv
∼
)− (ρv

∼
· b)dV.

Since the fluid is incompressible the law of mass conservation,
Dρ

Dt
+ ρ div v

∼
= 0, implies that divv

∼
= 0.

Therefore the last integral is

−
∫

Wt

(

v
∼
· ∇p− ρv

∼
· b
∼

)

dV.

And, since the volume is arbitrary:

ρ

[

v
∼
·
(
∂v
∼
∂t

+ v
∼
· ∇v

∼

)]

= −v
∼
· ∇p+ ρv

∼
· b
∼

or ρ
Dv
∼
Dt

= −∇p+ ρb
∼

which is the conservation of momentum law.

Navier-Stokes Equations

Now we will include the viscous forces, so the force acting on a surface S per unit area is −p(x
∼
, t)n

∼
+

σ
∼
(x, t) · n

∼
, where σ

∼
is the shear stress tensor, which is of rank 2.

We need more assumptions to be able to close the system. We assume that the fluid is newtonian, for

which the shear tensor is given by

σ
∼
= 2µ

[

D − 1

3
div v

∼
I

]

+ ζ(div v
∼
)I,

where µ is the first coefficient of viscosity,

ζ = λ+
2

3
µ is the second coefficient of viscosity and

D is the deformation tensor, given by D =
1

2

[

grad v
∼
+ (grad v

∼
)T
]

.

Component-wise the deformation tensor is Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

.

And I is the identity matrix.

Using the divergence theorem as before, the moment balance law gives the Navier-Stokes equations:

ρ
Dv
∼
Dt

= −∇p+ (λ+ µ)∇(div v
∼
) + µ∆v

∼
,

where ∆v
∼
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

v
∼
.



1.2 Mixtures

Many real life problems involve fluids that consist of more than one phase (liquid, gas) and more than

one component or species (water, methane). So we have to determine how to study solutions, or fluids in

permeable media, or mixtures with chemical reactions? To answer these questions we need to obtain the

conservation laws for mixtures.

Definition: A mixture is a collection of N bodies called constituents, forming overlapping continua. At each

point in space, x
∼
, we can have material from each constituent.

For example: Salt water has water and sodium, N+
a , and chloride, Cl− From a molecular point of view the

species are separated but macroscopically they occupy the same space.

Another example is sandstone, which is a porous and permeable rock, filled with water. The segregation

of the phases is observable at a microscopic scale much larger than the molecular scale. But macroscopically

sandstone and water occupy the same space.

Suppose we have N constituents, α = 1, . . . , N Each one has its own motion:

xα
∼

= xα
∼

(Xα

∼
, t)

Xα

∼
= Xα

∼
(xα
∼
, t),

where Xα

∼
is the Lagrangian label of the particle initially at spatial (eulerian) position xα

∼
.

Also its own velocity:

V α

∼

(

Xα

∼
, t
)

=
∂xα
∼
∂t

(

Xα

∼
, t
)

; vα
∼

(

xα
∼
, t
)

= V α

∼

(

Xα

∼
(xα
∼
, t), t

)

,

and its own density ρα(xα
∼
, t) (mass of α per unit volume of α).

The total mass of α in a part P of the mixture is

Mα(P ) =

∫

xα

∼
(P )

ραdV

For multiphase mixtures, we assign to each constituent α a volume fraction, φα(xα
∼
, t), which is the

fraction of the volume occupied by α. So that in any part P of the mixture the total volume within P

occupied by α is

Fα(P ) =

∫

xα

∼
(P )

φαdV,

where φα =
volume of α

volume of mixture
. Therefore, 0 ≤ φα ≤ 1 and

N∑

α=1

φα = 1.



We need some definitions.

Definition.- Overall mass density:

ρ =







N∑

α=1

ρα multispecies mixtures

N∑

α=1

φαρα multiphase mixtures

Definition.- Mass fraction:

wα =







ρα

ρ
multispecies mixtures

φα
ρα

ρ
multiphase mixtures

Note that
N∑

α=1

wα = 1.

Definition.- Baricentric velocity (mass weighted mean of velocities):

v
∼
=







1

ρ

N∑

α=1

ραvα
∼

multispecies

1

ρ

N∑

α=1

φαραvα
∼

multiphase

The diffusion velocity of a constituent α with respect to the mean mixture flow velocity is

ν∼
α = v

∼
α − v

∼
.

Note that for multispecies mixtures

∑

α

wαν∼
α =

1

ρ

∑

α

ρα(v
∼

α − v
∼
) =

1

ρ

[
∑

α

ραv
∼

α − v
∼

∑

α

ρα

]

= v
∼
− 1

ρ
v
∼
ρ = 0

∼
.

And similarity for multiphase mixtures. For mixtures the general global balance laws are:

Multispecies
N∑

α=1

(
d

dt

∫

να

ραψαd V −
∮

∂να

τ
∼

α · n
∼
dA−

∫

να

ραgαd V

)

= 0.

Multiphase



N∑

α=1

(
d

dt

∫

να

φαραψαd V −
∮

∂να

τ
∼

α · n
∼
dA−

∫

να

φαραgαd V

)

= 0.

Local or differential mixture balance laws are obtained in a similar way to the one constituent case.

Multispecies:
N∑

α=1

[
Dα

Dt
(ραψα) + ραψαdivv

∼
α − divτ

∼
α − ραgα

]

= 0.

Multiphase:
N∑

α=1

[
Dα

Dt
(φαραψα) + φαραψαdivv

∼
α − divτ

∼
α − φαραgα

]

= 0.

Here

Dα

Dt
=







∂

∂t
for functions of Lagrange coordinates

(

Xα

∼
, t
)

∂

∂t
+ v

∼
α · ∇ for functions of spatial coordinates (x

∼
α, t).

To write the conservation law for each constituent we need to take into account the interactions among

constituents. Let eα be a measurement of the exchange of ψ into constituent α from other constituents.

Therefore we have:

Multispecies
Dα

Dt
(ραψα) + ραψαdivv

∼
α − divτ

∼
α − ραgα = eα, α = 1, . . . , N.

Multiphase
Dα

Dt
(φαραψα) + φαραψαdivv

∼
α − divτ

∼
α − φαραgα = eα, α = 1, . . . , N.

From the laws for the whole mixture we can see that

N∑

α=1

eα = 0.

As a first example, consider the transport of a dissolved contaminant by a fluid.

The constituents are: S=solute(contaminant) F=fluid.

So we have a multispecies mixture with no chemical reactions.

Looking at the mass balance: ψα = 1 τα = 0, gα = 0, eα = 0.

(eα is the production of constituent α by chemical reaction but in this case there is none).



Dαρα

Dt
+ ραdivv

∼
α =

∂ρα

∂t
+ div(ραv

∼
α) = 0 α = S, F

∂ρα

∂t
+ div(ραv

∼
) + divj

∼
α = 0,

where: j
∼

α = ραν∼
α is the diffusive flux.

Consider the solute, we need a constitutive law for j
∼

S . Use Fick’s Law:

j
∼

S = −KS∇ρS withKS > 0, the diffusion coefficient.

This implies
∂ρS

∂t
+ div

(

ρSv
∼

)

− div
(
KS∇ρS

)
= 0 Advection-diffusion transport equation.

Example: Fluid Flow in porous rock. Even for one fluid this is multiphase. We have two constituents: F

fluid, R, rock. Assume that the flow is chemically inert (no mass exchanges) and that the rock is immobile

(v
∼

R = 0). Lets look at the conservation of momentum law:

ψα = v
∼

α, velocity

τ
∼

α = tα, stress tensor

gα = b
∼

α, body forces

eα = m
∼

α, rate of momentum exchange.

The differential conservation law is then:

Dα

Dt

(

φαραv
∼

α
)

+ φαραv
∼

αdivv
∼

α − divtα − φαραb
∼

α = m
∼

α

ραφα
Dαv

∼
α

Dt
+ vα

[

D

Dt
(φαρα) + φαραdivv

∼
α

︸ ︷︷ ︸

]

− divtα − φαραb
∼

α = m
∼

α

mass balance

Suppose the fluid is inviscid:

tF = −pI.

and that the only body force is gravity:

φF b
∼

F = g∇z, z is the depth below a reference level.

Suppose the momentum transfer is given by Stokes drag which says that m
∼

F is proportional to the fluid

velocity:

m
∼

F =
φF

Λ

(

−v
∼

F
)

= −φ
F

Λ
vF
∼

, whereΛ is the fluid mobility.

The conservation law is now:

φF ρF
DF v

∼
F

Dt
+∇pF − ρF g∇z = −φ

F

Λ
vF
∼

.



A common assumption is that the fluid inertia is negligible compared with the pressure, gravity and mo-

mentum exchanges:
DF v

∼
F

Dt
= 0.

So the conservation law simplifies to:

v
∼

F = − Λ

φF
(
∇pF − ρF g∇z

)
.

The fluid mobility, Λ, depends on both the fluid and the rock:

Λ =
k

µF
,

where µF is the fluid dynamic viscosity and k is the permeability of the rock. So finally, we obtain the well

known Darcy’s law:

v
∼

F = − k

µFφF
(
∇pF − ρF g∇z

)
.

To a macroscopic observer v
∼

F is the mean fluid velocity through the pores of the rock. An observer at

the pore scale would need to use the Navier-Stokes equations on the irregular geometry given by the pores.

Darcy derived the law that has his name from experimental observations.

For many sedimentary porous media, the flow is anisotropic. To take this into account let k be a tensor

v
∼
k = − k

φµF
·
(
∇pF = ρIg∇z

)

Although k is supposed to depend only on the rock it is different for gases than for liquids. For liquids there

is friction between the liquid and the rock, there is a no-slip boundary condition between the two. For gases

the friction is negligible.

1.3 Multiphase Flows in Porous Media

Lets look at the simplest of what is commonly called multiphase flow. That is, a flow with two fluid phases.

So we have three phases: rock R, aqueous fluid W , and nonaqueous fluid N . Assume Darcy’s Law holds for

both W and N :

v
∼
W = −ΛW

φW
(
∇pW − ρW g∇z

)

v
∼

N = −ΛN

φN
(
∇pN − ρNg∇z

)
.

A lot of work has been done into simplifying the problem. One possibility is to work with different

variables. Let φ = 1− φR = φW + φN be the porosity of the rock. Define the saturations as

SW =
φW

φ
, SN =

φN

φ
, fraction of pore spore occupied by the respective fluids.



So we have

SW + SN = 1.

Decompose the fluid mobilities, ΛW and ΛN , into

ΛW =
kW
µW

, ΛN =
kN
µN

.

kW and kN are no longer rock properties alone, since one fluid blocks the flow of the other. Suppose that

the effective permeability depends on the fluid saturation of the phase increasing with its saturation. This

is because the more we have of fluid α the less the other fluid interferes with its flow.

kW = kkrW (SW ),

kN = kkrN (SW ), SN = 1− SW .

For two fluids with a fixed interfacial tension, the interfacial geometry varies with saturation so we can

expect pN − pW to be a function of the saturation SW :

pN − pW = pCNW (SW ).

The capillary pressure may be a multivalued function due to hysteresis.
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Mass Balance

The differential mass balance is given by:

∂

∂t
(φαρα) + div

(

φαραv
∼

α
)

= rα

If we assume there is no interphase mass transfer, rα = 0.

Eliminating the mass fractions in favor of the saturations, φα = φSα we have

∂

∂t
(φSαρ

α) + div
(

φSαρ
αv
∼

α
)

= 0.



Substitute v
∼

α from Darcy’s law (which is the conservation of momentum) into the conservation of W and

N :
∂

∂t

(
φSW ρW

)
− div

[

ρW
kkrW
µW

(
∇pW − ρW g∇z

)
]

= 0

∂

∂t

(
φ(1− SW )ρN

)
− div

[

ρN
kkrN
µN

(
∇pW +∇pCNW − ρNg∇z

)
]

= 0.

Here, pW and SW are considered the primary unknowns. Empirical measurements are necessary to establish

the relationships
krα = krα(SW ) α =W,N

pCNW = pCNW (SW )

ρW = ρW (pW )

ρN = ρN (pN ) = ρN (pW , pCNW (SW ))

We also need initial conditions pW (x
∼
, 0), SW (x

∼
, 0). These are known from measurements and interpolated to

get the desired functions.

The final thing that we need are boundary conditions. Specify pW at the boundaries of the flow region.

Also, specify the normal flux of aqueous fluid across the boundaries. That is, give

v
∼

W · n
∼
= −ΛW

φW
(
∇pW − ρW g∇z

)
· n
∼

Many times, such as in oil reservoirs, there is no flux at the boundary: v
∼

W · n
∼
= 0.

1.4 Multiphase-multispecies Flows

Many mixtures of interest, such as oil reservoirs, consist of several phases and several species. They consist

of several phases including rock, oil, water and gas. They also consist of many molecular species such as

methane, propane, water and salt.

Let the species be i = 1, . . . N+1 and consider three fluid phases, aqueous(W ), oil(O) and gas(G) and one

rock phase(R). One of the species is the rock material, for example, sandstone. In contamination problems,

the phase may be rock, water and DNAPL (dense nonaqueous phase liquids) or maybe even bacteria. We

will concentrate on modelling an oil reservoir.

In this mixture each pair (i, α) with i chosen from the species indices and α from the phases is a

constituent. Example: methane in gas is one constituent and methane in oil is another.

ραi , intrinsic mass density of species i in phase α (mass of i/unit volume of α)

φα, volume fraction of phase α



Sα, saturation of phase α = φα/φ, φ = 1− φR, porosity

ρα =
N∑

i=1

ραi , intrinsic mass density of phase α

Wα
i =

ραi
ρα

, mass fraction of species i in phase α [mass i/mass α]

ρ = φ
∑

α6=R

Sαρ
α, bulk density of fluids [mass of fluids/volume]

Wi =

(
φ

ρ

)
∑

α6=R

Sαρ
αWα

i , total mass fraction of species i in the fluids [mass of i/mass of fluids]

The baricentric velocity of phase α is

v
∼

α =
1

ρα

n∑

i=1

ραi v∼
α

i
.

The diffusion velocity of species i in phase α is

u
∼

α

i
= v

∼
α

i
− v

∼
α.

Constraints

N∑

i=1

Wi =

N∑

i=1

Wα
i = 1, for every α

∑

α

φα =
∑

α6=R

Sα = 1

N∑

i=1

ραi u∼
α

i
= 0

∼
.

The mass balance law for constituent (i, α) is:

∂

∂t
(φαρ

α
i ) + div

(

φαρ
α
i v∼

α

i

)

= rαi .

exchange terms
(∗)

Rewrite (∗) as
∂

∂t

(

φSα
︸︷︷︸

ραWα
i

︸ ︷︷ ︸

)

+ div

(

φSαρ
αWα

i

α
v
∼
︸︷︷︸

)

+ divj
∼

α

i
= rαi ,

φα ραi velocity of phase

(∗∗)

where j
∼

α

i
= φSαρ

αWα
i u∼

α

i
is the diffusive flux.

Assume no intraphase chemical reactions and
∑

α6=R

rαi = 0 for each species.



Sum (∗∗) over all fluid phases to get the total balance law for each species.

∂

∂t
(ρWi) + div

[

φ
(

SW ρWWW
i v

∼
W + SOρ

OWO
i v∼

O + SGρ
GWG

i v∼
G
)]

+div
(

j
∼

W

i
+ j

∼
O

i
+ j

∼
G

i

)

= 0 i = 1, . . .W.

Assume Darcy’s law for each phase

v
∼

α = − kkrα
µαφSα

(∇pα − ραg∇z) α =W,O,G.

Assume the hydrodynamic dispersion is small

j
∼

W

i
+ j

∼
O

i
+ j

∼
G

i
≃ 0

∼

∂

∂t

[
φ
(
SW ρWWW

i + SOρ
OWO

i + SGρ
GWG

i

)]

−div

[
kkrW ρWWW

i

µW

(
∇pW − ρWg ∇z

)
+
kkrOρ

OWO
i

µO

(
∇pO − ρOg∇z

)

−−kkrGρGwG
i

µG

(
∇pG − ρGg∇z

)
]

= 0 i = 1, . . . N.

To close the system, we need some supplementary constraints. Some are the equations of state:

ρα = ρα(Wα
1 , · · · ,Wα

N , pα) α =W,O,G
Wα

i =Wα
i (W1, · · · ,WN , pα) α =W,O,G

Sα = Sα(W1, · · · ,WN , pα) α =W,O,G,

which may be given explicitly, implicitly or in tabular form.

The other constraints are the constitutive relations:

pO − pW = pCOW = pCOW (SO, SG)
pG − pO = pCGO(S0, SG)
krα = krα(S0, SG α =W,O,G.

The previous material is based partially on [2], [6], [3] and [4].



Chapter 2

Numerical Methods.

2.1 Basic Methods for Parabolic Equations

We will review some numerical methods for parabolic differential equations. We will look at

• Finite Difference Methods

• Weighted Residual Methods

• Finite Volume Methods

• Characteristic Methods

• Nonstandard Methods

• Other Methods

Finite Difference Methods

They are the easiest to think about:

Replace derivatives by finite differences

•
(
du
dx

)

i
≈ ui+1−ui

∆x forward difference

•
(
du
dx

)

i
≈ ui−ui−1

∆x backward difference

•
(
du
dx

)

i
≈ ui+1−ui−1

∆x central difference

•
(

d2u
dx2

)

i
= d

dx

(
du
dx

)

i
≈ 1

∆x

[(
du
dx

)

i+1
−
(
du
dx

)

i

]

= 1
∆x

(
ui+1−ui

∆x − ui−ui−1

∆x

)

= ui+1−2ui+ui−1

∆x2

We will start with an ordinary differential equation example:

Second order equation
d2u

dx2
+ 2 = 0



with Dirichlet boundary conditions:

u = 0 at x = 0

u = 0 at x = 1.

Replacing the second derivative by finite differences we obtain:

ui+1 − 2ui + ui−1

∆x2
+ 2 = 0,

which is a system of equations in ui.

If ∆x = 1/2, then we have three points. With u0 = 0 and u2 = 0 from the boundary conditions, we have

u1 = 1/4 which is the exact value at x = 1/2.

The finite difference solution is

-
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Method of Weighted Residuals

We seek an approximate solution û of the form

û(x) =

N∑

i=0

uiϕi(x)

↑ ↑
Unknown Known

Coefficients Basic functions

The basis functions (Legendre, trigonometric, piecewise Lagrange) are usually chosen to satisfy the b.c. but

not the equation.

When we substitute the approximation of the true solution into an equation Lu = f , we get a residual, R:

R(û) = Lû− f

The residuals are made zero in an average sense: Pick N weighting functions wj , j = 1, 2, . . . , N.

Define the weighted average as:

< w, u >=

∫

Ω

wudx

and make

< wj , R(û) >= 0 j = 1, 2, . . . , N,



which is a system of N linear equations.

Weighted Residual Methods

• Subdomain: divide the domain Ω into subdomains Ωj not necessarily disjoint and choose

wj =

{
1 (x, y) ∈ Ωj

0 otherwise

• Collocation: pick N points (xj , yj) in Ω and choose wj(x, y) = δ ((x, y) · (xj , yj))

< wj , Rû >=

∫

Ω

δ ((x, y)− (xj , yj))R(û)dxdy =

R (û(xj , yj)) = 0

So equation is satisfied exactly at (xj , yj).

• Least squares

wj =
∂R

∂uj

∫

Ω

R
∂R

∂u0
dx =

1

2

∫

Ω

∂R2

∂uj
dx = 0

• Bubnov-Galerkin

wj = ϕj

Finite Elements

The method of finite elements requires that the basis functions, ϕj(x) be finite elements, that is, they be

zero except for a small portion of the domain.

Lets start with a one-dimensional example:

du

dx
+ bu = h 0 < x < 1

u(0) = 1

Define grid: x0, x1, . . . , xN Let

{ϕj(x)}Nj=0

be piecewise Lagrange polynomials on x0, x1, . . . , xN

ϕj(x) =







x− xj−1

xj − xj−1
xj−1 ≤ x ≤ xj

xj+1 − x

xj+1 − xj
xj < x ≤ xj+1

0 otherwise



The piecewise linear basis functions are:

-

6

x

y

x1 x2 x3

@
@
@
@@

@
@
@
@@

@
@
@
@@�

�
�
��

�
�
�
��

ϕ0 ϕ1 ϕ2

u0 is known from the b.c.:
u(0) = û(0) = u0 = 1

⇒ û(x) = ϕ0(x) =

N∑

j=1

ujϕj(x)

The residual is then: R(û) = ϕ′
0 +

N∑

j=1

ujϕ
′
j + k



ϕ0 +

N∑

j=1

ujϕj



− h. In this method the weight functions

are the same as the basis functions so pick wj = ϕj j = 1, . . . N.

∫ 1

0

R(û)ϕjdx = 0 j = 1, . . . , N

The above integrals involve only basis functions. They can usually be calculated exactly, as in this case,

or using Gaussian quadrature formulas. We obtain a system of sparse linear equations, which can be solved

using a Gaussian elimination method designed for tridiagonal matrices known as the Thomas algorithm.

Collocation

The collocation method is similar differing only in the choice of weight functions:

• Choose grid

• Choose collocation points (where solution is exact)

• Define basis functions, ϕj

• Satisfy Dirichlet boundary conditions

• Write approximating function

û(x) = ϕ0(x) +

2∑

j=1

ujϕj(x)

• Substitute approximate solution into equation and find residual function

• Define weight functions, wi(x) = δ(x− xi)



• Multiply residual by weight functions and integrate

• Integrals are immediate because of the δ functions

• Solve sparse linear system

Finite Volume Methods

Consider
d2u

dx2
− 2 = 0, 0 < x < 1.

Divide the domain into finite volumes and integrate the equation
∫ xi+1

xi−1

(
d2u

dx2
− 2

)

dx = 0.

Integrating
du

dx

∣
∣
∣
xi+1

xi−1
−
∫ xi+1

xi−1

2dx = 0

xi−1 xi xi+1

ViSi Si+i

.

Finite volume methods can be based on finite differences or on finite elements. Using finite differences:

ui+1 − ui
∆x

− ui − ui−1

∆x
= 2∆x.

Using finite elements the method is:

• Choose basis functions

• Write approximate solution as linear combination

• Substitute into integrated expression

• Get same results as for finite differences.

Parabolic equations

Parabolic equations are of the form

ut = f(uxx, ux, u, x, t)



An example is

ut = uxx 0 < x < 1, 0 < t

u(x, 0) = f(x)
u(0, t) = g0(t), u(1, t) = g1(t)

The simplest method is the method of lines which consists of

• Discretize the x part of the equation using finite differences or finite elements

• Get a system of ordinary differential equations in time

• Solve using Euler, Runge-Kutta, etc. Usually the method is Euler or backward Euler or an average of

both.

The numerical method that we choose needs to have some properties:

• Consistency: The discretized equations approach the exact equation as the grid is refined.

• Convergence: The approximate solution approaches the exact solution as the grid is refined.

• Stability: Errors don’t grow.

The proof of consistency is easy, but have we really want is that we have convergence. The easiest way of

proving convergence is to use the Lax equivalence theorem:

If the scheme inconsistent, then stability ⇔ convergence.

Model equation

The heat equation is

ut = Duxx, 0 < x < xmax, 0 < t u(x, 0) = uI , 0 < x < xmax

u(0, t) = u2
u(xmax, t) = uk

}

t > 0

If we use an explicit scheme

un+1
j − unj =

∆t

∆x2
(
unj−1 − 2unj + unj+1

)
.

t is stable if

λ =
∆t

∆x2
≤ 1

2
,

which gives a restriction to very small time steps.

Explicit molecule:



tn+1

tn

xi−1 xi xi+1

x x

x

x

Fully Implicit:

un+1
j − unj = λ

(
un+1
j−1 − 2un+1

j + un+1
j+1

)

(1 + 2λ)un+1
j − λ

(
un+1
j+1 + un+1

j−1

)
= unj

This scheme is unconditionally stable, but we need to solve a system of algebraic equations. It also introduces

artificial viscosity.

The implicit molecule is

tn+1

tn

xi−1 xi xi+1

x x

x

x

Crank-Nicolson’s method is an average of the explicit and implicit methods:

un+1
j − unj =

[
θ
(
un+1
j+1 − 2un+1

j + un+1
j−1

)

+(1− θ)
(
unj+1 − 2unj + unj−1

)
]λ

θ = 0 explicit

θ = 1 full implicit

θ =
1

2
Crank Nicolson

Crank-Nicolson’scheme is unconditionally stable, has better accuracy than the fully implicit method but

still requires solution of algebraic systems

The Crank-Nicolson’s molecule is



x

Unphysical oscillations

y

tn+1

tn

xi−1 xi xi+1

x x

x x

x

x

Convection-diffusion equations

A model equation is
∂u

∂t
=

1

Pe

∂2u

∂x2
− ∂u

∂x
,

where Pe=Peclet number =
vxmax

∆
. Applying Crank-Nicolson to the equation we get

∂u

∂t
≃ un+1

i − uni
∆t

∂u

∂x
≃ 1

2

un+1
i+1 − un+1

i−1

2∆x
+

1

2

uni+1 − uni−1

2∆x

∂2u

∂x2
≃ 1

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)

∆x2

+
1

2

(
uni+1 − 2uni + uni−1

)

∆x2
.

The truncation error is θ(∆t2 +∆x2)

If ∆x >
2

Pe
we have spurious oscillations that produce instabilities.

The convection-diffusion equation is also written as

∂c

∂t
+ v

∂c

∂x
− ∂

∂x

(

D
∂c

∂x

)

= 0,

where v is the velocity of the fluid, and D is the diffusion coefficient. For most problems in porous media,

the convection term dominates. For example in modeling transport of a solute in a fluid. Then the behavior



is close to that of hyperbolic equations. Which means that the numerical scheme needs to move information

in the same direction as the differential equation. Upwind schemes are designed to do it:

If v > 0, forward differences:

tn+1

tn
xi−1 xi
x x

x

and if v < 0 then use backward differences:

tn+1

tn
xi xi+1
x

x

x

For finite elements the same effect is obtained with the Petrov-Galerkin method, which uses weight

functions that are larger in the direction of propagation.

Characteristic Methods

The method of characteristics is used to integrate the hyperbolic (transport) part. The main problem is

that the mesh gets deformed.

tn

tn+1

x1 x2 x3 x4
A
A

A
A

A
A

A
AAK 6
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x1 x2 x3 x4

One way to deal with this is to use the modified method of characteristics (MMOC), which uses a regular

mesh and integrates back along the characteristics. The characteristic does not get back at a grid point, but

since we know the solution at that time level we can interpolate to find the value at this “back track point”.

This is a lagrangian method.

If we consider the transport equation

∂c

∂t
+ v

∂c

∂x
− ∂

∂x

(

D
∂c

∂x

)

= R(c)



The modified method of characteristics is

Dc

Dt
=
∂c

∂t
+ v

∂c

∂x
≃ Cn+1(x)− Cn(x− vn∆t)

∆t

*
xi−2 xi−1 xi xi+1

time level  (n) 

particle path

concentration profile

xi
n

xi−2 xi−1 xi xi+1

time level  (n+1) 

*

• Finite-Difference Approximation (FD):

Cn+1
i − Cn(xi − vn∆t)

∆t
− δx̄(DδxC

n+1)i = R(Cn+1
i )

Other Methods

• Mixed finite elements. Write second order equation as system of first order equations

• Eulerian-Lagrangian Methods: approximate part of the equation using Lagrangian coordinates (fol-

lowing physical particles) and part using Eulerian coordinates

• ELLAM (Eulerian-Lagrangian localized adjoint method)

• Particle in cell: Follow the motion of particles

• Nonstandard methods: Integrate transport-reaction part exactly using characteristics



2.2 Numerical Methods for Elliptic Equations

In two dimensions Poisson’s equation is

uxx + uyy = −f(x, y) in (0, 1)× (0, 1)
u = u∂(x, y) on the boundary

Finite difference approximation

ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2
= −fij

i = 1, . . . , N − 1
j = 1, . . . ,M − 1

xi = i∆x ∆x =
1

N

yj = j∆y ∆y =
1

M
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x

x

x

x

x

(N − 1)(M − 1) interior points with unknowns.

Solving for uij

uij =
1

2∆x2 + 2∆y2
[
(ui+1,j + ui−1,j)∆y

2 + (ui,j+1 + ui,j−1)∆x
2

+ fij∆x
2∆y2

]

= δ1 (ui+1,j + ui−1,j) + δ2 (ui,j+1 + ui,j−1) + δfij ,

where δ1 =
∆y2

2∆x2 + 2∆y2
, δ2 =

∆x2

2∆x2 + 2∆y2
, δ =

∆x2∆y2

2∆x2 + 2∆y2
.

Iterative Methods

Jacobi

u
(n+1)
ij = δ1

(

u
(n)
i+1,j + u

(n)
i−1,j

)

+ δ2

(

u
(n)
i,j+1 + u

(n)
i,j−1

)

+ δfij

Gauss-Seidel Use updated variables as soon as they are available:

u
(n+1)
ij = δ1

(

u
(n)
i+1,j + u

(n+1)
i−1,j

)

+ δ2

(

u
(n)
i,j+1 + u

(n+1)
i,j−1

)

+ δfij



SOR

u
(n+1)
ij = δ1

(

u
(n)
i+1,j + u

(n+1)
i−1,j

)

+ δ2

(

u
(n)
i,j+1 + u

(n+1)
i,j−1

)

+ δfij

u
(n+1)
ij = u

(n)
i,j + w

(

u
(n+1)
i,j − u

(n)
ij

)

with 0 < w < 2 for convergence (w = 1 Gauss Seidel).

Line iterative methods: improve all points in a line at the same time.

Line Jacobi

u
(n+1)
ij − δ1

(

u
(n+1)
i+1,j + u

(n+1)
i−1,j

)

= δ2

(

u
(n)
i,j+1 + u

(n)
i,j−1

)

+ δfij

In each iteration we have to solve a tridiagonal system (direct method).

Line Gauss-Seidel (by columns)

u
(n+1)
ij − δ1

(

u
(n+1)
i+1,j + u

(n+1)
i−1,j

)

= δ2

(

u
(n)
i,j+1 + u

(n+1)
i,j−1

)

+ δfij

Line SOR (by columns)

u
(n+1)
i,j − δ1

(

u
(n+1)
i+1,j + u

(n+1)
i−1,j

)

= δ2

(

u
(n)
i,j+1 + u

(n+1)
i,j−1

)

+ δfij

u
(n+1)
ij = u

(n)
i,j + w

(

u
(n+1)
i,j − u

(n)
i,j

)

Alternating Direction Methods

Consist of a row line iteration, then a column line iteration and so on.

For example, ADLSOR is:

u
(n+ 1

2
)

i,j − δ1

(

u
n+ 1

2
)

i+1,j + u
(n+ 1

2
)

i−1,j

)

= δ2

(

u
(n)
i,j+1 + u

(n+ 1
2
)

i,j−1

)

+ δfij

u
(n+ 1

2
)

ij = u
(n)
i,j + w

(

u
(n+ 1

2
)

i,j − u
(n)
i,j

)

u
(n+1)
i,j − δ2

(

u
(n+1)
i,j+1 + u

(n+1)
i,j−1

)

= δ1

(

u
(n+ 1

2
)

i+1,j + u
(n+1)
i−1,j

)

+ δfij

u
(n+1)
i,j = u

(n+ 1
2
)

i,j + w
(

u
(n+1)
i,j − u

(n+ 1
2
)

k,j

)

One advantage is that the influence of b.c. spreads faster into the whole domain.This implies better conver-

gence.

Conjugate Gradient Methods



• Symmetric matrices: Conjugate gradient and preconditioned conjugate gradient

• Nonsymmetric matrices: Orthomin, GMRES, . . . .

Finite Elements In 1-D we have for piecewise linear basis functions,that are given by piecewise Lagrange

polynomials. They can also be written in terms of functions defined in [−1, 1]:

−1 1

φ−1

φ1

ξ

Figure 2.1: Linear basis functions in terms of ξ

ϕ−1(ξ) =
1

2
(1− ξ) ϕ1(ξ) =

1

2
(1 + ξ)

or ϕξi =
1

2
(1 + ξξ1) where ξi = −1, 1

In two dimensions the easiest is to form the product of two one-dimensional bases, one in each direction

ϕ =
1

4
(1 + ξξi) (1 + ηηi)

Triangular elements

The linear basis functions are of the form

φ(x, y) = ax+ bx+ c making it one at one node and zero at the others we get

ϕi(x, y) =
x(yj − yk) + y(xk − xj) + (xjyk − xkyj)

det(P )

where (i, j, k) is a cyclic permutation of (1, 2, 3)

and P is





xi yi 1
xj yj 1
xk yk 1







(1,−1)

(−1,1)

(−1,−1)

(1,1)

Figure 2.2: Example of a 2-D linear basis function

A2

A3

A1

(x3, y3)

(x2, y2)

(x1, y1)

(x, y)

Figure 2.3: A triangular element

Let Pi be the matrix obtained from P when (xi, yi) is replaced by (x, y) then ϕi =
det(Pi)

det(P )

or in terms of the areas of the triangles (since A =
1

2
det(P ))

ϕi(x, y) =
Ai

A

All three ϕi are not independent since

Ai +A2 +A3 = A

and ϕ3 = 1− ϕ1 − ϕ2



Chapter 3

Numerical Methods for some

Problems in Porous Media.

3.1 1-D Steady Flow

We consider the steady flow of water through a porous medium consisting of three zones with different

hydraulic properties. Water is injected at a unit rate into the left side of the medium and at the right end

the head is maintained at at constant value of 5.

The flow is given by Darcy’s law:

v = −kρg
µ

(
1

ρg

∂p

∂x
+
∂z

∂x

)

.

Define the hydraulic head as h = p/(ρg) + z and the hydraulic conductivity coefficient as K = ρgk/µ, then

Darcy’s law is

v = −K∂h

∂x
.

We discretize the medium using three elements, and four nodes: at the left end, two at the boundaries

between elements and one at the right end.

4
Q=1 h=5

1 2

1 2 3 4

Figure 3.1: Three element composite porous medium

Consider an element e with local nodes 1 and 2. The flow is positive if it is entering the element. We

will use linear basis functions. Darcy’s equation at each node is

Q1 = KA
h1 − h2
L

and

Q2 = KA
h2 − h1
L

,



where K is the hydraulic conductivity, A the cross-sectional area and L the length of the element.

Writing the system in matrix form
[

KA
L −KA

L

−KA
L

KA
L

]e{
h1
h2

}e

=

{
Q1
Q2

}e

,

or

[C]ehe = Qe.

Here the e denotes we are working at the element level.

To assemble the global set of equations, we write the above equations for each node: For element 1






c
(1)
11 c

(1)
12 0 0

c
(1)
21 c

(1)
22 0 0

0 0 0 0
0 0 0 0













h1
h2
h3
h4







=







Q1
1

Q1
2

0
0







.

For element 2






0 0 0 0

0 c
(2)
11 c

(2)
12 0

0 c
(2)
21 c

(2)
22 0

0 0 0 0













h1
h2
h3
h4







=







0
Q2

1

Q2
2

0







.

For element 3






0 0 0 0
0 0 0 0

0 0 c
(3)
11 c

(3)
12

0 0 c
(3)
21 c

(3)
22













h1
h2
h3
h4







=







0
0
Q3

1

Q3
2







.

Adding the three matrices we get

[C]h = Q,

where

h =







h1
h2
h3
h4







,

Q =







Q
(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2 +Q

(3)
1

Q
(3)
2







,

and

[C] =








c
(1)
11 c

(1)
12 0 0

c
(1)
21 c

(1)
22 + c

(2)
11 c

(2)
12 0

0 c
(2)
21 c

(2)
22 + c

(3)
11 c

(3)
12

0 0 c
(3)
21 c

(3)
22







.

Note that cij = cji. Enforcing the continuity of flow at the internal nodes 2 and 3: Q
(1)
2 = −Q(2)

1 and

Q
(2)
2 = −Q(3)

1 , so the right hand side vector becomes

Q =







Q
(1)
1

0
0

Q
(3)
2







.



Using the boundary conditions we have Q
(1)
1 = Q1 = 1. The other boundary condition h4 = 5 has to be

incorporated carefully to keep the symmetry of the system:







c11 c12 c13 0
c21 c22 c23 0
c31 c32 c33 0
0 0 0 1






=







h1
h2
h3
h4







=







1− 5c14
−5c24
−5c34

5







.

Finally we need to solve the linear system.

3.2 Slightly Compressible Fluid

The continuity equation is now
∂v

∂x
= −(α+ φβ)

∂p

∂t
.

Since
∂h

∂t
=

1

ρg

∂p

∂t

the right-hand side of the equation of continuity can be written as

−(α+ φβ)
∂p

∂t
= −ρg(α+ φβ)

∂h

∂t
= Ss

∂h

∂t
,

where Ss = ρg(α + φβ) is called the specific storage. Combining this equation and the continuity equation

with Darcy’s law we obtain
∂

∂x

(

K
∂h

∂x

)

= Ss
∂h

∂t
.

Consider the above equation on 0 ≤ x ≤ X, with the initial and boundary conditions h(x, 0) = h)0, h(0, t) = 0

and h(X, t) = 0. Using the Galerkin finite element approach, approximate h by

h(x, t) =
n∑

J=0

ΦJ (x)hJ(t).

Substituting this approximation, multiplying by the weight function ΦI(x), integrating over x and integrating

by parts the term with the second x derivative we get:

∑

J

(
∫ X

0

∂ΨI

∂x

dΨJ

dx
hJd x+

∫ X

0

SsΨIΨJ
dhJ
dt

d x

)

= 0.

Or
∑

J

(

CIJhJ +MIJ
dhJ
dt

)

= 0, forI = 2, 3, . . . , n− 1.

Here

CIJ =

∫ X

0

K
dΨI

dx

dΨJ

dx
d x

and

MIJ =

∫ X

0

SsΨIΨJd x.



The time derivative can be approximated by finite differences or finite elements. Lets do finite differences.

Use a super index k + θ to denote the time level, with 0 ≤ θ ≤ 1:

∑
(

CIJh
k+θ
J +MIJ (

dhJ
dt

)k+θ

)

= 0.

The time derivative is approximated as

(
dhJ
dt

)k+θ = (hk+1
J − hkJ)/δt

and the values of the head at k + θ by

hk+θ
J = (1− θ)hkJ + θk+1

J .

Our system is now
∑

(

CIJ [θh
k+1
J + (1− θ)hkJ ] +

MIJ

δt
(hk+1

J − hkJ)

)

= 0.

For θ = 0 we obtain the following explicit scheme

∑

[
MIJ

δt
hk+1
J =

∑

(
MIJ

δt
− CIJ ]h

k
J .

For θ = 1 the scheme is fully implicit. After moving all the terms at the new time level k + 1 to the left

and all the terms at the k level to the right we have

∑

[CIJ +
MIJ

δt
]hk+1

J =
∑MIJ

δt
hkJ .

And finally for θ = 1/2 we have the Crank-Nicolson scheme

∑

[
CIJ

2
+
MIJ

δt
]hk+1

J =
∑

[
MIJ

δt
− CIJ

2
]hkJ .

The explicit scheme is the easiest to solve but is only conditionally stable. Both the implicit and Crank-

Nicolson are unconditionally stable.

The two previous examples are from [3].



3.3 Non-steady Aquifer

First we will do the steady problem. Consider an aquifer with uniform thickness b and assume that it is

uniform in the vertical direction. Assume that there is recharge from precipitation or extraction by wells

given by a function R, the volume of water added or subtracted per unit time per unit area. Take a small

rectangular region of size ∆x by ∆y by b. The continuity equation is now

∇ · v = R/b.

Substituting Darcy’s law v = −K∇h we get

∂2h

∂x2
+
∂2h

∂y2
= −R(x, y)

T
.

where T is the transmissivity defined as T = Kb. The finite difference form of this Poisson equation is

hi−1,j − 2hi,j + hi+1,j

(∆x)2
+
hi,j−1 − 2hi,j + hi,j+1

(∆y)2
=
R

T
.

It can be solved using Gauss-Seidel iteration.

For problems with pumping of water through wells we need to introduce the storage coefficient S which

represents the volume of water released from storage per unit area per unit decline of head

S =
−∆Vw

∆x∆y∆h
,

where ∆Vw is the volume of water released from storage within the element of volume with area ∆x∆y and

thickness b. Adding this term to the continuity equation we get

∇ · v =
R

b
− S

b

∂h

∂t
.

This is now a non-steady problem. Substituting Darcy’s law we get

∂2h

∂x2
+
∂2h

∂y2
=
S

T

∂h

∂t
− R(x, y, t)

T
.

If we use a forward difference time approximation

∂h

∂t
≈
hn+1
ij − hnij

∆t

and the usual approximation for the second space derivatives we get

hni−1,j − 2hni,j + hni+1,j

(∆x)2
+
hni,j−1 − 2hni,j + hni,j+1

(∆y)2
=
S

T

hn+1
ij − hnij

∆t
−
Rn

ij

T
.

Letting ∆x = ∆y = a and solving for hn+1
ij

hn+1
ij =

(

1− 4T∆t

Sa2

)

hnij +

(
4T∆t

Sa2

)(
hni−1,j + hni+1,j + hni,j−1 + hni,j+1

4
+
Rn

ij∆t

S

)

.

This example is done in [5].



3.4 Mixed Finite Element Example

Assume a rigid porous medium saturated with a viscous, incompressible fluid, If the medium is also assumed

to be homogeneous and isotropic and the fluid and solid are in thermal equilibrium, the equations of the

fluid are
∂ui
∂xi

= 0 (3.1)

ρ

φ

∂uj
∂t

+

(
ρĉ√
κ
‖u‖+ µ

κ

)

ui =
∂

∂xj

[

−Pδij + µe

(
∂ui
∂xj

+
∂uj
∂xi

)]

+ ρfi. (3.2)

Here ρ is the density,κ is the permeability, φ is the porosity, ĉ is the inertia coefficient and ‖u‖ is the

magnitude of the velocity. µ is the viscosity coefficient, P is the pressure, f is the body force, and the

subindex e refers to effective viscosity. We sum over repeated indices.

The above system is a generalization of the Darcy’s equations for isothermal flow in a saturated medium.

It is called the Forchheimer-Brinkman model.

The boundary conditions are the same as for viscous flow: Dirichlet boundary conditions :

ui = fui (s, t) on Γu

or Neumann boundary conditions :

τi = σij(s, t)nj(s) = fτi (s, t) on Γτ ,

where s is the coordinate along the boundary, t is time, ni the outward unit normal and Γ the boundary.

The weak form of the above equations is obtained by multiplying by weight functions (Q,w) and inte-

grating over the domain Ω.

Using the shorthand f1 = 0 and f2 = f3 for equations 3.1 and 3.2we get

∫

Ω

Qf1dx = 0

and
∫

Ω

w · f2dx =

∫

Ω

w · f3dx.

Integrating by parts the term inside the square brackets in the second equation we get

0 =

∫

Ω

Q(
∂ui
∂xi

dx

0 =

∫

Ω

[

wi
ρ

φ

∂uj
∂t

+ wi

(
ρĉ√
κ
‖u‖+ µ

κ

)

ui +
∂wi

∂xj

(

−Pδij + µe(
∂ui
∂xj

+
∂uj
∂xi

)

)

− ρwifi

]

dx−
∮

Γ

wiτids.

As in any Galerkin finite element approximation we write u and P in terms of basis functions and use the

same basis functions for the weight functions

ui(x, t) =

M∑

m=1

ψm(x)umi (t) = ΨTui



P (x, t) =

L∑

l=1

φi(x)Pl(t) = ΦTP

Q = Φ and w = Ψ.

Substituting into the equations for conservation of mass and momentum we get

−
[∫

Ω

Φ
∂ΨT

∂xi
dx

]

ui = 0

[∫

Ω
ρ
φΨΨT dx

]

u̇i +
[∫

Ω
ρĉ√
κ
Ψ(ΨT ‖u‖)ΨT dx

]

ui +
[∫

Ω
µ
κΨΨT dx

]
u̇i

+
[∫

O
megaµe

∂Ψ
∂xj

∂ΨT

∂xj
dx
]

ui +
[∫

Ω
µe

∂ΨT

∂xj

∂ΨT

∂xi
dx
]

ui −
[∫

Ω
∂Ψ
∂xi

ΦT dx
]

P

=
[∫

Ω
ρfiΨdx

]
+
{∮

Γ
τiΨds

}

The above equations can be written in matrix form as

−Q̃Tu = 0

and

M̃u̇+ C̃(u)u+ Ãu+ K̃u− Q̃P = F̃

where u = (u1,u2,u3)
T and

M̃ =

∫

Ω

ρ

φ
ΨΨT dx

C̃(u) =

∫

Ω

ρĉ√
κ
Ψ(ΨT ‖u‖)ΨT dx

Ã =

∫

Ω

µe

κ
ΨΨT dx

K̃ij =

∫

Ω

µe
∂ΨT

∂xj

∂ΨT

∂xi
dx

Q̃i =

∫

Ω

∂Ψ

∂xi
ΦT dx

F̃i =

∫

Ω

ρfiΨdx+

∮

Γ

τiΨds.

Writing it as a single matrix equation

[

M̃ 0

0 0

]{
u̇

Ṗ

}

+

[
C̃(u) + Ã+ K̃ −Q̃

−Q̃T 0

]{
u

P

}

=

{

F̃

0

}

.

For Darcy’s case, ĉ = 0 and µe = 0, the system simplifies to

[
0 0

0 0

]{
u̇

Ṗ

}

+

[
Ã −Q̃

−Q̃T 0

]{
u

P

}

=

{

F̃

0

}

.

It can be shown that for the discrete system not to be over-constrained the basis functions for the pressure

must be at least one order lower than the basis functions for the velocity. Furthermore, the pressure does

not need to be continuous across elements. The Ladyzhenskaya-Babuska-Brezzi (LBB) condition needs to

be satisfied, so there are additional restrictions on which basis functions work with the given elements.

For 2-D problems a common element is a rectangle with nine nodes, one in each corner, one in the middle

of each side and one in the center. The velocity is represented using biquadratic Lagrange functions. The



pressure can be given as a bilinear which is continuous across elements and defined at the corners of the

rectangle. Or it could be given as bilinear but discontinuous.

This section was inspired by [4].



3.5 Transport of a Solute

The transport of a nonreactive, nonradioactive solute in the absence of adsorption is given by

∂

∂t
φc+

∂

∂xi
vic =

∂

∂xi

(

φDij
∂c

∂xj

)

,

where summation over repeated indices is assumed. c is the concentration of the solute per unit volume, Dij

is the dispersion coefficient and φ the porosity. To obtain the velocity we need solve the pressure equation

H
∂p

∂t
+

∂

∂xi
[Mij(

∂p

∂xj
+ ρgj)] = 0

where H = −ρ(α+ φβ) and Mij = ρkik/µ and substitute the pressure into Darcy’s law

vi = −kij
µ

(
∂p

∂xj
+ ρgj).

To simplify notation lets introduce the central difference δur = ur+1/2 − ur−1/2 and the backward

difference ∇tur = ur−ur−1 and use a subindex to denote the variable with respect to we take the difference.

1

∆xi
δxi

(

φρDij

δxj

∆xj
c

)

+
ρkij
µ

(
δxi

∆xj
p+ ρgj

)
δxi

∆xi
c =

ρ

∆t
∇t(φc)

H

∆t
∇tp+

1

∆xi
δxi

[

Mij(
1

∆xj
δxj

p+ ρgj)

]

= 0.

We have a system of 2N nonlinear equations in 2N unknowns, p and c, where N is the number of nodal

points. These equations are weakly nonlinear and are usually solved sequentially. That is, first solve for the

pressure, and find the velocity, and then solve for the concentration. Explicit finite difference schemes are

commonly used, in spite of having to restrict the time step to avoid nonphysical oscillations. But implicit

methods that don’t have this restriction, introduce artificial diffusion. They also require to calculate second

cross derivatives which increase the number of off-diagonal elements in the system matrix.

The material in this section is based on [3].



3.6 Modified Method of Characteristics for Transport

Problem Description 1.- Fluid flow equation

In this section we consider transient groundwater flow in a 2-D aquifer. There is a dissolved solute that is

transported by the flow and also diffuses.

The pressure equation is

S
∂p

∂t
−∇ · (K∇p) = f,

where S(x, t) is the specific storage, p(x, t) is the pressure or hydraulic head,K(x, t) is the saturated hydraulic

conductivity and f(x, t) represents the sources or sinks.

As before this equation is derived by combining the mass balance law

S∂p∂t+∇ · v = f

with Darcy’s law for the groundwater velocity

K−1v +∇p = 0.

Numerical Solution of the Flow Equation

S
∂p

∂t
−∇ · (K∇p) = f vs.







S
∂p

∂t
+∇ · v = f

K−1v +∇p = 0

• Mixed Finite-Element Method

– variational formulation:

∫

Ω

K−1vhw −
∫

Ω

ph∇ ·w = 0, ∀w ∈Wh =W x
h ×W y

h

∫

Ω

qS
∂ph
∂t

+

∫

Ω

q∇ · vh =

∫

Ω

qf, ∀q ∈ Qh

– lowest-order Raviart-Thomas spaces – Qh, Wh

– forward-difference and matrix splitting

Or writing it as a matrix system:

[
D N
NT ∆t−1M

] [
U
P

]n+1,m+1

=

[
D −A N
NT ∆t−1M

] [
U
P

]n+1,m

+

[
0
G

]n

.



• Multigrid based solver at each iteration level

• Pressure and velocity nodal values:

** *

P0 P1
Pn−1

 V
0

 V1  V2
 Vn−1  Vn

x0 x1 x2 xn−1 xn

The error estimates:

the approximate pressures and velocities obey equal-order L2 global error estimates that are O(∆x).

Problem Description 2.- Solute transport equation

The convection-dispersion-reaction equation for single species transport in a 2-D aquifer is

∂φc

∂t
+∇ · (vc)−∇ · (D · ∇c) = r(c),

where c(x, t) is the solute concentration, v(x, t) is fluid (baricentric) velocity, r(c) are the reaction and source

terms and D(v) is the hydrodynamic dispersion tensor:

D(v) = dm

[
1 0
0 1

]

+
dL
|v|

[
v2x vxvy
vyvx v2y

]

+
dT
|v|

[
v2y −vyvx

−vxvy v2x

]

,

where dm is the molecular diffusion coefficient, and dL and dT are the longitudinal and transverse dispersiv-

ities.

The derivation of the transport equation is based on combining the mass balance law

∂φc

∂t
+∇ · (vc) +∇ · j = r(c)

with Fick’s law for the diffusive flux

j = −D · ∇c.

It is important to remember the changing nature of the solute transport equation

• hyperbolic (convection-dominated) – preserves sharp fronts

• parabolic (diffusion-dominated) – smoothes sharp fronts

Numerical Solution of the Transport Equation

∂c

∂t
+ v · ∇c−∇ · (D · ∇c) = r(c).

A very reliable method to solve the above equation is the MMOC–Galerkin Method. Its two parts are



1. Modified method of characteristics:

∂c

∂t
+ v · ∇c = Dc

Dt
(x, tn+1) ≃

c(x, tn+1)− c(x̄n, tn)

∆t
,

where the backtrack point is x̄n = x− v∆t

2. Galerkin finite-element method:

1

∆t

∫

Ω

(cn+1
h − c̄nh)ϕ +

∫

Ω

D∇cn+1
h · ∇ϕ =

∫

Ω

r(cn+1
h )ϕ.

Gauss quadrature method is used to calculate c̄nh(x) = cnh(x̄
n). Also Picard’s iteration is needed to

accommodate r(cn+1
h )

Following particle paths:

*
xi−2 xi−1 xi xi+1

time level  (n) 

particle path

concentration profile

xi
n

xi−2 xi−1 xi xi+1

time level  (n+1) 

*

An alternative numerical solution of the transport equation

∂c

∂t
+ v · ∇c−∇ · (D · ∇c) = r(c)

It is called the MMOC – Streamline Diffusion Method

• Modified method of characteristics:

∂c

∂t
+ v · ∇c = Dc

Dt
(x, tn+1) ≃

c(x, tn+1)− c(x− vn+1∆t, tn)

∆t

• Streamline diffusion method: ϕ→ ϕ+ γv · ∇ϕ

1

∆t

∫

Ω

(cn+1
h − c∗h)ϕ + γ

∫

Ω

(v · ∇cn+1
h )(v · ∇ϕ)

+

∫

Ω

D · ∇cn+1
h · ∇ϕ =

∫

Ω

r(cn+1
h )ϕ.

The new integral term mimics the longitudinal entries of the hydrodynamic dispersion tensor D(v)

γ

[
v2x vxvy
vyvx v2y

]

.

The error estimates for the combined MMOC-SD method are L2 error bounds: O(∆x+∆t).



3.7 Multiphase Flow

Here we consider an oil reservoir with two phases: water and oil. Darcy’s law is

vif = −kijkrf
µf

(
∂pf
∂xj

+ ρfg
∂z

∂xj

)

, f = w, o.

To account for volume changes due to the different pressures at the reservoir and at the surface it is convenient

to introduce a formation volume factor, Bf = Vf/Vfs. Thus we obtain the following continuity equations

− ∂

∂xi

(
vif
Bf

)

=
∂

∂t

(
φSf

Bf

)

,

where Sf is the saturation of phase f , defined as φf/φ, with φf the volume fraction occupied by fluid f and

φ is the porosity. Substituting the Darcy’s velocities into this equation we get

∂

∂xi

[
kijλf
Bf

(
∂pf
∂xj

+ ρfg
∂z

∂xj

)]

=
∂

∂t

(
φSf

Bf

)

,

where λf is the mobility factor defined as λf = krf/µf .

Averaging over the vertical thickness b

∂

∂xi

[

b
kijλf
Bf

(
∂pf
∂xj

+ ρfg
∂z

∂xj

)]

= b
∂

∂t

(
φSf

Bf

)

.

Assuming k12 = k21 = 0 the finite difference form can be written

1

(∆xi)2
δxi

[
bkiiλf
Bf

(δxi
pf + ρfgδxi

z)

]

=
1

∆t
∇t

(

φ
Sf

Bf

)

. (3.3)

All the terms in the left hand side are evaluated at time s + 1, which gives a coupled nonlinear system of

equations.

The Implicit pressure-Explicit Saturation method (IMPES) proposes to be a more efficient method. The

idea is to eliminate the saturation terms and obtain an equation that contains only the pressure as the

dependent variable. This equation is solved using an implicit finite difference approximation. Then the

saturation can be solved explicitly from the original equations.

Assume that the capillary pressure pcow = po − pw does not change over a time step. Therefore ∇tpw =

∇tpo and letting p ≡ po gives

δxi
[awi(δxi

p− δxi
pcow + ρwgδxi

z)] =
dw1

∆t
∇tp+

dw2

∆t
∇tSw

and

δxi
[aoi(δxi

p+ ρogδxi
z)] =

do1
∆t

∇tp+
do2
∆t

∇tSo,

where

afi =
bkiiλf

(∆xi)2Bf
i = 1, 2,

df1 =
1

∆t

[

(Sfφ)s
(1/Bf )

dpf
+

Sfs

Bfs+1

dφ

dp

]

,



and

df2 = (φ/Bf )s+1.

Here s refers to the time level. Remembering that Sw + So = 1, we reduce the above two equations to an

equation in the pressure by multiplying the first one by do2, the second one by dw2 and adding

do2δxi
[awi(δxi

p− δxi
pcow + ρwgδxi

z)] + dw2δxi
[aoi(δxi

p+ ρogδxi
z)] =

(
do2dw1

∆t
+
do1dw2

∆t

)

∇tp.

Using the capillary pressure at time s, we can rewrite this equation in a similar for to that for a one-phase

flow:

δxi
[awi(δxi

p+ ρwgδxi
z)] +

dw2

do2
δxi

[aoi(δxi
p+ ρogδxi

z)] =

(
dw1

∆t
+
do1dw2

do2∆t

)

∇tp+ δxi
(awiδxi

pcow,s).

This is an implicit nonlinear difference equation for ps+1. Equations (3.3), f = o, w can now be solved

explicitly for the saturations.

Similar procedures can be used for the case of three phases: water, oil and gas. For more information see

[2], [6] and [3].
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