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Abstract

The following document demonstrates mimetic difference schemes preserve mass, momenta,
and energy for systems of conservation laws given in structured meshes including curvilinear
domains. The proofs utilize a general framework where properties of the different mimetic oper-
ators are derived from a high-order discrete analog of the extended Gauss divergence theorem,
without specifying actual matrix representations of the divergence and gradient operators.

1 Introduction

Mimetic methods for numerically solving partial differential equations (PDEs) aim to construct
schemes that utilize discrete analogs of first-order vector calculus differential operators that, besides
convergence and accuracy, aim to replicate properties of the continuum model such as symmetries
and conservation of some quantities. What features and relationships to mimic are what differ
among mimetic methods. Mimetic techniques are of two types: those which derive all its properties
from vector calculus integral theorems or those that focus reproducing some calculi identities and
from there obtain all operator characteristics and relationships. In the first set one finds [22, 4, 7, 6].
In the second, examples of methods that elaborate a discrete vector calculus [20], tensor calculus
[7, 17], exterior calculus [1, 18, 3], and others based on algebraic topology [14, 15], as well as
geometric and structure-preserving methods [21], can be found in the literature.

The first mimetic method to achieve high-order accuracy was published in [4]. In particular, MD
methods attain uniform accuracy they achieve over the whole computational domain, including near
boundary grid points, a property that no other numerical method for solving PDEs has been able
to exhibit.

This paper is about mimetic difference (MD) [4, 6] approaches which target to reproduce in the
discrete realm a high-order approximation of the one-dimensional (1D) integration by parts (IBP)
formula and from there the extended Gauss Divergence Theorem [10]. These two methods begin by
introducing a staggered grid and defining on it specific high-order divergence and gradient matrix
representations D and G, respectively. Then, utilizing those discrete analogs, attempt to satisfy
a high-order approximation of the IBP formula. This objective triggers the introduction of high-
order inner product weights Q and P associated to the divergence and the gradient, respectively
[19]. Moving forward from one-dimension (1D) to higher dimensions via Kronecker products reveal
the need to introduce interpolation operators ID and IG to be able to reproduce basic algebraic
operations among the different discrete analogs applied to projections of scalar and vector fields [8].
Later on, it has been demonstrated that the matrix representation of the mimetic operators hold
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discrete analogs of vector calculus identities [10] and that the divergence and gradient generalized
inner product Q and P are indeed quadrature weights [23]. Moreover, it has been exhibited that
mimetic schemes can be shown to converge for some PDEs [11] and mass and energy convergence
for some PDEs [9, 11, 12].

A general framework for formulating mimetic difference methods, that do not require specifying
explicitly discrete analogs of the divergence and gradient differential operators can be found in [13].
This procedure utilizes only the sizes of the matrix representations D and G of the divergence
and gradient, respectively, and aims to satisfy with high-order of accuracy the IBP formula. Ac-
complishing this task demands the introduction of inner product weights Q,P and establishes some
relationships between D,G,Q, P . Splitting computational grid points into three different set points,
introduces some direct decomposition in D and G, which through the relationships with Q and P ,
translates into direct decomposition and properties in the structure of Q and P . Moreover, it can
also shown that these decompositions are reflected onto splitting of ID and IG. Furthermore, it has
been shown that MD derived utilizing the general framework satisfy vector calculus identities and
that positive diagonal weights Q and P are indeed quadrature weights.

This paper proves that mimetic difference schemes preserve quantities in the discrete sense that are
expected to be conserved for general systems of conservation laws on curvilinear structured grids.
Among these quantities one finds for example mass, energy, momentum. The proofs utilize the
general framework of [13]. The document proceeds in the following way. Section 2 summarizes some
properties of the mimetic operators that the general frame is able to derive. Sections 3 demonstrate
the preservation of quantities for general system of conservation laws. Section 5 provides some
conclusions.

2 The general frame for high-order mimetic differences

The following is a summary of the general frame for presenting the derivation of MD approaches.
It focuses on the discrete analog of the IBP formula, and obtains the main properties of the one-
dimensional (1D) operator discrete analogs without explicitly finding them. These properties repli-
cate in the discrete realm the Fundamental Theorem of Calculus (FTC).

2.1 One-dimensional mimetic differences

The general frame for MD approaches is introduced for 1D first.

2.1.1 The staggered grid

In [−1, 1], MD utilizes a mesh of N uniform cells and a staggered grid. The staggered grid is
composed of a face grid that contains the edges of the cells (or nodes)

XF =

{
xl = −1 +

2l

N
, 0 ≤ l ≤ N

}
,

and a center grid, that includes all center cells and domain boundary points,

XC = {−1} ∪
{
xl+ 1

2
= −1 +

1

N
+

2l

N
, 0 ≤ l ≤ N − 1

}
∪ {1}.

Notice that the cardinalities of both XF and XC are different. The gradient G, and divergence D,
discrete analogs should be mappings such G : XC → XF , D : XF → XC . Therefore the non-square
matrix representations of G and D are of orders (N+1)×(N+2) and (N+2)×(N+1), respectively.
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In addition, since the gradient of a scalar constant field should be the zero vector field, discretization
of this property imposes that if G = [Gij ], 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 2, then G1 = 0⃗, where
1 = (1, · · · , 1) ∈ RN+2. Similarly, the divergence of a constant vector field is zero and hence
D 1⃗ = 0, where 1 = (1, · · · , 1) ∈ RN+1. Moreover, since the divergence is not computed at the
boundaries, the first and last rows of D are zero. The Laplacian discrete analog is defined by
L = DG ∈ R(N+2)×(N+2).

Moreover, MD operators are chiefly constructed to approximate with high accuracy the integration
by parts formula (IBP) for 1D scalar field f and 1D vector field v⃗,∫

U
v⃗ · ∇f dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U

f v⃗ · n⃗ dS. (1)

The high-order discrete IBP formula requires that

⟨DV,F ⟩+ ⟨V,GF ⟩ = VNFN − V0F0,

where V = v|XF
, F = f|XC

, are the projections of v, f to the finite grids, respectively, and the
angular brackets mean that the integrals are approximated utilizing a classic quadrature. However,
this is not possible to achieve [19] unless special weighted inner products are introduced, meaning
the need of MD diagonal weights P ∈ R(N+1)×(N+1) and Q ∈ R(N+2)×(N+2), such the following
identity is attained with high-order accuracy,

⟨DV,F ⟩Q + ⟨V,GF ⟩P = VNFN − V0F0. (2)

If in (2), one assumes the constant scalar field F = 1 ∈ R(N+2)×1, then G1 = 0⃗ implies

h1TQD = (−1, 0, · · · , 0, 1). (3)

If in (2), one assumes the constant vector field V = 1 ∈ R(N+1)×1, then D1⃗ = 0 implies

h1TPG = (−1, 0, · · · , 0, 1). (4)

2.1.2 Additional structure to D and G

It is shown in [13] that one can decompose as direct sums the 1D operators D and G, if one uses
appropriates stencils for XF and XC , respectively. This direct sum triggers the following splitting
of the 1D inner product weights Q and P , respectively,

Q =

 Qk
0

IN+2−2b̄

Qk
N = (Qk

0)
F

 , P =

 P k
0

IN+1−2b̄

P k
N = (P k

0 )
F

 ,

for Im identity matrix of order m, provided one utilizes symmetric stencils with respect to the 1D
boundaries and where the F superscript refers to the operation of flipping rows followed by flipping
columns of a matrix.
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2.2 Weights Q and P as high-order quadratures

One naturally wonders if non-negative weights {wl} can be used for general quadratures in the sense
of approximating

∫ xN

x0
g(x) dx, for a smooth function g, i.e.,

(1, · · · , 1)hWg ≈
∫ xN

x0

g(x) dx,

where g is the projection of the function g(x) onto a grid [x0, x1, · · · , xN ] and with W = P , or
W = Q, with W = diag(WL, I,WR), WL = diag(w1, · · · , wb̄),WR = diag(wb̄, · · · , w1) and I an
appropriate square identity matrix.

Without loss of generality, one can assume enough differentiability for g, and hence there exist a
smooth function G(x) such g(x) = G

′
(x). In that case,

(1, · · · , 1)hWg ≈
∫ xN

x0

g(x) dx =

∫ xN

x0

G
′
(x) dx = G(xN )−G(x0). (5)

Notice that formula (5) is verified by Q for vector fields V (see (3)) and satisfied by P for scalar
fields F (see (4)).

2.3 Some mimetic difference operator properties in d-dimensions

In [−1, 1]d, MD utilizes ml cells along axis Xl, l = 1, · · · , d. The staggered grid is composed of cell
centers and cell vertices XC , and of cell centered faces XF , given respectively by

XF =

d⋃
j=1

∏
l<j

(Xj
C \ {−1, 1})

×Xj
F ×

∏
l>j

(Xj
C \ {−1, 1})

 ,

XC =
d∏

j=1

Xj
C .

Extensions of the 1D divergence D, gradient G, and inner product weight operators Q and P
are built by utilizing Kronecker products of the 1D operators and some near identity matrices of
convenient orders (see [13, 10]).

3 Mass and energy preservation for systems of conservation laws

Given the following sets

I = {1, · · · , c}, J = {1, · · · , d}, L = [−1, 1]d, L0 = [−1, 1]d−1, K = [0, T ],

consider the system of c conservation laws in d-dimensions, with x = (x1, · · · , xd), and the un-
known u(x, t) = (u1(x, t), · · · , uc(x, t))T , and initial condition u0(x) = (u01(x), · · · , u0c(x))T , that are
described by

ut + div(F (u)) = 0c×1, (x, t) ∈ L̊× K̊, (6)

u(x, 0) = u0(x), x ∈ L,
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with L̊ = int(L), the interior of L, and that hold boundary conditions given by

ui(x1, · · · , xj−1,−1, xj+1, · · · , xd, t) = g−i (x1, · · · , xj−1, xj+1, · · · , xd, t), i ∈ I, j ∈ J,

ui(x1, · · · , xj−1, 1, xj+1, · · · , xd, t) = g+i (x1, · · · , xi−1, xi+1, · · · , xd, t), i ∈ I, j ∈ J,

where g±i : L0 ×K → Rc, i = 1, · · · , c, are smooth functions. The flux F is given by

F (u) =

 F11(u) · · · F1d(u)
...

. . .
...

Fc1(u) · · · Fcd(u)

 .

Notice Fij : Rd × K̊ → R, i ∈ I, j ∈ J . Denote Fi(u) = (Fi1(u), · · · , Fid(u))
T , i ∈ I.

3.1 Mass preservation

If F (u) = (F1(u), · · · , Fc(u))
T , then (6) becomes u1

...
uc


t

= −


∑d

j=1(F1j)xj

...∑d
j=1(Fcj)xj

 . (7)

If one uses a lexicographic ordering in d-dimensions (the ordering in MATLAB), and Ui stands for
Ui at all points in XC accordingly, then for any fixed i ∈ I, its mimetic scheme can be written as

1

∆t
(Um+1

i − Um
i ) = −Dx1···xd

IDx1···xd
Fi(U

m) = −
d∑

j=1

Dx1···xd,jI
D
x1···xd,j

Fi(U
m), ∀i ∈ I.

Multiplying by h1T on the left, one obtains using (5) for Q, that

h1TQ(Um+1
i − Um

i ) = −∆t h1T
d∑

j=1

Qx1···xd,jDx1···xd,jI
D
x1···xd,j

Fi(U
m)

= −∆t
d∑

l=1

(Fil(u(x
+
l , tm))− Fil(u(x

−
l , tm))), (8)

where x±l = (x1, · · · , xl−1,±1, xl+1, · · · , xd). The last identity follows from (5) when ∆x1, · · · ,∆xd →
0, and the property that the first and last rows of the identity operators are, respectively, the Kro-
necker products of (1, 0, · · · , 0) and (0, · · · , 0, 1) applied to the j-th component and the identity
matrix for the other components.

The left hand side of (8) is the difference of discrete mass Mm+1
i of Ui at time tm+1 and the discrete

mass Mm
i at time tm. Therefore, the mass is preserved from time step to time step in the sense

that it changes according to the fluxes through all boundaries of [−1, 1]d.

3.2 Energy preservation

If one multiplies the i-th equation i ∈ I of (7) by ui, and integrates over L = [−1, 1]d, one gets

1

2

∫
L

du2i
dt

dx = −
∫
L
ui

d∑
j=1

(Fij(u))xj dx =

∫
L
Fi(u) · grad(ui) dx−

∫
L
div(ui Fi) dx. (9)
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If E(U l
i ) is the discrete energy associated to U l

i then the discrete analog of (9) is

1

∆t
(E(Um+1

i )− E(Um
i )) = h ⟨PGUi, I

DFi(U)⟩ − h ⟨QDHi(U),1⟩, (10)

with Hi(U) = ID(Ui ◦ F T
i (U)), being ◦ the discrete Hadamard product.

From the extended Gauss divergence theorem [10], applied to F = Ui and V⃗ = Fi(U), one gets that

h ⟨PGUi, I
DFi(U)⟩ = UT

i B̄IDFi(U)− h ⟨DTQUi, I
DF T

i (U)⟩
= UT

i B̄IDFi(U)− h
∑

l∈|XC |

Uil⟨DTQ1, IDF T
i (U)⟩,

up to high-order for

B̄x1···xd
=

 Imd+2 ⊗ · · · ⊗ Im2+2 ⊗ B̄x1

. . .

B̄xd
⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,

where B̄p is the one dimensional boundary B̄xp matrix along the p-axis [10]. The second identity

comes from the fact that Ui(x) =
∑

l∈|XC | Uil1(x), for x ∈ XC and 1 ∈ R|XC |×1, the constant one
discrete function.

Therefore, (10) becomes

1

∆t
(E(Um+1

i )− E(Um
i )) = UT

i B̄IDFi(U)−
∑

l∈|XC |

Uil(h1
TQD)IDF T

i (U)− (h1TQD)Hi(U).

Since

UT
i B̄IDFi(U) =

d∑
j=1

[ Ui(x1, · · · , xj−1, 1, xj+1, · · · , xd)IDFij(U(x1, · · · , xj−1, 1, xj+1, · · · , xd))

− Ui(x1, · · · , xj−1,−1, xj+1, · · · , xd)IDFij(U(x1, · · · , xj−1,−1, xj+1, · · · , xd)) ] ,

and, ∑
l∈|XC |

Uil(h1
TQD)IDF T

i (U) =
∑

l∈|XC |

Uil(−1, 0, · · · , 0, 1)T IDF T
i (U) =

d∑
j=1

[ Ui(x1, · · · , xj−1, 1, xj+1, · · · , xd)IDFij(U(x1, · · · , xj−1, 1, xj+1, · · · , xd)) −

Ui(x1, · · · , xj−1,−1, xj+1, · · · , xd)IDFij(U(x1, · · · , xj−1,−1, xj+1, · · · , xd)) ] ,

then, the first two terms cancel out. In addition, since

(h1TQD)Hi(U) =

d∑
j=1

(Hij(x1, · · · , xj−1, 1, xj+1, · · · , xd)−Hij(x1, · · · , xj−1,−1, xj+1, · · · , xd)),

then E(Um+1
i )−E(Um

i ) = ∆t(h1TQD)Hi(U) and the difference in energy between two consecutive
time steps is the difference in flux across the different boundaries of [−1, 1]d, which shows energy
preservation of the scheme if one uses the discrete standard energy definition.
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3.3 Other quantities preserved for systems of conservation laws

Suppose that each of the components of u, namely ui, i ∈ I, preserves in time a possibly different
quantity vi, i ∈ I. Assume also that

dvi
dt

(ui) =
dvi
dui

dui
dt

= wi(ui)
dui
dt

, i ∈ I.

For example, for mass preservation is vi = ui, wi = 1, and for energy preservation vi =
1
2u

2
i , wi = ui.

Notice that the quantity vi = vi(ui) could actually depend on all and being of the form vi = v(u).
In that. case, for each i ∈ I,

dvi
dt

(u) =
d∑

j=1

dvi
duj

duj
dt

=
d∑

j=1

wij(u)
duj
dt

.

In what follows, by linearity of the derivative in time, it is enough to assume that vi = vi(ui).

Consider w = (w1, · · · , wc)
T , v = (v1, · · · , vc)T .

If one multiplies the i-th equation i ∈ I of (7) by wi(ui), and integrates over L = [−1, 1]d, one gets∫
L

dvi
dt

(ui) dx = −
∫
L
wi(ui)

d∑
j=1

(Fij(u))xj dx =

∫
L
Fi(u) · grad(wi(ui)) dx−

∫
L
div(wi(ui)Fi) dx.

(11)
If V(U l

i ) is the discrete preserved quantity associated to U l
i then the discrete analog of (11) is

1

∆t
(V(Um+1

i )− V(Um
i )) = h ⟨PGWi(Ui), I

DFi(U)⟩ − h ⟨QDHi(U),1⟩, (12)

with Hi(U) = ID(Wi(Ui) ◦ F T
i (U)), and Wi the projection of wi onto XC .

The extended Gauss divergence theorem applied to F = Wi(Ui) and V⃗ = Fi(U) provides

h ⟨PGWi(Ui), I
DFi(U)⟩ = (Wi(Ui))

T B̄IDFi(U)− h ⟨DTQWi(Ui), I
DF T

i (U)⟩
= (Wi(Ui))

T B̄IDFi(U)− h
∑

l∈|XC |

Wi(Uil)⟨DTQ1, IDF T
i (U)⟩.

Therefore, (12) becomes

1

∆t
(V(Um+1

i )−V(Um
i )) = (Wi(Ui))

T B̄IDFi(U)−
∑

l∈|XC |

Wi(Uil)(h1
TQD)IDF T

i (U)−(h1TQD)Hi(U).

Since

(Wi(Ui))
T B̄IDFi(U) =

d∑
j=1

[ Wi(Ui(x1, · · · , xj−1, 1, xj+1, · · · , xd))IDFij(U(x1, · · · , xj−1, 1, xj+1, · · · , xd)) −

(Wi(Ui(x1, · · · , xj−1,−1, xj+1, · · · , xd))IDFij(U(x1, · · · , xj−1,−1, xj+1, · · · , xd)) ] ,
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and, ∑
l∈|XC |

Wi(Uil)(h1
TQD)IDF T

i (U) =
∑

l∈|XC |

Wi(Uil)(−1, 0, · · · , 0, 1)T IDF T
i (U) =

d∑
j=1

[ Wi(Ui(x1, · · · , xj−1, 1, xj+1, · · · , xd))IDFij(U(x1, · · · , xj−1, 1, xj+1, · · · , xd)) −

Wi(Ui(x1, · · · , xj−1,−1, xj+1, · · · , xd))IDFij(U(x1, · · · , xj−1,−1, xj+1, · · · , xd)) ] ,

then, the first two terms cancel out. Furthermore,

(h1TQD)Hi(U) =

d∑
j=1

(Hij(x1, · · · , xj−1, 1, xj+1, · · · , xd)−Hij(x1, · · · , xj−1,−1, xj+1, · · · , xd)),

then V(Um+1
i )−V(Um

i ) = ∆t(h1TQD)Hi(U) and the difference in V between two consecutive time
steps is the difference in flux across the different boundaries of [−1, 1]d, which shows V preservation
of the scheme.

3.4 Quantities preserved for conservation laws in curvilinear structured grids

This section investigates whether or not mimetic schemes preserves quantities for systems of con-
servation laws given on curvilinear geometries that are defined by structured grids. Here, we distin-
guish between the physical or curvilinear grid, with x-coordinates, and the logical or computational
Cartesian grid, with ξ-coordinates.

Therefore, consider the system of conservation laws given by (6) defined on a curvilinear domain.
More specifically, suppose the system of conservation laws is given on a physical spatial domain
P = X (L) in d-dimensions, with coordinates x1, · · · , xd, i.e., P is the result of a bijective smooth
map X given by

xi = xi(ξ1, · · · , ξd), i ∈ {1, · · · , d},

and that the inverse map of X is Θ, which is given by

ξi = ξ(x1, · · · , xd), i ∈ {1, · · · , d},

and it maps P onto the logical d-dimensional Cartesian domain L = [−1, 1]d. Therefore,

ut + div(F (u)) = 0c×1, (x, t) ∈ P̊ × K̊, (13)

u(x, 0) = u0(x), x ∈ P,

and boundary conditions established on ∂P by

ui(X (x1, · · · , xj−1,−1, xj+1, · · · , xd, t)) = g−i (X (x1, · · · , xj−1, xj+1, · · · , xd, t)), i ∈ I, j ∈ J,

ui(X (x1, · · · , xj−1, 1, xj+1, · · · , xd, t)) = g+i (X (x1, · · · , xi−1, xi+1, · · · , xd, t)), i ∈ I, j ∈ J,

where g±i : X (L0)×K → Rc, i = 1, · · · , c, are smooth functions. The flux F is defined as before by

F (u) =

 F11(u) · · · F1d(u)
...

. . .
...

Fc1(u) · · · Fcd(u)

 ,
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where Fij : Rd × K̊ → R, i ∈ I, j ∈ J , and Fi(u) = (Fi1(u), · · · , Fid(u))
T , i ∈ I.

If one defines a staggered grid on L, composed of faces XF and centers (and boundaries) XC , then
X (XC ∪XF ) is an structured staggered grid on P, with centers (and boundaries) C = X (XC) and
faces F = X (XF ).

The Jacobian of the transformation X is given by

J =
∂(x1, · · · , xd)
∂(ξ1, · · · , ξd)

=

 x1,ξ1 · · · x1,ξd
...

. . .
...

xd,ξ1 · · · xd,ξd

 .

For u : X (L) → R, with u = u(x1, · · · , xd) = u(x1(ξ1, · · · , ξd), · · · , xd(ξ1, · · · , ξd)) = u(ξ1, · · · , ξd),
the chain rule implies

uξi =
d∑

j=1

uxjxj,ξi ,

or equivalently,  uξ1
...

uξd

 =

 x1,ξ1 · · · xd,ξ1
...

. . .
...

x1,ξd · · · xd,ξd


 ux1

...
uxd

 = JT

 ux1

...
uxd

 .

Hence  ux1

...
uxd

 = (JT )−1

 uξ1
...

uξd

 .

If one uses the gradient to approximate the partial derivatives of the Jacobian, then

JT
G = IGx1···xd

G̃ξ1···ξd ,

where G̃x1···xd
is Gx1···xd

with Îp replaced by Ip+2, the identity matrix of order p+ 2 (see [10]).

If one computes the Jacobian at the faces then the physical gradient is given by

Gx1···xd
= (JT

G)
−1Gξ1···ξd .

Similarly, one can construct the Jacobian (at the centers) based on the divergence operator.

The extended Gauss divergence theorem in the physical domain should read

h ⟨Gx1···xd
F (x), V⃗ (x)⟩Px1···xd

+ h ⟨Dx1···xd
V⃗ (x), F (x)⟩Qx1···xd

= F T (x)B̄x1···xd
V⃗ (x),

and hence

h ⟨(JT
G)

−1Gξ1···ξdF (ξ), V⃗ (ξ)⟩Px1···xd
+ h ⟨(JT

D)
−1Dξ1···ξd V⃗ (ξ), F (ξ)⟩Qx1···xd

= F T (ξ)B̄ξ1···ξd V⃗ (ξ),

or equivalently,

h ⟨Gξ1···ξdF (ξ), V⃗ (ξ)⟩Px1···xd (J
T
G)−1 + h ⟨Dξ1···ξd V⃗ (ξ), F (ξ)⟩Qx1···xd (J

T
D)−1 = F T (ξ)B̄ξ1···ξd V⃗ (ξ),
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which conserves the identity for

Qx1···xd
= Qξ1···ξdJ

T
D, Px1···xd

= Pξ1···ξdJ
T
G ,

since the Dirichlet boundary condition B̄ξ1···ξd = B̄x1···xd
does not change.

For constant scalar field F (ξ), one gets h ⟨Dξ1···ξd V⃗ (ξ),1⟩Qξ1···ξd
= 1T B̄ξ1···ξd V⃗ (ξ), which implies

that 1T B̄ξ1···ξd = h1TQξ1···ξdDξ1···ξd = h1T (Qξ1···ξdJ
T
D)((J

T
D)

−1Dξ1···ξd), and hence

h1TQx1···xd
Dx1···xd

= 1T B̄x1···xd
.

Similarly, for constant vector field V⃗ (ξ), one gets

h1TPx1···xd
Gx1···xd

= 1T B̄T
x1···xd

.

Suppose that each of the components of u, namely ui, i ∈ I, preserves in time a possibly different
quantity vi, i ∈ I. Assume also that

dvi
dt

(ui(x)) =
dvi
dui

(ui(ξ))
dui
dt

(ξ) = zi(ui(ξ))
dui(ξ)

dt
=

wi

|J |
(ui(ξ))

dui
dt

(ξ), i ∈ I,

where |J | is the Jacobian determinant. Consider w = (w1, · · · , wc)
T , v = (v1, · · · , vc)T .

If one multiplies the i-th equation i ∈ I of (13) by zi(ui(ξ(x))), and integrates over P, one gets∫
P

dvi
dt

(ui(x)) dx = −
∫
P
zi(ui(x))

d∑
j=1

(Fij(u(x)))xj dx

=

∫
P
Fi(u(x)) ·Gx1···xd

(zi(ui(x))) dx−
∫
P
Dx1···xd

(zi(ui(x))Fi(u(x))) dx.

The change of variable for multiple integral allows to write the previous identity as∫
P

dvi
dt

(ui(ξ)) dx =

∫
L
Fi(u(ξ))·(JT

G)
−1Gξ1···ξd(wi(ui(ξ))) dξ−

∫
L
(JT

D)
−1Dξ1···ξd(wi(ui(ξ))Fi(u(ξ))) dξ,

If K(U l
i ) is the discrete preserved quantity associated to U l

i , then the discrete analog of the previous
identity is

1

∆t
(K(Um+1

i )−K(Um
i )) = h ⟨Pξ1···ξdGξ1···ξdWi(Ui), I

DFi(U)⟩ − h ⟨Qξ1···ξdDξ1···ξdHi(U),1⟩, (14)

with Hi(U) = ID(Wi(Ui) ◦ F T
i (U)).

The extended Gauss divergence theorem applied to F = Wi(Ui) and V⃗ = Fi(U) provides

h ⟨Pξ1···ξdGξ1···ξdWi(Ui), I
DFi(U)⟩ = (Wi(Ui))

T B̄ξ1···ξdI
DFi(U)− h ⟨DT

ξ1···ξdQξ1···ξdWi(Ui), I
DF T

i (U)⟩

= (Wi(Ui))
T B̄ξ1···ξdI

DFi(U)− h
∑

l∈|XC |

Wi(Uil)⟨DT
ξ1···ξdQξ1···ξd1, I

DF T
i (U)⟩.

Similar identities like the ones utilized for the quantities preserved for the non-curvilinear case
demonstrate that K(Um+1

i ) − K(Um
i ) = ∆t (h1TQξ1···ξdDξ1···ξd)Hi(U). Hence, the difference in

K between two consecutive time steps is the difference in flux across the different boundaries of
[−1, 1]d, which shows K preservation of the scheme.
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