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1 Introduction

A posteriori error analysis unlocks the possibility of estimating errors asso-
ciated to the approximate solution to a Partial Differential Equation (PDE)
or a system of PDEs. One can then use these error indicators to selectively
refine regions of large errors and/or coarsen regions of small errors. This
process usually takes place within an Adaptive Mesh Refinement/Coarsen-
ing (AMR/C) routine. Naturally, this is considerably attractive, as one can
obtain significant computational savings.

One such a class of a posteriori error analysis is the energy-based a
posteriori error analysis, where one measures the difference between an ap-
proximation to the exact solution and the exact solution in the same energy
space [1, 2, 3]. The energy space for the primal variable (commonly the
pressure, temperature, concentration, etc) is a subspace of the H1pΩq space,
whereas the energy space for the dual variable (commonly a flux associ-
ated to the gradient of the primary variable via some constitutive law) is a
subspace of the Hpdiv,Ωq space.

In this report, we show how to perform lowest-order postprocessing of
the mimetic difference solutions and obtain energy-conforming potentials
and fluxes, which are suitable for energy-based a posteriori error analysis.
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The outline of this report is the following: In Section 2 we present the
model problem, in Section 3 its mimetic discretization, and in Section 4 the
proposed postprocessing of potentials and fluxes. Finally, in Section 5, we
show a convergence analysis using a manufactured solution, and in Section 6
we draw our conclusions and discuss possible extensions.

2 The model problem

Let Ω Ă R2, be an open and bounded domain whose boundary Γ Ă R
is sufficiently smooth. We begin by stating the strong form of the model
problem.

Definition 1 (Strong primal form). Find the potential p : Ω Ñ R such that

∇ ¨ p´∇pq “ f in Ω, (1a)

p “ 0 on Γ. (1b)

In Definition 1, ∇ is the usual nabla operator and f : Ω Ñ R is a given
source term. The term ´∇p represents the exact flux u associated to the
gradient of the potential.

Instead of working with the strong form of the problem, we shall in-
troduce its weak version. To this aim, we begin by recalling the standard
Sobolev spaces. Let H1pΩq “ tq P L2pΩq : ∇q P rL2pΩqs2u be the usual
energy space, with H1

0 pΩq “ tq P H1pΩq : q “ 0 on Γu denoting the energy
space with vanishing traces on the boundary of the domain. We will also
need the space of square-integrable vector functions with square integrable
weak divergence: Hpdiv,Ωq “ tv P rL2pΩqs2 : ∇ ¨ v P L2pΩqu.

We are now ready to define the weak form of Definition 1:

Definition 2 (Primal weak form). Let f P L2pΩq. Then, find p P H1
0 pΩq

such that
p∇p, qqΩ “ pf, qqΩ @ q P H1

0 pΩq. (2)

It is well known that the primal weak form from Definition 2 admits a
unique solution by the Lax-Millgram lemma. A typical energy-based upper
bound on the primal variable, will have the form

|||p ´ q||| :“ ∥∇pp ´ qq∥Ω ď Mpq,v, fq, @q P H1
0 pΩq,v P Hpdiv,Ωq, (3)
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where |||¨||| is the energy-norm and M : H1
0 pΩq Ñ R is the functional defining

the upper bound on the error. Thus, to be able to measure the error, we
must have access to q P H1

0 pΩq and v P Hpdiv,Ωq. Although these can be
arbitrary functions, in practice, we construct q and v from the approximated
potential and flux obtained from the numerical solution.

3 Mimetic difference approximation

Let us now introduce Th, the decomposition of the domain Ω into strictly
non-overlapping subdomains K of dimension 2. That is,

Ω “
ď

KPTh

K. (4)

For simplicity of exposition, we assume that all elements K P Th are squares.
In other words, we will be restricting our analysis to Cartesian grids as the
one shown in Figure (1).

Mimetic differential operators [4, 5, 6, 7] are constructed as discrete
counterparts of the continuous operators ∇, ∇¨, ∇2. ∇ˆ, satisfying iden-
tities from vector calculus. In this report, we focus on a specific type of
mimetic discretization, i.e., the one obtained using mimetic operators of
the Corbino-Castillo type [8]. Mimetic difference operators of the Corbino-
Castillo type, on top of preserving identities from continuous vector calculus,
provide higher-order difference operators that attain the same level of accu-
racy in the interior of the domain and on its boundaries. These operators
are defined on a staggered grid (see, e.g., Figure 1), where potentials (red
dots) and fluxes (blue diamonds) are approximated in different locations.

Denote by P the set of primal degrees of freedoms (DoFs) and by F the
set of dual DoFs. Then, one can define the gradient operator G : R|P| Ñ

R|F |, the divergence operator R|F | Ñ R|P|, the Laplacian operator L :“
D˝G : R|P| Ñ R|P|, and the boundary operator B “ R|P| Ñ R|P| (enforcing
Dirichlet boundary conditions). These mappings have well-defined matrix
representations rGs P R|F |ˆ|P|, rDs P R|P|ˆ|F |, rLs P R|P|ˆ|P|, and rBs P

R|P|ˆ|P|. The explicit forms of these matrices will depend on the order of
accuracy k of the mimetic operator. Thus, we will naturally have different
matrices for mimetic operators with different orders of accuracy. Below, we
show an example of the gradient matrix for k “ 2.

Example 1 (Mimetic gradient matrix for k “ 2). Let h denote the width
of a cell K P Th, then the second-order accurate mimetic gradient matrix is
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Figure 1: A 4 by 3 staggered grid. In red dots, we show the degrees of
freedoms associated to the primal variable (i.e., the potential). In blue
diamonds, we show the degrees of freedoms associated to the dual variable
(i.e., the flux).

given by

rGsp2q :“
1

h

»

—

—

—

—

—

–

´8
3 3 ´1

3
´1 1

. . .
. . .

´1 1
1
3 ´3 8

3

fi

ffi

ffi

ffi

ffi

ffi

fl

(5)

Remark 1. A full suite of mimetic difference operators for k P t2, 4, 6, 8u

is available in the MOLE library [9].

With the mimetic difference matrices at hand, the mimetic approxima-
tion can be now be defined.

Definition 3 (Mimetic difference approximation to the Poisson problem).
Let k P t2, 4, 6, 8u be fixed and rGspkq, rLspkq, rBspkq available. Then, find
ph :“ tph,1, . . . , ph,|P|u P R|P| and uh :“ tuh,1, . . . , uh,|F |u P R|F | such that

´

rLspkq ` rBspkq
¯

ph “ f , (6)

uh “ ´rGspkqph, (7)

where f “ tf1, . . . , f|P|u is the exact source term projected onto the primal
DoFs nodes.

Since the primal mimetic solution is only defined on the cell centers and
the dual mimetic solution on the face centers, we are required to postprocess
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both solutions to obtain functions that are in the correct energy spaces,
namely H1

0 pΩq and Hpdiv,Ωq. To this aim, we leverage on the theory of
broken finite element spaces, in particular on the isoparametric elements for
the potentials and Raviart-Thomas elements for the flux.

4 Postprocessing of the mimetic solution

4.1 Local broken spaces

Before introducing the postprocessing techniques, we need to introduce the
relevant local finite element spaces [10]. We use PspKq to denote the space
of polynomial functions of degree ď s on K. For a rectangular element K,
we also need

Ps1,s2pKq “

$

’

&

’

%

qpx, yq : qpx, yq “
ÿ

iďs1
jďs2

aijx
iyj

,

/

.

/

-

,

the space of polynomials of degree ď s1 in x and ď s2 in y. The local
isoparametric space of degree s or less is then given by QspKq “ Ps,spKq.

For postprocessing the dual variable, we will need the Raviart-Thomas
spaces of degree s, which for quadrilaterals are given by

RTspKq “ Ps`1,s ˆ Ps,s`1, s ě 0, (8)

of dimension 2ps ` 1qps ` 2q. Importantly, for any vector-valued function
v P R2, there holds for all K P Th:

∇ ¨ v|K P QspKq and v ¨ n|e P Pspeq @ e P EK , (9)

where e is the edge of the set of edges EK associated to the element K.

Example 2 (The space Q1pKq). Let K be a quadrilateral domain. Then,
any scalar function q P Q1pKq satisfies

qpx, yq “ a ` bx ` cy ` dxy, a, b, c, d P R. (10)

Example 3 (The space RT0pKq). Let K be a quadrilateral domain. Then,
any vector function v P RT0pKq satisfies

vpx, yq “

„

a ` bx
c ` dy

ȷ

, a, b, c, d P R. (11)
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Figure 2: Degrees of freedom needed to perform a local Q1 (left), and a local
Q2 reconstruction (right).

With the local finite-element spaces defined, we can now construct the
global broken spaces

QspThq “ tq P L2pΩq : q|K P QspKq @ K P Thu (12)

RTspThq “ tq P rL2pΩqs2 : q|K P RTspKq @ K P Thu (13)

It can be checked that QspThq X H1
0 pΩq is a subspace of H1

0 pΩq for any
s ě 1. On the other hand, one can also show that RTspThq Ă Hpdiv,Ωq for
any s ě 0.

4.2 Postprocessing

From the previous discussion, we conclude that we must define two global in-
terpolants, one for the primal mimetic solution and one for the dual mimetic
solution. To be precise, for the primal mimetic solution, we seek for an in-
terpolant

Gpsq

P : R|P| Ñ QspThq X H1
0 pΩq, s ě 1, (14)

whereas for the dual mimetic solution, we seek for an interpolant

Gpsq

F : R|F | Ñ RTspThq, s ě 0. (15)

We shall now provide specific definitions for Gp1q

P and Gp0q

F . Higher-order
interpolants can be defined analogously. However, it is important to remark
three important points:

1. Since the cost of estimating the error must be a small fraction of
solving a new linear system (6), one should be cautious in the use of
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Figure 3: Degrees of freedom needed to perform a local RT0 reconstruction
(left), and a local RT1 reconstruction (right).

higher-order interpolants, as they naturally require more data points
(see the increase in data points in Figures 2 and 3).

2. Most upper bounds (3) assume that the postprocessing process is
“error-free”. Thus, one should avoid introducing interpolation errors
while interpolating the mimetic solution for generating the local data
points. For higher-order mimetic schemes, this demands for inter-
polants of the same order as k.

3. As the interpolant order s increases, one needs to interpolate the
mimetic solution at non-standard locations (see e.g., the RT1 recon-
struction from the right panel of Figure 3). This requires “generic”
interpolants as proposed in [11].

Before presenting the potential reconstruction, we need a few more in-
gredients. Let V be the set of vertices of Th and let rIPÑV spkq P R|V|ˆ|P| be
the matrix representation of the mimetic interpolant IPÑV : R|P| Ñ R|V|,
mapping from primal DoFs to vertices DoFs.

Definition 4 (Lowest-order potential reconstruction). Let ph P R|P| be the
vector of cell-center pressures, and define the nodal vector

pV “ rI
pkq

PÑV sph P R|V|. (16)

Then the reconstructed potential p̃h is the unique continuous piecewise–bilinear
function p̃h P Q1pThq X H1

0 pΩq whose restriction to each quadrilateral K is

p̃h
ˇ

ˇ

K
px, yq “

4
ÿ

i“1

ppV qi ϕVipx, yq, (17)
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where tϕViu
4
i“1 are the local bilinear (hat) basis functions for the vertices of

K.

We now consider the case of the dual mimetic variable, i.e., the flux. In
the lowest-order case, we already have the necessary data points to perform
the reconstruction. Thus, we simply need to extend the edge fluxes into the
interior of each cell with the help of Raviart-Thomas basis functions.

Definition 5 (Lowest-order flux reconstruction). Let uh P R|F | be the vector
of edge-centered fluxes. Then the reconstructed flux ũh is the unique vector
function ũh P RT0pThq whose restriction to each quadrilateral K is

ũh|Kpx, yq “

4
ÿ

i“1

pũhqjψjpx, yq, (18)

where tψju
4
j“1 are the local Raviart-Thomas basis functions for the edges of

K.

5 Numerical results

Let us now test against a manufactured solution the proposed reconstruction
techniques. To this aim, we consider a smooth trigonometric solution, given
by

ppx, yq “ sinpπxq cospπyq.

Taking the negative gradient of ppx, yq, we obtain the exact flux given by

upx, yq “

„

π cospπxq sinpπyq

π cospπxq sinpπyq

ȷ

.

The divergence of upx, yq, corresponds to the exact source term

fpx, yq “ 2π2 sinpπxq cospπyq.

This source term fpx, yq can be used in the computational code to obtain
the mimetic solutions ph and uh. Having these available, we employ Def-
inition 4 to reconstruct the potential and Definition 5 to reconstruct the
flux. In Figure 4, we show the exact and reconstructed potential solutions
and in Figure 5, we show the exact and reconstructed magnitude of the flux
solutions. The plots, obtained with a 40x40 grid and mimetic operators of
order 2, are qualitatively identical.
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Figure 4: True vs reconstructed potentials for a 40x40 Cartesian grid with
mimetic operators of order k “ 2.

To perform a quantitative analysis, we measure the errors for the poten-
tial and the flux in the following norms:

Error potential :“ |||p ´ p̃h|||, Error flux :“ ∥u ´ ũh∥.

The errors are measured for successively refined values of h, namely h P

t0.1
2i

u5i“0. The convergence analysis is shown in Figure 6. We can see that for
both, the primal and dual variables, the errors decrease linearly, as expected
for energy norms.

6 Conclusion and Outlook

In this technical report, we have proposed concrete procedures to reconstruct
the potentials and fluxes obtained from the numerical solution to the Poisson
equation with Corbino-Castillo mimetic operators.

Numerical examples for two-dimensional Cartesian grids using a smooth
manufactured solution show optimal convergence rates of Ophq for the gra-
dient of the reconstructed potential and the reconstructed flux, in the case
of lowest-order reconstructions using mimetic operators of order k “ 2.

Natural extensions of this work include using the postprocessing tech-
niques in a a posteriori analysis and adaptive mesh refinement. Paths worth
exploring include: (i) more complex PDEs, (ii) trade-off between using
higher-order interpolants and computational cost, and (iii) h´k adaptivity.
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Figure 5: True vs reconstructed fluxes for a 40x40 Cartesian grid with
mimetic operators of order k “ 2.
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potential and the reconstructed flux.
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