Simulating The Nonlinear Klein-Gordon-Maxwell System In The Relativistic Limit With Mimetic Differences

The nonlinear Klein-Gordon-Maxwell (KGM) system of equations is particularly useful in modeling the interactions between a new class of an X-ray free electron laser and solid density plasmas. The model also has use in astrophysics with describing the EM waveplasma interaction with X-rays and

y-rays produced by white dwarf cores and neutron stars. The goal here is to simulate the plasma wake-field generation which is a phenomenon studied in designing next generation plasma/particle accelerators with applications in high energy physics experiments, and the medical and industrial fields. These simulations utilize mimetic differences to solve the explicit 4th order Runge-Kutta time integration scheme in two dimensions, showcasing the nonlinear coupling between the three equations used in the model.

Hayden Frye, Miguel Dummett and Calvin Johnson

This research is supported by a Research Assistant position at San Diego State University and the Computational Science Research Center (CSRC) at San Diego State University

Figure 5: Simulation results showing a spike in particle velocity following the wake of a CPEM wave vector potential. The phase space momentum plot shows a spiking that is reminiscent of the 1D results of [2] where the momentum has a smooth middle part with a sharp and jagged outer part due to the nonlinearity of the system.

Particle velocity distribution at t = 00.885

$\frac{\text{Klein-Gordon Maxwell}}{\partial_{tt}\psi = \nabla^2\psi - (c^4 - \phi^2 + |\mathbf{A}|^2)\psi - 2i\phi\partial_t\psi}$ $\partial_{tt}\mathbf{A} = c^2\nabla^2\mathbf{A} - \frac{|\psi|^2}{c}\mathbf{A}$ $\nabla^2\phi = -\frac{1}{c^2}[i(\psi^*\partial_t\psi - \psi\partial_t\psi^*) + \phi|\psi|^2]$

Figure 6: Particle velocity distribution showing nearly the maximum velocity the particles reach before slowing down again, reminiscent of wake-field acceleration