
 

 
   

Computational Science & 
Engineering Faculty and Students 

Research Articles 
 

Database Powered by the 
Computational Science Research Center  

Computing Group & Visualization Lab 

 
COMPUTATIONAL SCIENCE 
& ENGINEERING  

   

 

 
 

Computational Science Research Center 
College of Sciences 

5500 Campanile Drive 
San Diego, CA 92182-1245 

(619) 594-3430 

 

 
 

© 2025 

Solving the 2D Allen-Cahn Equation Using 
Mimetic Differences 

 
Tyler Collins and Miguel A. Dumett 

 
May 6, 2025 

 
 
 

Publication Number: CSRCR2025-01 



Solving the 2D Allen-Cahn Equation
Using Mimetic Differences

Tyler Collins∗ and Miguel A. Dumett †‡

May 6, 2025

Abstract

This report presents a numerical study of the two-dimensional
Allen–Cahn equation using a mimetic finite difference scheme imple-
mented in MATLAB. The method leverages the MOLE library to
discretize spatial operators in a way that preserves key vector calculus
identities and allows clean enforcement of boundary conditions.

Two test cases were considered: a manufactured solution with a
forcing term to evaluate convergence, and an unforced case to observe
natural phase evolution. The scheme achieved second-order conver-
gence in the L2, H

1, and L∞ norms, validating the accuracy of the
mimetic discretization and semi-implicit time integration. Results
closely matched published benchmarks, confirming the method’s relia-
bility. In the unforced case, the scalar order parameter evolved toward
stable binary phases, consistent with the energy-minimizing dynamics
of the Allen–Cahn model.

The study demonstrates that mimetic methods provide a robust
and interpretable framework for solving phase-field equations on struc-
tured grids and lays the groundwork for future extensions to more
complex models.

∗Computational Science PhD Program at San Diego State University
(tcollins7472@sdsu.edu).

†Editor: Jose E. Castillo
‡Computational Science Research Center at San Diego State University

(mdumett@sdsu.edu).

1



1 Introduction

Phase field modeling is a computational approach crucial to engineering and
material sciences and is widely used in fracture mechanics, fluid-structure
interactions, and multiphase flow [1, 2]. The approach is rooted in van
der Waals’ diffuse interface theory and was later formalized through the
Ginzburg–Landau and Cahn–Hilliard equations, the latter introducing a con-
served energy minimization scheme suitable for modeling mass-conserving
processes such as phase separation [3]. To simplify the Cahn–Hilliard model,
the Allen–Cahn (AC) equation was introduced but at the explicit cost of
losing mass conservation [4]. However, the AC equation still reliably cap-
tures interface evolution and phase transitions [5]. While conservation is not
inherent to the equation, implicit numerical schemes have been developed to
control energy dissipation and mitigate mass loss [6, 7, 8].

The AC equation is derived as the gradient flow of the Ginzburg–Landau
energy functional and consists of two terms: a linear diffusion term control-
ling interfacial energy and a nonlinear reaction term driving phase separation
[5, 6]. It describes interface dynamics using a continuous scalar order param-
eter that varies smoothly across phase boundaries and eliminates the need
for direct interface tracking. It is commonly applied in microstructural evolu-
tion, interface mobility, and pattern formation, and is particularly useful for
modeling grain boundary dynamics and crack propagation in materials. Un-
like sharp interface methods, the phase-field approach eliminates the need for
interface tracking or remeshing, making it well suited to numerical methods
such as finite differences, finite elements, and mimetic schemes.

Traditional finite difference methods do not always preserve key physical
or geometric properties of the system, whereas mimetic differences can better
preserve the system during discretization [9]. Mimetic operators reproduce
discrete analogs of vector calculus identities, such as gradient, divergence, and
Laplacian, and offer improved stability, convergence, and energy behavior
[10]. Additionally, Neumann and Robin boundary conditions are handled
more cleanly and do not require any sort of approximation. These attributes
are beneficial when modeling diffuse interfaces like those in phase-field models
[2].

The objectives of this study are to implement a 2D mimetic finite dif-
ference scheme using the Mimetic Operators Library Enhanced (MOLE) to
solve the AC equation, validate the implementation by comparing numerical
results to an analytical manufactured solution with a forcing term, analyze

2



the convergence behavior of the solution under mesh refinement, and compare
results to existing literature.

2 Mathematical Formulation

2.1 Allen–Cahn Equation

The AC equation describes the time evolution of a non-conserved scalar order
parameter u(x, y, t), which distinguishes between phases of a material. In two
dimensions, the equation takes the form:

∂u

∂t
= ε2∆u− f(u) + g(x, y, t), (1)

where:

• ε > 0 is a small parameter related to interfacial thickness.

• ∆ is the Laplacian operator (representing isotropic diffusion).

• f(u) = u3 − u is the derivative of a double-well potential: F (u) =
1
4
(u2 − 1)2.

• g(x, y, t) is an optional forcing term.

In the absence of external forcing, the equation simplifies to:

∂u

∂t
= ε2∆u− f(u) (2)

This equation is derived from the L2-gradient flow of the Ginzburg–
Landau energy functional:

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dΩ (3)

With monotonic energy dissipation:

dE(u(t))

dt
= −

∫
Ω

|ut|2 dΩ ≤ 0 (4)

Monotonic dissipation ensures the system minimizes energy over time and
reflects thermodynamic principles [6].

3



2.2 Boundary and Initial Conditions

The problem is defined on a square domain, (x, y) ∈ [0, 2π]2, where homoge-
nous Dirichlet boundary conditions are applied, u(x, y, t) = 0. The initial
phase field is defined as:

u(x, y, 0) = 0.05 sin(x) sin(y). (5)

This initial perturbation from equilibrium drives a sinusoidal response in
the phase field. Without the forcing term this evolves into steady state phase
configuration. This initial condition coupled with the forcing term allows for
a manufactured analytical solution that we can compare against. The forcing
term takes the form:

g(x, y, t) = 0.05(2ε2− 1.1)e−0.1t sin(x) sin(y)+
(
0.05e−0.1t sin(x) sin(y)

)3
(6)

With the exact solution:

u(x, y, t) = 0.05e−0.1t sin(x) sin(y) (7)

3 Mimetic Differences Approach

3.1 Mimetic Discretization Overview

In this section we discuss relevant mimetic methods using the MOLE li-
brary with MATLAB to preserve calculus identities at the discrete level,
and describe the mimetic methods approach [11]. Gradient and divergence
operators that make up the Laplacian are defined as grad2D and div2D.
However, MOLE pre-constructs the Laplacian with the lap2D(k, m, dx,

n, dy) function, where k is the order of accuracy, m and n are the number
of nodes in the x and y direction, and dx and dy are the step sizes in the
x and y direction. Furthermore, to apply Dirichlet boundary conditions the
robinBC2D(k, m, dx, n, dy, a, b) function, where the parameters are
the same as lap2D with the exception of, a, the Dirichlet coefficient, and, b,
the Neumann coefficient.

3.2 Discretized Formulation

Spatial discretization is performed using mimetic operators on a staggered,
cell-centered grid. The time-stepping scheme follows a semi-implicit Euler

4



method: (
I −∆tε2L

)
un+1 = un +∆t

(
un − (un)3 + gn

)
(8)

Where un and un+1 represent the numerical solution at time steps tn and
tn+1 = tn + ∆t, respectively. The operator L is the mimetic Laplacian,
which discretizes the diffusion operator ∆ in space. The expression ε2Lun+1

corresponds to the linear diffusion term and is treated implicitly for stability.
The nonlinear reaction term is represented by un − (un)3 and is treated
explicitly to avoid solving a nonlinear system. The function gn is an optional
forcing term evaluated at time tn, used in the manufactured solution case to
drive the solution toward a known exact form.

3.3 Algorithm Summary

The algorithm steps in summary:

1. Initialize grid, Laplacian, and boundary matrices.

2. Decompose the implicit system matrix (LU factorization).

3. Loop over time:

• Assemble RHS with nonlinear term and optional forcing.

• Solve implicit system for next time step.

• Unforced solution: store and plot snapshots at intervals.

4. Forced solution: calculate error norms and convergence rate.

4 Implementation

The simulation was implemented in MATLAB using the MOLE library [11].
The parameters used are consistent with the literature [6]. The computa-
tional domain was defined on [0, 2π]2, with the interfacial thickness param-
eter ε set to 0.1. Different spatial resolutions were used depending on the
test case: simulations with a forcing term used grid sizes of m = 10, 20, and
40 to evaluate convergence; simulations without a forcing term used a fixed
resolution of m = 40. The time step was chosen as ∆t = 0.1/m2 for the
forced case to ensure stability under refinement, and ∆t = 0.01 for the un-
forced scenario. In the forced case final time T = 1, and in the unforced case

5



final times were run with T = 1.0, 2.5, 5.0, and 10.0. Spatial operators were
implemented using the MOLE library, which provided mimetic discretiza-
tions through functions such as lap2D for the Laplacian and robinBC2D to
enforce homogeneous Dirichlet boundary conditions. The mimetic Laplacian
incorporated appropriate boundary corrections consistent with the mimetic
framework. To enhance efficiency, the system matrix was factorized once us-
ing LU decomposition and reused during each time step of the semi-implicit
scheme.

5 Results and Discussion

5.1 With Forcing Term (Manufactured Solution)

m h L2-error Rate H1-error Rate L∞-error Rate
10 0.628 3.43E-05 - 5.31E-05 - 1.08E-05 -
20 0.314 7.38E-06 2.22 1.21E-05 2.13 2.21E-06 2.29
40 0.157 1.70E-06 2.11 2.88E-06 2.07 5.35E-07 2.05

Table 1: Computed error norms and convergence rates for manufactured
solution.

Running the algorithm with the forcing term from equation (6) and com-
paring our results with the exact solution from equation (7), we computed the
L2, H

1, L∞ error and convergence rates, reported in Table 1. We observed er-
ror rates from five to seven orders of accuracy, and incremental reductions as
mesh sizes increase. The rates of convergence achieved second-order accuracy
in space. Although fourth-order spatial operators were used, the overall con-
vergence is governed by the first-order time-stepping and explicit treatment
of the nonlinear term, resulting in a second-order global convergence rate.
The error results are consistent with Poochinapan et al. using a three-level
linearized compact difference scheme [6].

5.2 Without Forcing Term (Natural Evolution)

Running the algorithm under unforced conditions with the initial sinusoidal
perturbation from equation (5) produced the natural evolution of concentra-
tions shown in Figure 1. At early times, the solution remains diffuse, but

6



(a) (b)

(c) (d)

Figure 1: Concentration, u, at times a) 1.0, b) 2.5, c) 5.0, and d) 10.0.

as time progresses the interfacial boundaries become sharper, as illustrated
in Figure 2. The maximum absolute concentration steadily increases from
umax = 0.1308 at T = 1 to umax = 0.4955 at T = 2.5, then approaches
umax = 0.989 at T = 5, and saturates to umax = 1.0 by T = 10. These
observations are consistent with phase separation dynamics governed by the
AC equation, where the system gradually minimizes its energy by sharp-
ening interfaces and evolving toward a stable binary phase configuration.
Additionally, these results are consistent with the work in Example 3 from
Poochinapan et al. [6].

7



(a) (b)

(c) (d)

Figure 2: Top-down view of Figure 1 a), b), c) and d) results showing interface
sharpening.

6 Conclusion

This study implemented a mimetic finite difference scheme to solve the 2D
AC equation using MATLAB and the MOLE library. The method success-
fully preserved differential operator identities and incorporated boundary
conditions in a stable manner. Simulations using a manufactured solution
with a forcing term demonstrated second-order convergence in the L2, H

1,
and L∞ norms, validating the spatial discretization and temporal integration.
These results were in strong agreement with benchmark values reported by
Poochinapan et al., despite using a simpler semi-implicit Euler scheme. In
the unforced case, the solution exhibited natural phase separation behavior,
and the scalar order parameter evolved toward saturated binary phases. The

8



interface sharpening and energy minimization over time was consistent with
the physical interpretation of the AC model.

Overall, the mimetic framework provided a robust, structured, and inter-
pretable approach to solving nonlinear phase-field equations on regular grids.
This work establishes a foundation for extending mimetic methods to more
complex phase-field systems or higher-order temporal schemes.

References

[1] I. Steinbach, “Phase-field models in materials science,” Model. Simul.
Mater. Sci. Eng., vol. 17, no. 7, p. 073001, Oct. 2009, doi: 10.1088/0965-
0393/17/7/073001.

[2] H. Gomez and K. G. Van Der Zee, “Computational Phase-Field Model-
ing,” in Encyclopedia of Computational Mechanics Second Edition, 1st
ed., E. Stein, R. Borst, and T. J. R. Hughes, Eds., Wiley, 2017, pp.
1–35. doi: 10.1002/9781119176817.ecm2118.

[3] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform System.
I. Interfacial Free Energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267,
Feb. 1958, doi: 10.1063/1.1744102.

[4] S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase bound-
ary motion and its application to antiphase domain coarsening,” Acta
Metall., vol. 27, no. 6, pp. 1085–1095, Jun. 1979, doi: 10.1016/0001-
6160(79)90196-2.

[5] L.-Q. Chen, “Phase-Field Models for Microstructure Evolution,” Annu.
Rev. Mater. Res., vol. 32, no. 1, pp. 113–140, Aug. 2002, doi:
10.1146/annurev.matsci.32.112001.132041.

[6] K. Poochinapan and B. Wongsaijai, “Numerical analysis for solving
Allen-Cahn equation in 1D and 2D based on higher-order compact
structure-preserving difference scheme,” Appl. Math. Comput., vol. 434,
p. 127374, Dec. 2022, doi: 10.1016/j.amc.2022.127374.

[7] D. He and K. Pan, “Maximum norm error analysis of an uncondition-
ally stable semi-implicit scheme for multi-dimensional Allen–Cahn equa-
tions,” Numer. Methods Partial Differ. Equ., vol. 35, no. 3, pp. 955–975,
May 2019, doi: 10.1002/num.22333.

9

https://doi.org/10.1088/0965-0393/17/7/073001
https://doi.org/10.1088/0965-0393/17/7/073001
https://doi.org/10.1002/9781119176817.ecm2118
https://doi.org/10.1063/1.1744102
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://doi.org/10.1016/j.amc.2022.127374
https://doi.org/10.1002/num.22333


[8] J. Shen and X. Yang, “Numerical approximations of Allen-Cahn and
Cahn-Hilliard equations,” Discrete Contin. Dyn. Syst. A, vol. 28, no. 4,
pp. 1669–1691, 2010, doi: 10.3934/dcds.2010.28.1669.

[9] J. E. Castillo and M. Yasuda, “A Comparison of Two Matrix Operator
Formulations for Mimetic Divergence and Gradient Discretizations.”

[10] J. Corbino and J. E. Castillo, “High-order mimetic finite-difference
operators satisfying the extended Gauss divergence theorem,” J.
Comput. Appl. Math., vol. 364, p. 112326, Jan. 2020, doi:
10.1016/j.cam.2019.06.042.

[11] J. Corbino, M. A. Dumett, and J. E. Castillo, “MOLE: Mimetic Opera-
tors Library Enhanced,” J. Open Source Softw., vol. 9, no. 99, p. 6288,
Jul. 2024, doi: 10.21105/joss.06288.

A Appendix

A.1 Code

To run the code below the MOLE library must be accessible in MATLAB.
Steps for installation can be found at https://github.com/csrc-sdsu/mole.
When installed, drop the script into the MOLE examples directory. The
code natively runs the unforced scenario, however the forced scenario can be
enabled by changing do forced = true. Options for plots and videos are
enabled by changing the respective values to true.

Listing 1: MATLAB Script: AC2D fin v0.m

1 c l e a r v a r s ;
2 c l c ;
3 c l o s e a l l ;
4 addpath ( ’ . . / . . / s r c /matlab ’ )
5

6 % === USER CONFIGURATION ===
7 do fo r c ed = f a l s e ; % true = inc lude f o r c i n g term ,

f a l s e = unforced
8 do p l o t s = f a l s e ; % true = p lo t snapshots
9 do video = f a l s e ; % true = save video

10

10

https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.1016/j.cam.2019.06.042
https://doi.org/10.21105/joss.06288
https://github.com/csrc-sdsu/mole


11 % === Reso lut ion sweep ===
12 i f do f o r c ed
13 Mvals = [ 10 , 20 , 4 0 ] ;
14 e l s e
15 Mvals = 40 ; % ju s t one r e s o l u t i o n f o r unforced
16 end
17

18 % Error v a r i a b l e s i n i t i a l i z a t i o n
19 E2 = ze ro s ( s i z e (Mvals ) ) ;
20 EH1 = ze ro s ( s i z e (Mvals ) ) ;
21 Einf = ze ro s ( s i z e (Mvals ) ) ;
22 hs = 2∗ pi . / Mvals ;
23

24 f o r k = 1 : l ength (Mvals )
25 eps = 0 . 1 ; % i n t e r f a c i a l width parameter
26 k order = 4 ; % mimetic order o f accuracy
27 m = Mvals ( k ) ; % number o f nodes
28 dx = 2∗ pi / m; % step he ight
29 dy = dx ;
30 x = [ 0 , dx/2 : dx : 2∗ pi − dx/2 , 2∗ pi ] ;
31 y = x ;
32 [X, Y] = meshgrid (x , y ) ;
33 N = numel (X) ;
34

35 i f do f o r c ed
36 dt = 0 .1 / mˆ2 ;
37 f i n a l t im e = 1 . 0 ;
38 p l o t t ime s = [ ] ;
39 p l o t s t e p s = [ ] ;
40 e l s e
41 dt = 0 . 0 1 ;
42 f i n a l t im e = 10 . 0 ;
43 p l o t t ime s = [ 1 , 2 . 5 , 5 , 1 0 ] ;
44 p l o t s t e p s = round ( p l o t t ime s / dt ) ;
45 end
46

47 nSteps = round ( f i n a l t im e / dt ) ;
48

11



49 % Build operator
50

51 L2D = lap2D (4 , m, dx , m, dy ) + robinBC2D (4 , m, dx ,
m, dy , 1 , 0) ;

52 A = speye (N) − dt ∗ eps ˆ2 ∗ L2D;
53 LU = decomposit ion (A, ’ lu ’ ) ;
54

55 % I n i t i a l c ond i t i on
56 U = reshape (0 . 05 ∗ s i n (X) .∗ s i n (Y) , N, 1) ;
57

58 % Forcing func t i on
59 forcingTermFunc = @(x , y , t ) . . .
60 0 .05∗ (2∗ eps ˆ2 − 1 . 1 ) ∗exp (−0.1∗ t ) .∗ s i n (x ) .∗ s i n (y

) + . . .
61 ( 0 . 05∗ exp (−0.1∗ t ) .∗ s i n (x ) .∗ s i n (y ) ) . ˆ 3 ;
62

63 % === Setup dual v ideo w r i t e r s ( i f enabled ) ===
64 i f do v ideo
65 v topdown = VideoWriter ( s p r i n t f ( ’

allenCahn2D topdown t%.1 f .mp4 ’ , f i n a l t im e ) ,
’MPEG−4 ’ ) ;

66 v ro ta t ed = VideoWriter ( s p r i n t f ( ’
a l l enCahn2D rotated t%.1 f .mp4 ’ , f i n a l t im e ) ,
’MPEG−4 ’ ) ;

67 v topdown . FrameRate = 60 ;
68 v ro ta t ed . FrameRate = 60 ;
69 open ( v topdown ) ; open ( v ro ta t ed ) ;
70 end
71

72

73 % Time stepp ing
74 f o r s tep = 1 : nSteps
75 t = step ∗ dt ;
76 fU = U − U. ˆ 3 ;
77 f o r c i n g = do fo r c ed ∗ reshape ( forcingTermFunc (X

, Y, t ) , N, 1) ;
78 rhs = U + dt ∗ ( fU + f o r c i n g ) ;
79 U = LU \ rhs ; % updating s o l u t i o n

12



80

81 % === Plot at s p e c i f i c t imes ( unforced only )
===

82 i f d o p l o t s && ˜ do fo r c ed && ismember ( step ,
p l o t s t e p s )

83 Umat = reshape (U, m+2, m+2) ;
84 maxU = max( abs (Umat ( : ) ) ) ;
85 t now = step ∗ dt ;
86

87 % −−− Top−down view −−−
88 f i g u r e ;
89 s u r f (X, Y, Umat , ’ EdgeColor ’ , ’ none ’ ) ;
90 t i t l e ( s p r i n t f ( ’ Unforced A l l e n Cahn : t =

%.2 f , max |U| = %.4g ’ , t now , maxU) ) ;
91 x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ y ’ ) ; z l a b e l ( ’u ’ ) ;

c o l o rba r ;
92 view (90 , 90) ; ax i s t i g h t ; box on ;
93

94 % −−− Rotated view −−−
95 f i g u r e ;
96 s u r f (X, Y, Umat , ’ EdgeColor ’ , ’ none ’ ) ;
97 t i t l e ( s p r i n t f ( ’ Unforced A l l e n Cahn : t =

%.2 f , max |U| = %.4g ’ , t now , maxU) ) ;
98 x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ y ’ ) ; z l a b e l ( ’u ’ ) ;

c o l o rba r ;
99 view (45 , 30) ; ax i s t i g h t ; box on ;

100 end
101

102 % Optional v ideo frames
103 i f do v ideo
104 Umat = reshape (U, m+2, m+2) ;
105 maxU = max( abs (Umat ( : ) ) ) ;
106

107 % −−− Top−down view −−−
108 f i g 1 = f i g u r e ( ’ V i s i b l e ’ , ’ o f f ’ ) ;
109 s u r f (X, Y, Umat , ’ EdgeColor ’ , ’ none ’ ) ;
110 ax = gca ;

13



111 ax . ZLim = [−1 1 ] ; % lock z−ax i s
range

112 ax .XLim = [0 2∗ pi ] ;
113 ax .YLim = [0 2∗ pi ] ;
114 ax .CLim = [−1 1 ] ; % lock c o l o r

range ( op t i ona l but recommended )
115 t i t l e ( s p r i n t f ( ’ t = %.2 f , max |U| = %.4g ’ , t ,

maxU) ) ;
116 x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ y ’ ) ; z l a b e l ( ’u ’ ) ;

c o l o rba r ;
117 view (90 ,90) ; box on ;
118 writeVideo ( v topdown , get frame ( f i g 1 ) ) ;
119 c l o s e ( f i g 1 ) ;
120

121 % −−− Rotated view −−−
122 f i g 2 = f i g u r e ( ’ V i s i b l e ’ , ’ o f f ’ ) ;
123 s u r f (X, Y, Umat , ’ EdgeColor ’ , ’ none ’ ) ;
124 ax = gca ;
125 ax . ZLim = [−1 1 ] ; % lock z−ax i s

range
126 ax .XLim = [0 2∗ pi ] ;
127 ax .YLim = [0 2∗ pi ] ;
128 ax .CLim = [−1 1 ] ; % lock c o l o r

range ( op t i ona l but recommended )
129 t i t l e ( s p r i n t f ( ’ t = %.2 f , max |U| = %.4g ’ , t ,

maxU) ) ;
130 x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ y ’ ) ; z l a b e l ( ’u ’ ) ;

c o l o rba r ;
131 view (45 ,30) ; box on ;
132 writeVideo ( v rotated , get frame ( f i g 2 ) ) ;
133 c l o s e ( f i g 2 ) ;
134 end
135

136 end
137

138 i f do v ideo
139 c l o s e ( v topdown ) ;
140 c l o s e ( v ro ta t ed ) ;

14



141 end
142

143 % Optional f i n a l p l o t
144 i f d o p l o t s && ( do fo r c ed | | isempty ( p l o t s t e p s ) )
145 Umat = reshape (U, m+2, m+2) ;
146 maxU = max( abs (Umat ( : ) ) ) ;
147 f i g u r e ;
148 s u r f (X, Y, Umat , ’ EdgeColor ’ , ’ none ’ ) ;
149 ax i s t i g h t ;
150 t i t l e ( s p r i n t f ( ’ F ina l time t=%.2f , max |U| = %.4g

’ , f i n a l t ime , maxU) ) ;
151 x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ y ’ ) ; z l a b e l ( ’u ’ ) ; c o l o rba r

;
152 view (90 , 90) ; drawnow ;
153 end
154

155 % === Error norms ( f o r c ed only ) ===
156 i f do f o r c ed
157 Unum = reshape (U, m+2, m+2) ;
158 Uex = 0.05 ∗ exp (−0.1 ∗ f i n a l t im e ) .∗ s i n (X)

.∗ s i n (Y) ;
159 e r r = Unum − Uex ;
160

161 E2(k ) = sq r t (sum( e r r ( : ) . ˆ 2 ) ∗ dx ∗ dy ) ;
162 dex = ( c i r c s h i f t ( err , [ 0 , −1 ] ) − c i r c s h i f t (

err , [ 0 , 1 ] ) ) / (2∗dx ) ;
163 dey = ( c i r c s h i f t ( err , [ −1 , 0 ] ) − c i r c s h i f t (

err , [ 1 , 0 ] ) ) / (2∗dy ) ;
164 Egrad = sq r t (sum( ( dex ( : ) . ˆ2 + dey ( : ) . ˆ 2 ) ) ∗

dx ∗ dy ) ;
165 EH1(k ) = sq r t (E2(k ) ˆ2 + Egrad ˆ2) ;
166 Einf ( k ) = max( abs ( e r r ( : ) ) ) ;
167 end
168 end
169

170 % === Print convergence t ab l e ( f o r c ed only ) ===
171 i f do f o r c ed

15



172 f p r i n t f ( ’ M h L2−e r r o r r a t e H1−
e r r o r r a t e Linf−e r r o r r a t e \n ’ ) ;

173 f o r k = 1 : l ength (Mvals )
174 i f k == 1
175 f p r i n t f ( ’%4d %8.4e %10.4 e − %10.4

e − %10.4 e −\n ’ , . . .
176 Mvals ( k ) , hs ( k ) , E2(k ) , EH1(k ) , Einf ( k )

) ;
177 e l s e
178 r2 = log (E2(k ) /E2(k−1) ) / l og ( hs ( k ) /

hs (k−1) ) ;
179 rh1 = log (EH1(k ) /EH1(k−1) ) / l og ( hs ( k ) /

hs (k−1) ) ;
180 r i f e = log ( Einf ( k ) /Einf (k−1) ) / l og ( hs ( k ) /

hs (k−1) ) ;
181 f p r i n t f ( ’%4d %8.4e %10.4 e %5.2 f %10.4 e

%5.2 f %10.4 e %5.2 f \n ’ , . . .
182 Mvals ( k ) , hs ( k ) , E2(k ) , r2 , EH1(k ) , rh1

, Einf ( k ) , r i f e ) ;
183 end
184 end
185 end

16


	Allen_Cahn_Equations.pdf
	Introduction
	Mathematical Formulation
	Allen–Cahn Equation
	Boundary and Initial Conditions

	Mimetic Differences Approach
	Mimetic Discretization Overview
	Discretized Formulation
	Algorithm Summary

	Implementation
	Results and Discussion
	With Forcing Term (Manufactured Solution)
	Without Forcing Term (Natural Evolution)

	Conclusion
	Appendix
	Code



