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Abstract

This document provides some crude comparison between mimetic differences and other
numerical partial differential equation discretization methods. It is intended to show some
examples where mimetic differences performs better than other methods in terms of com-
putational time, accuracy and easiness of use. An more comprehensive and systematic
illustration of the virtues of mimetic differences are going to be developed.

1 Introduction

Mimetic differences (MD) is a numerical method for constructing schemes for solving partial
differential equations (PDEs). The following MD introduction follows from the general framework
approach given in [18].

Mimetic differences (MD) were introduced by the work of [I0]. The current variant of the mimetic
operators that is implemented in the Mimetic Operators Library Enhanced (MOLE) [I4] is the
version made known by [13]. In both [I0, 3] a one-dimensional (1D) non-periodic h-uniform
staggered grid X = X¢ U Xy on [a,b], composed of cell centers X¢ (including {a,b}) and cell
nodes Xy (including {a, b}, is utilized as the domain of scalar F" and vector V discrete projections
of the corresponding continuum fields f,v. Discrete scalar fields F' are defined on the dual mesh
points (or cell centers X) while the discrete vector fields V are defined on the primal mesh
points (or cell nodes Xy). Discrete analogs G, D of the gradient V and divergence V- vector
calculus operators uniformly approximate the spatial partial derivatives with higher-order of
accuracy GF —Vf = O(h¥), DV =V -7 = O(h*), k = 2,4,6,8, in domains with boundary data.
Utilizing these divergence D and gradient G discrete analogs high-order quadrature operators
Q, P, for D,G respectively, are defined in such a way that the integration by parts formula
(IBP) is approximated with the same order of accuracy of D,G, i.e., B = B + O(h*) since
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B =DTQ + PG and VI (B + O(h*))F = F(b)V (b) — F(a)V (a) = VIBF, with
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It has been proven that ), P obtained in this way are indeed high-order quadratures [I].

Kronecker products ® allows the extension of D, G to two-dimensions (2D) and three-dimensions
(3D) [I1]. The introduction of high-order uniform mimetic interpolation operators I : Xo —
Xn, 19 : Xy — X¢ [17] grants the approximation with high-order accuracy of the extended
Gauss divergence theorem [16]. Discrete analog of Laplacian operators are defined as L = DG and
the discrete analog of the curl operator is defined utilizing the discrete analog of the divergence
[T1]. In practice, to incorporate boundary conditions to the Laplacian operator or in general
to a second-order discrete analog of a linear operator one could add MOLE [24] functionalities.
Furthermore, it has been shown that both high-order divergence and gradient discrete analogs
can be written in compact form in terms of lower-order divergence and gradient discrete analogs,
respectively [9].

Mimetic differences have also been extended for non-uniform grids in 1D [6], and 2D [§]. The
same ideas can easily be extended to 3D. Mimetic differences can be extended to overlapping
grids by utilizing overlapping grids from Overture [7] and from MOLE with Ogen and general
interpolation operators [19].

It has been shown that MD operators obtained in this form satisfy the vector calculus identities
[16] and that classic solutions of systems of conservation laws preserve mass, momenta, and energy
[20]. Moreover, in the same work it is also demonstrated the preservation of those quantities for
curvilinear coordinates.

2 Comparison with finite differences

In this section it is mentioned current comparisons with finite differences in terms of accuracy,
execution time and easiness to use.

2.1 1D Wave equation

In [23] example 10.1 states the following problem: Use the finite-difference method to solve the
wave equation for a vibrating string

Ugg = 4 Uy forO0<xr<land 0<t<0.5,

with the boundary conditions

u(0,t) =0 and u(l,t) =0 for 0 <t <0.5,
u(z,0) = f(z) = sin(7x) + sin(27z) for 0 <x <1,
ui(z,0) = g(z) =0 for 0 <z <1,



whose exact solution is u(z,t) = sin(mx) cos(2nt) + sin(27x) cos(4nt).

In [4], Armoa solves the same problem utilizing mimetic differences 1D Laplacian operator of
second-order together with a Leapfrog scheme. There are a couple of videos displaying the fact
that the mimetic approximation visually matches the exact solution while the finite difference
solution utilizing MATLAB can be clearly distinguished from the exact solution. It also pro-
vides an accuracy comparison between the tho methods which is summarized in the following
tables.

’ Method H Mean Square Error ‘ Maximum Error ‘ Lo-norm ‘

Finite Differences 0.002393 0.177220 | 0.035363
Mimetic Differences 0.000001 0.002941 | 0.000733

Table 1: Accuracy comparison for 50 cells.

Method H Mean Square Error ‘ Maximum Error | Ls-norm

Finite Differences 0.000006 0.009241 | 0.001757
Mimetic Differences 0.000000 0.000008 | 0.000002

Table 2: Accuracy comparison for 1000 cells.

One can clearly see in Tables[I] and [2] that no matter the number of uniform cells utilized, finite
differences posses at least a couple of orders of magnitude smaller mean square error, maximum
error and Ly-norm error.

The source MATLAB code can be found in Github [5].

2.2 Fractional derivatives

In [21], Mardo et al., solve the fractional problem

le' 2
Q%(%t) :)\%(x,t)—i-g(x,t), (z,t) € [0, L] x [0,T7,
where 2% is the Caputo fractional derivative of order o € (0,1) defined as
0“u 1 " ou
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The initial conditions are
u(z,0) = f(z), z € [0, L],
and the Neumann-Robin type boundary condition for ¢ € [0, T

{ 83“(0 t) = q(t),
Age(L,t) = h(t)(u(L,t) —u>),

where ¢ is the specific heat, A is the thermal conductivity coefficient, o is the density, h is the
heat transfer coefficient, u* is the environment temperature and ¢ is the heat flux.



[E(Az, At)[|o

Grid (Az x At) t = 0.75 t = 1.00
IFD MD IFD MD
5 X T 0.00414288 0.00190269 | 0.01080850 | 0.00423427
o5 X 555 0.00146142 | 9.34982209E-04 | 0.00384188 | 0.00224898
o5 X 30 7.73882266E-04 | 5.76161563E-04 | 0.00205081 | 0.00141923

Table 3: Variation of the approximation maximum norm error for the Implicit Finite Difference
and the Mimetic Difference scheme with different time refinement level At.

The following table shows the maximum norm error for both the Implicit Finite Difference (IFD)
and the Mimetic Differences (MD) at time ¢ = 0.75 and ¢ = 1.00.

It can be seen from Table [3, that the error decreases when the time step At is reduced. This
behavior is expected as MD is second-order in time while IFD is first-order only, which supports
the proposal numerical schemes for fractional order PDEs.

[E(Az, At)|o
Grid (Az x At) t=0.75 t = 1.00
IFD MD IFD MD
T L 0.00414288757 | 0.0019026870 | 0.010808523 | 0.0042342705
v 0.004195998 | 0.0019008641 | 0.0109263755 | 0.0042278331
X 7.73882266E-04 | 5.76161563E-04 | 0.00205081 | 0.00141023

Table 4: Variation of the approximation maximum norm error for the Implicit Finite Difference
and the Mimetic Difference scheme with different space grid refinement level Ax.

It can be seen from Table [4] that the error slowly decreases when the grid size Az is reduced
for MD. However, the same does not happen for IFD. Here the error increases due to round off
errors, when one reduces the grid size Ax. This behavior is expected as MD is second-order in
time while IFD is first-order only, which supports the proposal numerical schemes for fractional
order PDEs.

2.3 FitzHugh-Nagumo equations
In this example it is show a case when MD is several times faster than Finite Differences.

In [26] Rubio and Verao, solve the FitzHugh-Nagumo system in 2 for ¢ > 0 given by

Cc% = DAu—u(u—a)(u—1) —w+ Ly,
Cil—qf = e(u—yw),

where u represents the excitability of the system (related to a [KT]-voltage), w is a recovery
variable which represents combined forces that tend to return to cell membrane rest, I.,; is the
magnitude of an external stimuli applied to a neuron which triggers excitation, D is the diffusion
coefficient, and 0 < € < 1 describes time scale proportion between variables u and w.



Neurons FD MD
128 0.2075 0.0474
256 1.9502 0.2221
512 27.5378 4.2444
1024 470.6450 | 100.4102

Table 5: CPU time in seconds for both finite differences (FD) and mimetic differences (MD).

By looking at Table 5| one can notice that on both cases an explicit time discretization was
utilized. One can estimate that MD requires only a fifth of the time needed by FD finish the
simulation.

2.4 Reaction-Diffusion equations

In [2], the authors have to solve a system of three nonlinear equations describing the stem cell,
nutrient and chemokine dynamics on a three dimensional. The equations of the model are given
by

knmax +n Smax

1+k
s¢ = V- (sts — X (VQ)S) + Mmax M (1 - i) s — Rys,
Tl4
ng = V- (DnVn) - 5max m S

@ = V-(D,Vq) — Rsysq — Ryq.

Each of the equation has initial and boundary conditions. The authors were not able to use some
software packages such as COMSOL but they found simple to use MOLE. The next is the first
paragraph of section 3.1 of their paper :

"In this paper, given that our model includes a new variable, a new partial differential equation
and its respective boundary conditions, we opted for high-order mimetic methods, based on
finite differences, which are easy to implement. Our proposal was to show that, with mimetic
differences, it is possible to find a numerical solution to our coupled system of partial differential
equations.”

3 Comparison with finite elements

In this section it is mentioned current comparisons with the family of finite elements methods in
terms of accuracy, and execution time.

3.1 Elastodynamics

In [15], De La Puente et al., compare Discontinuous Galerkin (DG) and Mimetic Differences is
several aspects for the velocity-stress formulation of the elastodynamics equations for the 3D



isotropic case with a curvilinear domain utilizing a fully staggered grid approach. The equations
read as follows

0 ou ov ow
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where A\ is the first Lamé constant and p is the shear modulus. Parameter p is the density, the
normal stress components are given by 0,,, 0y, 0.., and the shear stresses are o,,,0,.,0,.. The
components of the particle velocities are denoted by u, v, w.

These equations are constrained by a free-surface condition with topography. Both DG and MD
have similar statistics in the different tests. On one hand DG can be applied to unstructured
grids than MD. On the other hand MD is much faster than DG in deformed grids. This can be
seen in the Table 4 of the paper which can be summarized in the next table.

Method | Phase misfit | Envelope misfit | Relative CPU cost
DG 0.00% 0.00% x12
MD 1.93% 4.82% x 1

Table 6: Comparison of relative computing cost and average errors obtained for all the receivers.
The model size and propagation time were identical for all solutions. This comparison assumes
DG solution as the reference to compare to.

One can clearly see in Table [0}, that the MD solution averaged on all receivers is close to the DG
solution. However, it is on average 12 times faster than DG.

3.2 Anisotropic Diffusion

In [3], Arbogast et al., solved the following steady state anisotropic diffusion equation (qualified

as relatively hard by the authors)
-V -I'Vu=f,



where I' is a symmetric positive definite matrix that represents a diffusion or conductivity tensor,
f is a forcing function. In particular, examples 6.2 of their paper is with

119
F_( 9 13)’

with exact solution given by u = (x — 2?)(y — y?) and Dirichlet boundary conditions.

In [9], Boada et al., solve the same problem utilizing MD. The next table compares the accuracy
of both solutions measured in terms of the exponent of h the mesh size.

Method | h exponent
Mixed FEM 1.50
MD (2"-order) 1.90
MD (4%"-order) 2.80

Table 7: Converge error rate as an exponent of the mesh size h for the anisotropic Laplacian
equation with Dirichlet boundary conditons. The number of cells is close to 20.

One can observe in Table [7] that the error mesh size exponent is better for MD than for Mixed
FEM.

3.3 Allen-Cahn equations
In [25], Orizaga et al., solved the non-linear parabolic Allen-Cahn PDE. It reads as

up = Au — éf(u)

One inhomogeneous two-component material concentration is used to represent the Allen-Cahn
system using the order parameter u, which is a scalar function for one phase. Values u = +1
are corresponding to the two distinct phases. Within the interfacial area, the order parameter
u exhibits a constant yet sharp variation from one phase to the next across the phase interface.
The thickness of the interfacial region is directly related to small ¢ > 0.

The authors of the paper compare MD with the pdepe MATLAB built-in function for solving
several 1D and 2D Allen-Cahn equations with periodic and non-periodic boundary conditions.
The following are some paragraphs of the Conclusion section of their paper.

"In this paper, we investigated and implemented a numerical method that is based on a mimetic
finite difference operator for solving different variants of the nonlinear Allen-Cahn equation with
periodic and non-periodic boundary conditions. In addition, we also analyzed the performance of
the mimetic-based numerical method by applying it to the classical heat equation with a variety
of boundary conditions. We evaluated the performance of the mimetic-based numerical method
by comparing the errors of its solutions with those obtained by a classical finite difference method
and the pdepe built-in Matlab function. We computed the L' errors of the numerical solutions
by using the exact solutions when they are available or with the reference solutions obtained
for a refined mesh. We adapted the mimetic-based numerical method by using the MOLE
library. Some few adaptations were needed in order to deal with the Allen-Cahn equation in



one dimension due to the specific boundary conditions of the examples. We presented several
results with regard to errors and numerical convergence tests in order to provide insight into the
reliability and accuracy of the mimetic-based numerical method. The numerical results show that
the method based on the mimetic difference operator is a reliable method for solving the Allen-
Cahn and heat equations with both periodic and non-periodic boundary conditions. Moreover,
the mimetic-based method shows an order of convergence as good as the finite difference method
and better than the pdepe Matlab function. On the other hand, the numerical results show that
the pdepe Matlab function solutions seem to preserve a fixed level accuracy for small time step
values, but the associated errors don’t decrease for smaller time step sizes. We also found that
the solutions generated by the mimetic-based method are more accurate than the ones generated
by the pdepe Matlab solver provided that the time step is small enough (h & 1073). Similar errors
between the mimetic and finite difference approach were found when considering the second order
approximation. However, when considering high order approximation the mimetic approach was
superior in accuracy and ease of implementation (while requiring small amount of number of
cells V) since reaching higher order is accomplished very efficiently due to the optimized MOLE
libraries.

We also combined the mimetic finite difference operator with an energy stable splitting method
to solve the Allen-Cahn equation in 2D. In particular, we utilize the convexity splitting approach
coupled with the mimetic finite difference method using random initial states. This initial con-
dition enables us to model the problem of phase separation process of two materials. The results
showed that this approach is numerically reliable and is capable to describe the correct dynamics
for the Allen-Cahn equation by ensuring the energy decreasing property. Finally, the results
presented in this study show that the mimetic finite-difference operator or the MOLE library is
a reliable tool to solve the Allen-Cahn equation and it is promising for other phase field models.
The MOLE library is an open source and can be modified to adapt to the particular phase field
model and can be easily implemented with higher order accuracy.”

4 Comparison with support operator method

In this section it is mentioned current comparisons with finite differences in terms of accu-
racy.

4.1 Laplacian

In [12], the authors compare the accuracy of solving the following Poisson equation with MD
and the Support Operator Method (SOM).

~Vf(z) = F(x)  on[0,1],
with Robin boundary conditions

af(0)—Bf(0) = -1,
af)+B8f (1) = 0

where




The following table describes the comparison between MD and SOM in terms of accuracy for
this problem.

h SOM | MD (with B) | MD (with B)
0.20 | 0.0053750 | 0.0013814 | 0.0010364
0.10 | 0.0014693 | 0.0003246 | 0.0002596
0.05 | 0.0003870 | 0.0000774 | 0.0000675

Table 8: Average component-wise absolute deviations from the problem solution.

Table 8 implies that the two versions of the mimetic differences (with the boundary operator
B and with the exact boundary operator B) achieve more accurate solutions than that of the
support operator method.

4.2 Anisotropic Diffusion

In [22] Hyman et al., solve the following problem
-V -KVu = f, (z,y) € V.

Here V is a 2D region, K is a symmetric positive definite matrix, f is a forcing function. The
boundary conditions are general Robin (or mixed),

KVu-n+au=1, (x,y) € IV,

where 77 is the unit outer normal to the boundary 0V, and «, v are functions on 9V

In Problem 1 of the paper, the authors solve the case when the permeability K is given by

2 1
(12)

with exact solution given by u = e and forcing term f(z,y) = —2(1 + 2% + zy + y?) e™.

The same problem is solved by Boada et al. [9] utilizing MD. The following table compares the
accuracy of both SOM and MD.

h | MD (with 2"-order G) | MD (with 4"-order G) | SOM
1/16 8.46E-04 1.86E-04 3.74E-03
1/32 2.29E-04 2.80E-05 9.66E-04
1/64 6.00E-05 6.11E-06 2.45E-04

Table 9: Maximum errors.

Looking at Table[d] it is evident that MD is more accurate than SOM for this problem.
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