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Abstract

In this work, wound healing is modeled by the two-dimensional Fisher equation and its discrete
analog is achieved by utilizing mimetic differences. This report aims to solve the two-dimensional
Fisher-Kolmogorov-Petrovsky-Piskunov equation (or Fisher-KPP equation) in the context of mod-
eling the cell movements as they close a wound made in an epithelial sheet. The family of diffusion-
reaction equations, of which the Fisher equation is a part, are commonly used to depict spatial
changes in moving cell populations. In particular, the two-dimensional Fisher-KPP equation has
been evaluated as suitable for describing cell movement [4] when paired with experimental data.
This report uses the experimental data gathered by Habbal et al. [2], a binary image resulting
from image captures of a 2d cell sheet made up of Madin-Darby canine kidney (MDCK) cells. The
methodology used demonstrates the efficacy of mimetic differences [1] for solving PDEs that span
both temporal and spatial domains, with the particular advantages granted by the calculation of
the entire image grid simultaneously, rather than traditional methods that rely greatly on solutions
from previous time-steps.

1 Introduction

Accurate and reliable modeling of cell movement is the first step to establishing a baseline from which
advanced predictive applications can be built. With the establishment of normal cell, machine learning
models can be trained to spot abnormal cell growth in laboratory settings, such as pharmacological
drug development, in order to judge efficacy or detect undesired side effects.

Furthermore, the methodology described in this report demonstrates a generic process of solving
image-based partial differential equations using the MOLE library, serving as a proof of concept for
applications beyond cell movements and diffusion.

In comparison to explicit Euler method used in the original paper, this report uses a Mimetic
Difference Method as defined in the MOLE library [3], making use of a staggered grid that corresponds
to the pixels of a given input image.

2 Equation and Initial Conditions

2.1 The 2D Fisher-KPP Equation

The Fisher-KPP equations is a semilinear parabolic partial differential equation (PDE) which models
the interaction of Fickian diffusion with a logistic type growth term. It is given by

ou
i DAu+ ru(l — u) (1)

with Dirichlet and Neumann boundary conditions on the PDE domain (a rectangle containing the
bound). Several parameters have been proposed but this work will consider the following values [2]

D = 248x1072,
r = 0.070,
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chosen from experimental data.

2.2 Initial and Boundary Conditions

The domain set by Habbal et al. [2] describes a rectangle Q with Dirichlet boundary conditions on
its vertical sides and Neumann boundary conditions on horizontal sides as described by the diagram
below, where the size of the image is 85x85 pixels.

7FD

e ['y: top and bottom sides

e ['p: left and right sides

A contiguous cell sheet will always have cells present on the vertical sides, hence the Dirichlet
condition. For the sake of the model, no flux is assumed to occur across the horizontal sides on the
domain, resulting in the homogeneous Neumann condition.

2.3 The dataset
The initial condition of the cell sheet is depicted by the following image:

In this image, white pixels (corresponding to an array value of 1) represent areas where cells are
present, while black pixels (valued 0 in the array) are areas where the wound has been simulated by
scraping away cells.



2.4 The mimetic difference discrete analog of the 2D Fisher-KPP

In order to apply the the Mimetic Difference library to the Fisher equation, it was first transformed
into its Mimetic counterpart by the following steps:

1. Original Equation

% = DAu+ ru(l —u)
2. Replacing differential operators
U =DLU+r(1-U)U (2)
3. Matching output domains
W = DLU" 4 rdiag(I — U™)U" (3)
4. Performing elementwise products
U =[I+dt-DL+r-dt-diag(1 —U,)|U" (4)

3 Image Processing

Without the original binarized images used in the paper’s calculations, the figures present were instead
processed by thresholding, as the grayscale assay images were in the source publication.

Due to the absence of more images, the following synthesized images were used as initial conditions.
Habbal et al [2] notes error in the form of transverse oscillation in places where wound edges meet,
as such images 2 and 3 were chosen to examine the effect in Mimetic solution. Image 2 presents an
immediate point of meeting, and so tests for oscillations when the edges meet at the beginning of
the temporal domain. Image 3 presents two points of meeting, at the top and bottom of the spatial
domain, in order to examine the effect of multiple points of meeting early in the time discretization.

Figure 1

(a) Synthesized image 1 (b) Synthesized image 2 (c) Synthesized image 3

4 Results

4.1 Solution

Applying the Mimetic method processes the entire grid in one iteration, which avoids using spatial
steps. As a result the Mimetic solution does not display the transverse oscillation of wound walls when
solved via methods such as Implicit Euler or Crank-Nicholson.

However, black pixels remain along the original wound margins along the top and bottom boundaries
due to the Neumann boundary condition enforcing no flux over the border, whereas in an experimental
setting the close of cells outside the observed area would converge as well, creating a fully continuous
image of only white pixels.



Figure 2: Image 1
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Figure 3: Synthesized Image 1
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Figure 4: Synthesized Image 2
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Figure 5: Synthesized image 3
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4.2 Evaluation

Due to the inclusion of the nonlinear term ru(1 — u), finding an analytical solution to compare error
can be challenging. Comparing the model to experimental data can serve as a baseline for error cal-
culation. Without access to experimental data, trends in the solution were used to evaluate the solution.

The following figure shows the trends in wound area sourced from Habbal et al. [2] and from the
Mimetic solution. Both display a steady decrease. The mimetic approximation displays an anomaly
near the beginning which describes an increase in wound size, which stems from the wound area cal-
culation that parses the darker area behind the leading edge as part of the wound itself, and should
be disregarded.

4.3 Conclusions

As a toolkit, the MOLE library provides a flexible solution to solving PDEs with multi-modal input
data. The code attached to this report describes the process of using an image-based initial condition
to create image-based solutions over a time discretization. The solution is generated without excessive
computational demand, and avoids the oscillating error encountered by iterative methods that base
solutions on results from previous time-steps. The MATLAB code also demonstrates a method of
capturing the image solution as an animated GIF format for ease of viewing, a process made simple
by the Mimetic method of solving that solves entire solution grids in a simple time-steps, resulting in
a solution format that can be easily discerned by sight.
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5 Code

1 % Initialization

2 close all;

3 clear all;

4 clc;

5 addpath('C:\Users\hkain\Desktop\College\Grad\Spring 2024\COMP 670\mole_MATLAB');
6 fileN = 'MYGIF.gif'; % This is the animation recorded .gif file name
7 H=figure('Position', [ 200 200 600 600]);

8

9 % Read image and find dimensions - M x N

10 iml = imread("pic4.png");

11 % Initialize variable for later use

12 m = length(iml(:,1));

13 n = length(iml(1,:,1));

14 k=2;

15 d-param = 2.48 x (10°-2);

16 r_param = 0.070;

17 a=0; b=m;

18 c=0; d=n;

19 dx = (b-a)/m;

20 dy (d-c) /n;

21 dt = 0.5;

22 % Threshold image to make B&W, then convert to doubles
23 im_-bw = im2bw (iml) ;

24 1im_bw = double (im_bw);

25 im.bw = padarray(im.bw, [1 1], 1, 'both");
26 im_bw(l,:) = im_bw(2,:);

27 im_bw(end, :) = im_bw (end-1,:);

28 iter = 1;

29 wound.area = zeros(80,1);

30

31 % 2D Mimetic operators

32 L = lap2D(k,m,dx,n,dy);

33 u = im_bw;

3¢ i_vec = eye((m+2)«*(n+2));

35

36 % Time loop

37 for t=0:dt:dt*800

38

39 u-vec = reshape(u, [], 1);

40 ul_diag = diag(ones(size(u-vec))-u.vec); % component for next step
41 u-next-vec = (i-vec + dtxd.paramxL + dtxr_paramxul_diag) = u-vec;
42 u-next = reshape (u-next_vec, [m+2,n+2]);
43

44 % impose boundary conditions

45 % left and right sides (Dirichlet)

46 u-next (:,1) = 1;

a7 u-next (:,end) = 1;

48 % top and bottom sides (Neumann)

49 u-next (1,:) = u(l,:);

50 u-next (end, :) = u(end, :);

51 imnext = u._next;

52

53 % Capture solution as gif every 50 iterations
54 if (mod(t, dtx=100) ==0)

55 figure;

56 hold on;

57 im-view = imnext (3:end-2, 3:end-2);
58 s = surf (im_view);

59 s.EdgeColor = 'none';

60 title(['t = ',num2str(t)])

61 zlim([0,17)

62 colormap turbo;

63 clim([0,1]);

64 campos ([-371,509,7])

65 hold off;

66 %$colorbar;

67 pause (0.1);
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% Capture the plot as an image
Frame = getframe (gcf);
im = frame2im(Frame) ;
[imind, CM] = rgb2ind(im,256);

% Capture a still frame of the gif for printing
rez = [170 170]; %set desired [horizontal vertical] resolution

cap = print(gcf, '-RGBImage', '-rl100'); Scapture RGB image (a bit slow)

% Write the animation to the gif File

if t ==
imwrite (imind, CM, fileN, 'gif', 'Loopcount',inf);
else
imwrite (imind, CM, fileN, 'gif', 'WriteMode', 'append');
end
end

% Capture wound area every 10 iterations

if (mod(t, dtx10) ==0)
unext_bin = imbinarize (u_next,0.9);
wound-area-n = sum(sum(unext_bin<0.5));
wound_area (iter) = wound.area.n;
iter = iter+1l;

end

u = (imnext);

end

o
o

% Plot wound area graph

figure;

hold on;

plot (wound.area, 'x-b');

xlabel ('Time steps (dt = 6 seconds) ')

ylabel ('Wound Area (pixels)'")
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