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Miguel A. Dumett ∗ Jose E. Castillo†

June 25, 2024

Abstract

In this work, it is demonstrated that mimetic difference schemes, of arbitrary order of ac-
curacy, preserve energy and mass for general systems of conservation laws. This is shown by
utilizing a framework that encompasses all mimetic difference approaches.

1 Introduction

Traditional discretization techniques for the numerical solution of partial differential equations
(PDEs) include finite difference methods [1, 2, 3, 4], finite volume method [5], finite element method
[6], as well as others. Besides convergence, and order of accuracy, one would expect the numerical
solution of any method to replicate in the discrete realm some of the properties that the exact
solution of the continuum model exhibit. Along this line, mimetic methods aim to satisfy, in the
discrete sense, properties that the continuum equations hold. What are the features that the dis-
crete solution should display and what the relationships that the discrete analogs of the differential
operators have to reproduce, are the reason that have triggered the evolution of the different mimetic
methods.

Initially, mimetic techniques were derived from enforcing certain vector calculus integral theorems
or Green’s identities derived from the different differentiation of product rules [7, 8, 9, 10]. From
these starting points, they are able to mimic in the discrete, solution symmetries, conservation
laws, and other important properties of continuum PDE mathematical models as well as vector
calculus identities. For example, the mimetic difference (MD) [8, 10] approaches aim to replicate
the extended Gauss Divergence Theorem.

Later, mimetic approaches that target to create a discrete calculus that replicates the continuum
relationships of one among vector, tensor, exterior, calculi, were considered. The procedures in
this last category are called fully mimetic. Examples of methods that elaborate a discrete vector
calculus [11], tensor calculus [9, 12], exterior calculus [13, 14, 15], and others based on algebraic
topology [16, 17], as well as geometric and structure-preserving methods [18], can be found in the
literature.

The original versions of the mimetic methods that attain properties from some integral theorem,
were restricted to be of low-order of accuracy [7], and it was demonstrated that utilizing the standard
finite dimensional inner product, it cannot be possible to replicate integral theorems with high-order
accuracy [19]. To remedy this situation, the first method to construct high-order operators was
later introduced in [8]. It utilizes appropriate generalized inner products to enforce a discrete high-
order accurate extended Gauss divergence theorem, by considering neighboring cells. Later, other
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methods were able to do so, but by increasing the degree of the polynomials that approximate the
exact solution on each cell, in this way increasing substantially the number of degrees of freedom
of the discrete problem. Nevertheless, a feature of MD approaches that no other method, whether
mimetic or not, is able to reproduce, so far, is the uniform accuracy they achieve over the whole
computational domain (including near boundary grid points).

This document proceeds in the following way. Section 2 introduces a general frame for constructing
MD approaches without ever specifying its building blocks. It also exhibits basic properties that
the general MD framework holds. In other words, instead of deriving mimetic properties from
given gradient and divergence discrete analogs, this work establishes a new derivation of mimetic
differences from just the discrete analog of the integration by parts (IBP) formula in one-dimension,
without ever specifying the gradient and divergence discrete analogs.

From it, all properties that mimetic difference operators gradient, divergence, as well as quadrature
weights, should hold are obtained. Consequences of these basic identities such vector calculus iden-
tities, quadratures properties, and mass and energy conservation of mimetic schemes, can be easily
attained. Sections 3 introduces examples of operators for different mimetic difference approaches.
This new frame removes several intrinsic limitations that that mimetic differences exhibit and it is
a step forward to demonstrate that MD approach features can indeed be inferred from the just a
discrete analog of the extended Gauss Divergence Theorem.

Section 4 provides some conclusions.

2 A new frame for high-order mimetic differences

The following is a new way of presenting the derivation of MD approaches. It focuses on the discrete
analog of the IBP formula, and obtains the main properties of the one-dimensional (1D) operator
discrete analogs without explicitly finding them. These properties replicate in the discrete realm
the Fundamental Theorem of Calculus (FTC).

2.1 One-dimensional mimetic differences

The general frame for MD approaches is introduced for 1D first.

2.1.1 The staggered grid

In [−1, 1], MD utilizes a mesh of N uniform cells and a staggered grid. The staggered grid is
composed of a face grid that contains the edges of the cells (or nodes)

XF =

{
xl = −1 +

2l

N
, 0 ≤ l ≤ N

}
,

and a center grid, that includes all center cells and domain boundary points,

XC = {−1} ∪
{
xl+ 1

2
= −1 +

1

N
+

2l

N
, 0 ≤ l ≤ N − 1

}
∪ {1}.

Notice that the cardinalities of both XF and XC are different.

Neumann boundary conditions require that the gradient of boundary points should be calculated.
On the other hand, the definition of the divergence, as a limit of a quotient of a flux (given by a
surface integral) and the corresponding surface area when the region volume goes to zero, points
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toward the lack of sense of computing the divergence of boundary points. Furthermore, gradients
operate on scalar fields and return vector fields, while divergences act on vector fields and output
scalar fields.

This complementary nature suggests that discrete scalar fields should be defined on centers or
boundaries and discrete vector fields on edges. Moreover, one could argue that gradient G, and
divergence D, discrete analogs should be mappings such G : XC → XF , D : XF → XC . Therefore
the non-square matrix representations ofG andD are of orders (N+1)×(N+2) and (N+2)×(N+1),
respectively.

v v v v v v vC ∪B

G (on scalar fields)

F
�� �� �� �� �� �� �� �� �� �� �� ��

D (on vector fields)

C

?

?

Figure 1: C centers, F faces (or edges) and B boundary.

In addition, since the gradient of a scalar constant field should be the zero vector field, discretization
of this property imposes that if G = [Gij ], 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 2, then G1 = 0⃗, where
1 = (1, · · · , 1) ∈ RN+2, or equivalently,

N+2∑
j=1

Gij = 0, 1 ≤ i ≤ N + 1. (1)

Similarly, the divergence of a constant vector field is zero and

N+1∑
j=1

Dij = 0, 1 ≤ i ≤ N + 2, (2)

with the caveat that the first and last rows of D are zero since it does not have sense to compute
the divergence at boundary points.

The Laplacian discrete analog L = DG ∈ R(N+2)×(N+2) is defined as the product of divergence and
the gradient, mimicking the fact that the Laplacian is the divergence of the gradient and its matrix
representation should be given as the product of the matrix representations of the divergence and
the gradient, respectively.

Moreover, MD operators are chiefly constructed to approximate with high accuracy the integration
by parts formula (IBP) for 1D scalar field f and 1D vector field v⃗,∫

U
v⃗ · ∇f dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U

f v⃗ · n⃗ dS. (3)
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The high-order discrete IBP formula requires that

⟨DV,F ⟩+ ⟨V,GF ⟩ = VNFN − V0F0,

where V = v|XF
, F = f|XC

, are the projections of v, f to the finite grids, respectively, and the
angular brackets mean that the integrals are approximated utilizing a classic quadrature. However,
this is not possible to achieve [19] unless special weighted inner products are introduced, meaning
the need of MD diagonal weights P ∈ R(N+1)×(N+1) and Q ∈ R(N+2)×(N+2), such the following
identity is attained with high-order accuracy,

⟨DV,F ⟩Q + ⟨V,GF ⟩P = VNFN − V0F0. (4)

If in (4), one assumes the constant scalar field F = 1 ∈ R(N+2)×1, then (1) implies

h ⟨DV,1⟩Q = VN − V0. (5)

Notice that (5) is the FTC discrete analog for 1D vector fields.

In addition, (5) can also be written as

h1T (QD)V = VN − V0. (6)

Since ⟨DV,1⟩Q = ⟨QDV,1⟩ = ⟨V,DTQ1⟩ = V TDTQ1, then for all V , (5) becomes

hV TDTQ1 = V T (−1, 0, · · · , 0, 1)T ,

or equivalently, since for q = (q1, · · · , qN+2)
T and Q = diag(q), one has that 1TQ = qT , and if

bN+1 = (−1, 0, · · · , 0, 1) ∈ R1×(N+1), one gets

hDT q = bTN+1. (7)

System (7) is utilized to find Q, once D is defined.

A similar argument can be given for P .

If in (4), one assumes the constant vector field V = 1 ∈ R(N+1)×1, then (2) implies

h ⟨GF,1⟩P = FN+1 − F0. (8)

Observe that (8) is the FTC discrete analog for 1D scalar fields.

Equation (8) can also be written as

h1T (PG)F = FN+1 − F0, (9)

and ⟨GF,1⟩P = ⟨PGF,1⟩ = ⟨F,GTP1⟩ = F TGTP1, and for all F implies

hF TGTP1 = F T (−1, 0, · · · , 0, 1)T ,

or equivalently, for p = (p1, · · · , pN+1)
T and P = diag(p), one has that 1TP = pT , and if bN+2 =

(−1, 0, · · · , 0, 1) ∈ R1×(N+2) then
hGT p1 = bTN+2, (10)

which is utilized to find P once G is defined.

Since the first and last rows of D are zero, the number of equations of linear systems (7) and
(10) exceeds by one the number of unknowns. Nevertheless, if one introduces some symmetry and
structure to discrete analogs G and D, it is possible to show that systems (7) and (10) decouple,
and that the number of constraints reduces below the number of degrees of freedom of p and q.
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Sets Description Stencils Band Size

Xk
0 Uses x0 Sk

0 b̄
Y k
0 Uses interior in Sk

0 Sk b
Zk Uses interior not in Sk

0 Sk b ≥ k
Y k
N Uses interior in Sk

N Sk b
Xk

N Uses xN Sk
N b̄ > k

Table 1: Stencils of order k

2.1.2 Adding structure to G and D

In terms of speeding up and simplify computations one would like to work with sparse matrices.

To understand how this reduction of constraints can be done with sparse matrices, consider the
following splitting of the grid points XF ∪XC = XF ⊔ (XC \B), where B = {x0, xN} is composed
of the two vertices, and ⊔ stands for the disjoint union.

Zk -�Y k
0

-� Y k
N

-�Xk
0

-� Xk
N

-�

x0 xN

Figure 2: Grid splitting.

First-order derivatives are calculated on the range R of the discrete operator utilizing its discrete
domain D. For an operator (divergence D or gradient G) of accuracy order k, the set Rk will be
split into disjoint subsets Xk

0 , Y
k
0 , Z

k, Y k
N , Xk

N , where

• Xk
0 are the points of Rk, where the computation of the k-accurate first-order partial derivative

utilizes the left boundary point x0. All points in Xk
0 will use by definition, (potentially) the

same stencil Sk
0 (of cardinality b̄0) of input data points in D that are close to x0 (including it

by definition).

• Similarly all points in Xk
N with respect to the right boundary point xN will have stencil Sk

N

(of cardinality b̄N ).

• Zk are the points, whose stencils do not utilize any of the points in Sk
0 ∪ Sk

N . Its stencil has a
band b. For any point xi ∈ Zk, it is assumed that its stencil is Sk (independent of xi) of even
band size b, is symmetric with respect to xi and that the stencil weights are anti-symmetric,
i.e., for points xj , xl ∈ Sk, that are symmetric with respect to wi, the sum of the corresponding
weights is zero.

• Y k
0 are the remaining points in Rk that are closer to x0 than to xN . The stencil of this points

do not contain x0. For simplicity, assume that the stencil weights of Y k
0 is given by Sk.

• Similarly, is defined Y k
N with respect to xN , instead of x0.

The description of the stencils of the different sets of grid points Rk, where the first-derivatives are
computed, utilizing data points from Dk are summarized in Table 1.
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The partition of Rk introduces a partition of the discrete analogs of D, given by

Xk
0 →

Y k
0 →

Zk →
Y k
N →

Xk
0 →


DXk

0

DY k
0

DZk

DY k
N

DXk
N


where and similarly for G.

Notice that by construction DZk is an anti-symmetric matrix, i.e., DZk = −DT
Zk . In particular, the

row and column sums of DZk are zero.

One naturally introduces the center-skew-symmetric property for both D and G, which means that

DXk
N
= −DF

Xk
0
, DY k

N
= −DF

Y k
0
, GXk

N
= −GF

Xk
0
, GY k

N
= −GF

Y k
0
,

where the upper index F is the operation that flips a matrix around its columns followed by a flip
of its rows. These properties followed if one requires that the stencil weights for points close to one
boundary should be a reflection of the stencil weights of points close to the other boundary.

Observe that the center-skew-symmetry property imposes that b̄0 = b̄N = b̄, and that DZk ∈
RN+2−2b̄, where r is the number of rows of D. Similarly for G.

The splitting of D and G, triggers the following decomposition of matrices Q and P , respectively

Q =

 Qk
0

IN+2−2b̄

Qk
N = (Qk

0)
F

 , P =

 P k
0

IN+1−2b̄

P k
N = (P k

0 )
F

 ,

where Im is the identity matrix of order m.

The constraint reduction of systems (7) and (10) follows from the splitting of G and D above.
Therefore, systems (7) and (10) reduce to k linear constraints and b̄ > k unknowns. If one writes P
and Q weights as coefficients wl, l = 1, · · · , b̄, one expects them to be positive. This can be enforced
if utilizing the k reduced linear conditions in b̄ coefficients one writes each wj , j = b̄− k + 1, · · · , b̄
in terms of wi, i = 1, · · · , b̄− k and then impose the non-negative restrictions wl ≥ 0, l = 1, · · · , b̄.
The collection {wl ≥ 0} will generate a convex polytope feasible region which is non-empty for large
enough b̄. Weights wl can be arbitrarily selected from inside that regions. Boundary points have at
least one wl equal to zero and should be avoided. So, there are infinitely many solutions {wl ≥ 0}.
Additional structure among coefficients wl can be utilize to determine uniquely weights wl.

2.2 Weights Q and P as high-order quadratures

One naturally wonders if non-negative weights {wl} can be used for general quadratures in the sense
of approximating

∫ xN

x0
g(x) dx, for a smooth function g, i.e.,

(1, · · · , 1)hWg ≈
∫ xN

x0

g(x) dx,

where g is the projection of the function g(x) onto a grid [x0, x1, · · · , xN ] and with W = P , or
W = Q, with W = diag(WL, I,WR), WL = diag(w1, · · · , wb̄),WR = diag(wb̄, · · · , w1) and I an
appropriate square identity matrix.
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Without loss of generality, one can assume enough differentiability for g, and hence there exist a
smooth function G(x) such g(x) = G

′
(x). In that case,

(1, · · · , 1)hWg ≈
∫ xN

x0

g(x) dx =

∫ xN

x0

G
′
(x) dx = G(xN )−G(x0). (11)

Notice that formula (11) is verified by Q for vector fields V (see (6)) and satisfied by P for scalar
fields F (see (9)).

2.3 Non-uniform grids

Constructing the divergence Dnu and the gradient Gnu operators for a non-uniform one-dimensional
grid can be easily done if one has the non-uniform grid y = (y1, · · · , ym)T and the uniform divergence
Du and gradient Gu operators [20, 21]. If h is the cell size in the one-dimensional uniform size, it
can be shown that the non-uniform and gradient operators are given by

Dnu = h (diag(Duy))
−1Du, Gnu = h (diag(Guy))

−1Gu.

2.4 Some mimetic difference operator properties in d-dimensions

In [−1, 1]d, MD utilizes ml cells along axis Xl, l = 1, · · · , d. The staggered grid is composed of cell
centers and cell vertices XC , and of cell centered faces XF , given respectively by

XF =

d⋃
j=1

∏
l<j

(Xj
C \ {−1, 1})

×Xj
F ×

∏
l>j

(Xj
C \ {−1, 1})

 ,

XC =
d∏

j=1

Xj
C .

Extensions of the 1D divergence D, gradient G, and inner product weight operators Q and P are
built by utilizing Kronecker products of the 1D operators and some near identity of convenient
orders. So, one has that the matrix representations of:

1. The discrete analogs of the order k divergence Dx1,··· ,xd
: XC → XF , is

D
(k)
x1,··· ,xd

= [D
(k)
x1,··· ,xd,1

, · · · , D(k)
x1,··· ,xd,d

]

=
[
Îmd

⊗ · · · ⊗ Îm2 ⊗D(k)
x1

, · · · , D(k)
xd

⊗ Îmd−1
⊗ · · · ⊗ Îm1

]
,

where D
(k)
xp is the 1D divergence operator of accuracy order k along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 , (12)

with Iq×q is the q × q identity matrix.

2. The discrete analogs of the order k gradient Gx1,··· ,xd
: XC → XF ,

G
(k)
x1,··· ,xd

=


G

(k)
x1,··· ,xd,1

...

G
(k)
x1,··· ,xd,d

 =


ÎTmd

⊗ · · · ⊗ ÎTm2
⊗G

(k)
x1

...

G
(k)
xd ⊗ ÎTmd−1

⊗ · · · ⊗ ÎTm1

 ,
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where G
(k)
xp is the 1D gradient operator of accuracy order k along the p-axis.

3. The mimetic discrete inner product weight operators Qx1,··· ,xd
∈ R|XC |×|XC |, where |XC | =∏

j = 1d(mj + 2), is the cardinality of XC ,

Q(k)
x1,··· ,xd

=


Imd+2 ⊗ · · · ⊗ Im2+2 ⊗Q

(k)
m1+2

. . .

Q
(k)
md+2 ⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,

where Q
(k)
m ∈ Rm×m is the 1D inner product weight Q of accuracy order k.

4. The mimetic discrete inner product weight operators Px1,··· ,xd
∈ R|XF |×|XF |, where |XF | =∑d

j=1(mj + 1)
∏

l ̸=j ml, is the cardinality of XF ,

P(k)
x1,··· ,xd

=


Imd+2 ⊗ · · · ⊗ Im2+2 ⊗ P

(k)
m1+1

. . .

P
(k)
md+1 ⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,

where P
(k)
m ∈ Rm×m is the 1D inner product weight P of accuracy order k.

In d-dimensions, d > 1, there are different partial derivatives. For the gradient, each of them is
approximated at exactly one of the faces of the hyper-cube [−1, 1]d. Similarly, for the divergence,
each component takes its input from a different face of [−1, 1]d. Since scalar fields defined on [−1, 1]d

are defined at centers, then different quantities may be at different set of points making difficult
to compute their product in the extension of the integration by part formula in d-dimensions.
High-order interpolation to move the data from one set of points to another are needed.

The d-dimension versions of them are defined also by Kronecker products between the corresponding
1D interpolation version and some identity matrices. They are given by

1. Interpolations from XC to XF given by

(ID)
(k)
x1,··· ,xd

=


(ID)

(k)
x1,··· ,xd,1

. . .

(ID)
(k)
x1,··· ,xd,d



=


ÎTmd

⊗ · · · ⊗ ÎTm2
⊗ (ID)

(k)
x1

. . .

(ID)
(k)
xd ⊗ ÎTmd−1

⊗ · · · ⊗ ÎTm1

 ,

where (ID)
(k)
xp is the 1D interpolation operator from Xp

C to Xp
F of accuracy order k along the

p-axis.
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2. Interpolations from XF to XC given by

(IG)
(k)
x1,··· ,xd

=


(IG)

(k)
x1,··· ,xd,1

. . .

(IG)
(k)
x1,··· ,xd,d



=

 Îmd
⊗ · · · ⊗ Îm2 ⊗ (IG)

(k)
x1

. . .

(IG)
(k)
xd ⊗ Îmd−1

⊗ · · · ⊗ Îm1

 ,

where (IG)
(k)
p is the 1D interpolation operator fromXp

F to Xp
C of accuracy k along the p-axis.

The extension of the 1D integration by parts formula to d-dimension is called the extended Gauss
divergence theorem. The discrete analog of the extended Gauss divergence theorem, neglecting the
order of accuracy k, reads(

d∏
l=1

∆xl

)
⟨Px1,··· ,xd

Gx1,··· ,xd
F, V⃗ ⟩+

(
d∏

l=1

∆xl

)
⟨Qx1,··· ,xd

F,Dx1,··· ,xd
V⃗ ⟩ = F T B̄x1,··· ,xd

V⃗ ,

where F is the projection onto XC of scalar field f : Rd → R, V⃗ is the projection onto XF of vector
field v⃗ : Rd → Rd, and boundary operator

B̄x1,··· ,xd
=

 Imd+2 ⊗ · · · ⊗ Im2+2 ⊗ B̄x1

. . .

B̄xd
⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,

where B̄xp is the one dimensional boundary

B̄xp =


−1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · 0 1

 ,

matrix along the p-axis. It can be proven by a direct computation (see [22, pp. 11-13]) that for a
discrete constant scalar field F , one obtains

(
d∏

l=1

∆xl

)
DT

x1,··· ,xd
Qx1,··· ,xd

1 =

 1⊗ 1⊗ bm1+1

. . .

bmd+1 ⊗ 1⊗ 1

 , (13)

with bm = [−1, 0, · · · , 0, 1] ∈ Rm.

2.5 Curvilinear structured grids

Extensions of the divergence and gradient operators to curvilinear structured meshes require the
utilization of the Jacobians of transformations, which for staggered grids use interpolation operators
intensively. We present only the 3D case, since the 2D case can be easily recovered from it.
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2.5.1 The 3D case

This section introduces more detail the two ways of computing the spatial first-order partial deriva-
tives that appear in the Jacobian computation according to the divergence or the gradient approach.

Suppose the curvilinear physical spatial domain P in 3D, utilizes local coordinates x, y, z. Suppose
P is the result of a smooth bijection map X given by

x = x(ξ, η, κ)

y = y(ξ, η, κ)

z = z(ξ, η, κ),

and that its inverse map is Θ, given by

ξ = ξ(x, y, z)

η = η(x, y, z)

κ = κ(x, y, z),

maps P onto a 3D logical Cartesian domain L. If one defines a staggered grid on L contains
staggered grids XF and XC , then X (XC ∪XF ) is an structured grid on P, with centers/boundaries
C = X (XC) and faces F = X (XF ).

The Jacobian of the transformation X is given by

J =
∂(x, y, z)

∂(ξ, η, κ)
=

 xξ xη xκ
yξ yη yκ
zξ zη zκ

 .

A smooth function u : X → R, with u = u(x, y, z) = u(x(ξ, η, κ), y(ξ, η, κ), z(ξ, η, κ)), can be seen
as a function u = u(ξ, θ, κ), and the chain rule implies

uξ = uxxξ + uyyξ + uzzξ

uη = uxxη + uyyξ + uzzη

uκ = uxxκ + uyyξ + uzzκ,

or equivalently,  uξ
uη
uκ

 =

 xξ yξ zξ
xη yη zη
xκ yκ zκ

 ux
uy
uz

 = JT

 ux
uy
uz

 .

Hence  ux
uy
uz

 = (JT )−1

 uξ
uη
uκ

 .

Denote

JT =

 1○ := xξ 2○ := yξ 3○ := zξ
4○ := xη 5○ := yη 6○ := zη
7○ := xκ 8○ := yκ 9○ := zκ

 ,
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where circled numbers are defined (by the colon equal sign) to match some of the spatial derivatives
of a physical quantity with respect to a logical coordinate. Since a b c

d e f
g h i

−1

=
1

∆

 ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ac− bd

 ,

where ∆ = a(ei− fh)− b(di− fg) + c(dh− eg), then

(JT )−1 =
1

∆

 5○ 9○ − 6○ 8○ 3○ 8○ − 2○ 9○ 2○ 6○ − 3○ 5○
6○ 7○ − 4○ 9○ 1○ 9○ − 3○ 7○ 3○ 4○ − 1○ 6○
4○ 8○ − 5○ 7○ 2○ 7○ − 1○ 8○ 1○ 5○ − 2○ 4○

 ,

with
∆ = 1○( 5○ 9○ − 6○ 8○)− 2○( 4○ 9○ − 6○ 7○) + 3○( 4○ 8○ − 5○ 7○).

The purpose of these definitions is to illustrate the need of interpolation operators to calculate the
entries of the inverse Jacobian since each of the quantities shown is defined at different collection
of points.

If one uses the gradient to approximate the partial derivatives of the Jacobian, then

JT
G = IF→C

xyz G̃ξηκ

where IF→C
xyz is the 3D interpolation from faces to 3D centers, G̃xyz is the same as Gxyz with Îp (see

(12)) replaced by Ip+2, the identity matrix of order p+ 2.

If one computes the Jacobian at the centers then the physical gradient is given by

Gxyz = IC→F
xyz (JT

G)
−1IF→C

ξηκ Gξηκ.

Similarly, one can construct the Jacobian based on the divergence operator.

2.6 Vector Calculus identities

In [23], it is shown, without specifying D and G, that discrete analogs of vector calculus identities
involving only the divergence and the gradient hold, in the integral sense, meaning that the integral
version of the identities is replicated. This is because mimetic difference operators are constructed
to satisfy the IBP formula, which is of integral nature.

2.7 General systems of conservation laws

Given the following sets

I = {1, · · · , c}, J = {1, · · · , d}, L = [−1, 1]d, L0 = [−1, 1]d−1, K = [0, T ],

consider the system of c conservation laws in d-dimensions, with x = (x1, · · · , xd), and the un-
known u(x, t) = (u1(x, t), · · · , uc(x, t))T , and initial condition u0(x) = (u01(x), · · · , u0c(x))T , that are
described by

ut + div(F (u)) = 0c×1, (x, t) ∈ L̊× K̊, (14)

u(x, 0) = u0(x), x ∈ L, (15)
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with L̊ = int(L), the interior of L, and that hold boundary conditions given by

ui(x1, · · · , xj−1,−1, xj+1, · · · , xd, t) = g−i (x1, · · · , xj−1, xj+1, · · · , xd, t), i ∈ I, j ∈ J,

ui(x1, · · · , xj−1, 1, xj+1, · · · , xd, t) = g+i (x1, · · · , xi−1, xi+1, · · · , xd, t), i ∈ I, j ∈ J,

where g±i : L0 ×K → Rc, i = 1, · · · , c, are smooth functions. The flux F is given by

F (u) =

 F11(u) · · · F1d(u)
...

. . .
...

Fc1(u) · · · Fcd(u)

 .

Notice Fij : Rd × K̊ → R, i ∈ I, j ∈ J . Denote Fi(u) = (Fi1(u), · · · , Fid(u))
T , i ∈ I.

It can be shown that mimetic difference schemes preserve both mass and energy for systems of
conservation laws. These will be proven in a future publication.

3 Examples

The following section shows a couple of realizations of the general framework.

3.1 Castillo-Grone D and G operators

Castillo-Grone operators can be found in [21]. However, the reference has a series of typos difficult
to find in some of the coefficients. Here, those typos are corrected.

3.1.1 Divergence operators

For k = 2,

D(2) =
1

h


−1 1

. . .
. . .

−1 1

 .

For k = 4,

D(4) =
1

h


−4751

5192
909
1298

6091
15576 −1165

5192
129
2596 − 25

15576 0 · · ·

1
24 −9

8
9
8 − 1

24 0 · · ·

. . .
. . .

. . .
. . .

. . .


.
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For k = 6, hD(6) is given by

−1077397
1273920

25110619
78983040

49955527
39491520 −25369793

19745760
12220145
15796608 −21334421

78983040
460217
9872880 − 101017

39491520
3369

26327680 0 · · ·

31
960 −687

640
129
128

19
192 − 3

32
21
640 − 3

640 0 · · ·

− 3
640

25
384 −75

64
75
64 − 25

384
3

640 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .


.

For k = 8, hD(8) is given by

d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9 d1,10 d1,11 d1,12 0 · · ·

2689
107520 −36527

35840
4259
5120

6497
15360 − 475

1024
1541
5120 − 639

5120
1087
35840 − 59

17920 0 · · ·

− 59
17920

1175
21504 −1165

1024
1135
1024

25
3072 − 251

5120
25

1024 − 45
7168

5
7168 0 · · ·

5
7168 − 49

5120
245
3072 −1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



,

where

d1,1 =
−12379364146687

15622313710080
, d1,2 =

−436022799711

5207437903360
, d1,3 =

80790752734709

31244627420160
,

d1,4 =
−4898774991147

1301859475840
, d1,5 =

3484785616723

946806891520
, d1,6 =

−3665347685293

1487839400960
,

d1,7 =
1635418471121

1487839400960
, d1,8 =

−3208052016403

10414875806720
, d1,9 =

1527953922703

31244627420160
,

d1,10 =
−129082472809

31244627420160
, d1,11 =

1849044667

5207437903360
, d1,12 =

−33958565

2082975161344
.

3.1.2 Gradient operators

For k = 2,

G(2) =
1

h


−8

3 3 −1
3

−1 1
. . .

. . .

−1 1
1
3 −3 8

3
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For k = 4,

G(4) =
1

h



−1152
407

10063
3256

2483
9768 −3309

3256
2099
3256 − 697

4884 0 · · ·

0 −11
12

17
24

3
8 − 5

24
1
24 0 · · ·

0 1
24 −9

8
9
8 − 1

24 0 · · ·
...

. . .
. . .

. . .
. . .

. . .


For k = 6, hG(6) is given by

−568557184
150834915

455704609
835795520 −128942179

417897760
15911389
6964960 −142924471

117011328
20331719
50147712 − 2688571

38307280
187529

41789760 − 6207
27859840 0 · · ·

496
3465 −811

640
449
384 − 29

960 − 11
448

13
1152 − 37

21120 0 · · ·

− 8
385

179
1920 −153

128
381
320 − 101

1344
1

128 − 3
7040 0 · · ·

− 3
640

25
384 −75

64
75
64 − 25

384
3

640 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .


.

For k = 8, hG(8) is given by

g1,1 g1,2 g1,3 g1,4 g1,5 g1,6 g1,7 g1,8 g1,9 g1,10 g1,11 g1,12 0 · · ·

86048
675675 −131093

107520
49087
46080

10973
76800 − 4597

21504
4019
27648 − 10331

168960
2983

199680 − 2621
1612800 0 · · ·

− 3776
225225

8707
107520 −17947

15360
29319
25600 − 533

21504 − 263
9216

903
56320 − 283

66560
257

537600 0 · · ·

32
9009 − 543

35840
265
3072 −1233

1024
8625
7168 − 775

9216
639

56320 − 15
13312

1
21504 0 · · ·

5
7168 − 49

5120
245
3072 −1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



,

where

g1,1 =
375430666840256

92579164853175
, g1,2 =

46577871283831

7366050101760
, g1,3 =

44142164823881

8839260122112
,

g1,4 =
50703079390921

9207562627200
, g1,5 =

71068924474957

14732100203520
, g1,6 =

57866887554917

18941271690240
,

g1,7 =
30717060475411

23150443176960
, g1,8 =

2027314948429

5471922932736
, g1,9 =

13407250027393

220981503052800
,

g1,10 =
82765484227

14732100203520
, g1,11 =

1177332481

2455350033920
, g1,12 =

21454295

982140013568
.
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3.2 Corbino-Castillo D and G operators

Corbino-Castillo operators can be found in [23].

4 Conclusions

This document establishes a new frame for deriving all possible divergence and gradient operators for
mimetic differences, as well as their corresponding quadratures. It is based on imposing structural
properties and relationships among the different set of points that compose the computational grid.
These relations are written in terms of stencils which provide a decomposition of both the divergence
and the gradient matrix representations as well as their inner product weights.
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