SynLLM: A Comparative Analysis of Large
Language Models for Medical Tabular
Synthetic Data Generation
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Prompt A - SEEDEX (Minimal Example-Based Prompt)

Prompt B — FEATDESC (Feature Description Prompt)

Prompt D - CLINRULE (Clinically Constrained Prompt)

Generate realistic synthetic patient records for
diabetes prediction using the following
structure.

gender, age, hypertension, heart_disease,
smoking_history, bmi, HbAlc_level,
blood_glucose_level, diabetes

Example Records:
Female,45.2,1,0,never,28.5,6.2,140,0
Male,62.7,1,1,former,32.1,7.1,185,1

Generate realistic synthetic patient records for
diabetes prediction.

Features:

1. gender: Patient’s gender (Male/Female)

2. age: Age in years (Float: 18.0-80.0

3. hypertension: Hypertension diagnosis (0: No, 1:
Yes)

4. heart_disease: Heart disease diagnosis (0: No, 1:
Yes)

5. smoking_history: Smoking status (never/former/
current/not current)

6. bmi: Body Mass Index (Float: 15.0-60.0)

7. HbAlc_level: Hemoglobin Alc (Float: 4.0-9.0)

8. blood_glucose_level: Glucose level in mg/dL (Int:
70-300)

9. diabetes: Diabetes diagnosis (0: No, 1: Yes)

Example records:
Female, 45.2,1,0,never,28.5,6.2,140,0
Male, 62.7,1,1, former,32.1,7.1,185,1

Generate realistic synthetic patient records for
diabetes prediction.

Feature Metadata:

gender: Male: 48%, Female: 52%

age: Mean: 41.8, Std: 15.2, Range: 18-80

hypertension: No: 85%, Yes: 15%

heart_disease: No: 92%, Yes: 8%

smoking_history: never: 60%, former: 22%, current:
15%, not current: 3%

bmi: Mean: 27.3, Std: 6.4, Range: 15-60

HbAlc_level: Mean: 5.7, Std: 0.9, Range: 4.0-9.0

glucose: Mean: 138.0, Std: 40.5, Range: 70-300

diabetes: No: 88%, Yes: 12%

Maintain the following correlations:

- Higher age is associated with hypertension and
heart disease

Higher BMI increases diabetes risk

HbAlc_level correlates with diabetes

Glucose correlates with HbAlc_level and diabetes

Hypertension and heart disease more common with
age

Each record must follow:

gender, age, hypertension, heart_disease,
smoking_history, bmi, HbAlc_level,
blood_glucose_level, diabetes




