

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2025

Flow Past a Cylinder: Solving the Two-
dimensional Incompressible Navier-Stokes

Equations with MOLE

Yiyue Feng and Miguel A. Dumett

May 9, 2025

Publication Number: CSRCR2025-02

Flow Past a Cylinder: Solving the
Two-dimensional Incompressible

Navier-Stokes Equations with MOLE

Yiyue Feng∗ and Miguel A. Dumett †‡

May 9, 2025

Abstract

Flow past a cylinder is a standard test in fluid dynamics to check
how well a numerical method converges and stays stable. In this
project, we solve the two-dimensional incompressible Navier–Stokes
equations using MOLE with the projection method. The MOLE li-
brary applies higher-order mimetic divergence, gradient, and Lapla-
cian operators, and offers an efficient way to interpolate values on
staggered grids. Our results show a clear boundary layer near the
channel boundaries and vortex shedding behind the cylinder.

1 Problem setting

In the following subsections we introduce the two-dimensional (2D) govern-
ing equations, including parameters and domain, as well as the initial and
boundary conditions for solving the 2D incompressible Navier-Stokes equa-
tions.

∗Computational Science PhD Program at San Diego State University
(yfenf9707@sdsu.edu).

†Editor: Jose E. Castillo
‡Computational Science Research Center at San Diego State University

(mdumett@sdsu.edu).

1

1.1 Governing equations, parameters and domain

The equations below represent the 2D incompressible Na-vier–Stokes equa-
tions without body forces in differential form, comprising mass conservation
(Equation 1) and momentum conservation (Equation 2):

∇ · U⃗ = 0 (1)

∂U⃗

∂t
+

(
U⃗ · ∇

)
U⃗ = −∇p

ρ
+ ν∇2U⃗ (2)

A divergence (conservative) form (U⃗ = (u, v)) can be written as (in prim-
itive variables):

∂u

∂x
+

∂v

∂y
= 0 (3)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+

∂2u

∂y2
) (4)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+

∂2v

∂y2
) (5)

Reynolds Number is defined as in Equation 6:

Re =
U∞D

ν
, (6)

where U∞ is the free-stream velocity, D is the characteristic length (here,
the cylinder diameter/size), and ν is the kinematic viscosity.

The Reynolds number quantifies the ratio of inertial forces to viscous
forces in a flow, and vortex shedding starts around Re ≃ 47.

In this project, we will set Re = 100.
For the flow field size (domain), we assume the flow going along the x-axis

from left to right, with the range:

x ∈ [0, 6] (7)

y ∈ [−1, 1] (8)

2

The center of the square cylinder is located at (x, y) = (1, 0), with a side
length D = 0.6.

We set U∞ = 1, which is also the initial condition we will define later. So
ν can be calculated accordingly based on Re, D and U∞.

1.2 Initial conditions

The initial condition for the velocity field U⃗ is all zero.

1.3 Boundary conditions

First, the velocity field.
At the left inlet (x = 0) we have the Dirichlet boundary condition:

U⃗ = (u, v) = (U∞, 0) (9)

At the right outlet (x = 6) we have the Neumann boundary condition:

∂U⃗

∂x
= 0 (10)

At the top and bottom walls, since they are not far away enough from
the cylinder, we apply the ”no-slip” condition, where:

U⃗ = (u, v) = (0, 0) (11)

But if the top and bottom walls are ”far field”, we can treat them as
”free-slip”:

∂u

∂y
= 0 (12)

v = 0 (13)

Or even just treat them as free stream:

U⃗ = (u, v) = (U∞, 0) (14)

For cylinder walls, we apply the ”no-slip” condition, where:

U⃗ = (u, v) = (0, 0) (15)

3

Second, the pressure field.
We can usually leave the input pressure unspecified.
And for the outlet, we have a Dirichlet reference for pressure, which is

often set to be zero (gauge):

p = 0 (16)

For the top and bottom walls, we apply a Neumann boundary condition:

∂p

∂y
= 0 (17)

2 Methods

In this section, the projection method is presented, together with a staggered
grid and some consideration about time step constraint of the time derivative
discretizations.

2.1 Introduction to projection method

The projection method (also called the fractional step or Chorin’s method)
is a way to decouple the incompressible Navier–Stokes equationsdo nothat
we do not have to solve a fully coupled velocity–pressure system at each time
step. Instead, we “project” an intermediate velocity onto the divergence-free
subspace by a pressure correction.

This splits one coupled system into:

• a momentum update (no pressure)

• a Poisson equation for pressure

• a velocity correction

Equations in each steps of the projection method are listed below.
1. Tentative velocity field U⃗∗ explicit prediction:

U⃗∗ − U⃗

△t
= −

(
U⃗ · ∇

)
U⃗ + ν∇2U⃗ (18)

And we can re-write this in primitive variables form:

4

u∗ − u

△t
= −(

∂u2

∂x
+

∂uv

∂y
) + ν(

∂2u

∂x2
+

∂2u

∂y2
) (19)

v∗ − v

△t
= −(

∂uv

∂x
+

∂v2

∂y
) + ν(

∂2v

∂x2
+

∂2v

∂y2
) (20)

2. Pressure Poisson Equation:

∇2pnew =
ρ

△t
U⃗∗ (21)

3. Velocity correction:

⃗Unew = U⃗∗ − △t

ρ
∇pnew (22)

2.2 Space discretizations: staggered grids

MOLE [1, 3] is an implementation of the Corbino-Castillo mimetic differences
[2]. Mimetic difference utilizes a staggered grid. It builds discrete analogs of
the vector calculus differential operators that are high-order accurate. These
discretized operators are constructed such they approximate the extended
Gauss divergence theorem.

We apply staggered grids, in which different flow variables are stored at
different locations within each computational cell.

Figure 1: Staggered grids

5

As illustrated in Fig. 1, pressure lives at cell centers, u components live
on the vertical cell faces, and v components live on the horizontal cell faces.

2.3 Time discretizations

For the selection of time step, we should consider multiple conditions.
1. Convective CFL condition:

△t ≤ min

{
CFLmax △ x

|u|max

,
CFLmax △ y

|v|max

}
(23)

CFLmax is set to be 0.5 here.
2. Diffusive stability:

△t ≤ 1

2ν(1
△x2 +

1
△y2

)
(24)

2.4 MOLE: interpolation and mimetic operators

With the application of the staggered grid, there are two types of ways to
store flow variables: either cell center, or cell faces.

When storing cell-center data, the Mimetic Operators Library Enhanced
(MOLE) also includes boundary values. For the u components, it stores the
values on the left and right faces in addition to the m interior cell centers,
for a total of m + 2 values. Likewise, the v components has n + 2 values.
Consequently, the full data array forms an (n+2)× (m+2) matrix. MOLE
will reshape it into a column vector of length (m+ 2)(n+ 2) to store.

When storing cell-face data, the array dimensions differ for the u and v
components. The u components live on the m + 1 vertical faces of each of
the n rows of cell centers, yielding an n× (m+1) matrix. The v components
live on the n + 1 horizontal faces of each of the m columns of cell centers,
yielding an (n + 1) × m matrix. MOLE then reshapes each matrix into a
single column vector for further computation.

In the code of this project, we use variableName_flat to represent
these column vectors storing cell-center values, variableName_on_u and
variableName_on_v to represent these column vectors storing cell-face val-
ues on vertical faces and horizontal faces.

6

Listing 1: Matlab code implementation

1 % mimetic ope ra to r s
2 L = lap2D (k , m, dx , n , dy) ;
3 D = div2D (k , m, dx , n , dy) ;
4 G = grad2D (k , m, dx , n , dy) ;
5

6 % in t e r p o l a t i o n
7 I = interpolCentersToFacesD2D (k , m, n) ; % cente r to

f a c e
8 I I = interpolFacesToCentersG2D (k , m, n) ; % fa c e to

cen te r
9

10 % 2D Staggered g r id
11 x s t a r t = 0 ; x end = 6 ;
12 y s t a r t = −1; y end = 1 ;
13 Lx = x end − x s t a r t ; Ly = y end − y s t a r t ;
14 dx = (x end − x s t a r t) /m; dy = (y end − y s t a r t) /n ;
15 xgr id = [0 dx /2 : dx : Lx−dx/2 Lx] ; % Staggered g r id x
16 ygr id = [0 dy /2 : dy : Ly−dy/2 Ly] ; % Staggered g r id y
17 [Y, X] = meshgrid (ygrid , xgr id) ;
18 U = 0.∗X; V = U;
19 U f l a t = U(:) ; V f l a t = V(:) ;
20

21 U stag = I ∗ [U f l a t ; U f l a t] ; % cente r to f a c e
22 U on u = U stag (1 : (m+1)∗n) ; U on v = U stag ((m+1)∗n+1:

end) ;
23 V stag = I ∗ [V f l a t ; V f l a t] ; % f a c e to cen te r
24 V on u = V stag (1 : (m+1)∗n) ; V on v = V stag ((m+1)∗n+1:

end) ;
25 UU on u = U on u .∗ U on u ; UV on u = U on u .∗ V on u ;
26 VV on v = V on v .∗ V on v ; UV on v = U on v .∗ V on v ;
27

28 % ve l o c i t y f i e l d p r ed i c t i o n
29 U s t a r f l a t = U f l a t − dt∗D∗ [UU on u ; UV on v] + dt∗nu∗L

∗U f l a t ;
30 V s t a r f l a t = V f l a t − dt∗D∗ [UV on u ; VV on v] + dt∗nu∗L

∗V f l a t ;

7

31

32 % ve l o c i t y c o r r e c t i o n
33 U V f lat = [U s t a r f l a t ; V s t a r f l a t] − (dt/ rho) ∗(I I ∗G∗

p new f l a t) ;
34

35 U = reshape (U f la t , m+2, n+2) ;V = reshape (V f la t , m+2,
n+2) ;

3 Results and conclusion

As shown in Fig. 2, a well-defined boundary layer forms as the flow develops.
In Fig. 3, clear vortex shedding appears. As Re increases further, these
vortices become progressively stronger.

References

[1] MOLE: Mimetic Operators Library Enhanced, June 2023.

[2] J. Corbino and J. E. Castillo. High-order mimetic finite-difference op-
erators satisfying the extended gauss divergence theorem. Journal of
Computational and Applied Mathematics, 364, 01 2020.

[3] The MOLE team. MOLE: Mimetic Operators Library Enhanced.
https://csrc-sdsu.github.io/mole/, 2025. Accessed: 2025-04-30.

8

Figure 2: Channel flow developing: t = 2, 6, 12

Figure 3: Flow past cylinder: t = 2, 6, 12

9

