
Solving The Poisson-Boltzmann Equation 
With Mimetic Differences 

The nonlinear Poisson-Boltzmann 
equation (PBE) is a fundamental 
equation  widely  used  to describe 
the spatial distribution of electrostatic 
potential, u(r), arising from a molecule 
or biological macromolecule in electro-
lyte solutions. This equation is derived 
from the classical Poisson equation 

that determines the electrostatic potential arising from a 
charge distribution within a region, and the Boltzmann 
distribution that describes how charged particles (e.g., 
ions) are distributed in the environment. This study aims 
to obtain the numerical solution to the nonlinear PBE in 
2D using mimetic differences, as implemented in the 
Mimetic Operator Library Enhanced (MOLE). The mi-
metic PBE solver was tested on simple planar molecules 
(H2O, HCl, SO3, and HCN) represented by atomic point 
charges derived from quantum chemistry calculations. 
The visualizations of the electrostatic potentials obtained 
demonstrate a clear correlation between the signs   of   
the   atomic   partial charges and the corresponding 
peaks: negative peaks align with negatively charged 
atoms, whereas positive peaks are centered on posi-
tively charged atoms. The height of the peaks reflects 
the magnitudes of the charges. These findings validate 
the mimetic nonlinear PBE solver and hold the potential 
to significantly impact multiple fields, including compu-
tational chemistry and biophysics, once extended to 3D 
and scenarios with continuous charge distributions.
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Figure 1: Distribution of electrostatic potential around H2O. The PBE is solved
within domain ⌦s = [−4, 4]⇥ [−4, 4] and ⌦m = {(x, y); x2 + y2  2}.
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Figure 2: Distribution of electrostatic potential around HCl. The PBE is solved
within domain ⌦s = [−4, 4]⇥ [−4, 4] and ⌦m = {(x, y); x2 + y2  2}.

Figure 3: Distribution of electrostatic potential around SO3. The PBE is solved
within domain ⌦s = [−6, 6]⇥ [−6, 6] and ⌦m = {(x, y); x2 + y2  3}.
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Figure 4: Distribution of electrostatic potential around HCN. The PBE is solved
within domain ⌦s = [−6, 6]⇥ [−6, 6] and ⌦m = {(x, y); x2 + y2  3}.

3

Figure 2: Distribution of electrostatic potential around HCl. The PBE is solved
within domain ⌦s = [−4, 4]⇥ [−4, 4] and ⌦m = {(x, y); x2 + y2  2}.

Figure 3: Distribution of electrostatic potential around SO3. The PBE is solved
within domain ⌦s = [−6, 6]⇥ [−6, 6] and ⌦m = {(x, y); x2 + y2  3}.
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