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Abstract

In this paper, mass and energy preservation of high-order mimetic difference schemes
for general systems of conservation laws is mathematically demonstrated. The proof of
mass preservation is based on the relationship between the divergence discrete analog
and the associated quadrature of the generalized inner product weights which satisfy
the integration by parts formula. The proofs begin with the one-dimensional scalar
case, the one-dimensional general case, and ends with the system of conservation laws
in any dimension. The energy preservation proofs follow the same pattern. Never-
theless, the general case for the energy preservation requires a different approach, one
based on the application of several times the one-dimensional quadrature property of
the inner weights for the gradient and divergence. Furthermore, numerical validation
of this conservation is provided by some numerical examples.

1 Introduction

System of conservation laws postulate the balance of certain quantities (conservation) in
certain volumes by considering fluxes entering/exiting the boundary of the domain.

These systems of c partial differential equations (conservation laws) are described by

∂u

∂t
+∇ · f(u, x, t) = 0, x ∈ Ω, t > 0,

u(x, 0) = g, x ∈ Ω,

for Ω ⊂ Rd, a region in the d-dimensional space.

For scalar one-dimensional conservation laws, one can show by utilizing the method of
characteristics, that in general there does not exist a smooth solution for all t > 0, but

∗This work was partially supported by SDSU.
†Computational Science Research Center at the San Diego State University.
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locally. For systems of conservation laws, there is no a complete mathematical under-
standing of the solutions in higher dimensions than one. In general, one needs to consider
weak solutions. In the case of discontinuous initial data, the Rankine-Hugoniot condition
is required to extend the solution further away the local neighborhood obtained by the
method of characteristics. However, for uniqueness one needs the Entropy condition, and
the Lax-Oleinik formula that describes it [13]. In the case of semilinear systems in non-
divergence form, it is possible to find global solutions in the form of traveling waves for
strictly hyperbolic systems. In the case of 1D nonlinear systems of conservation laws, one
can find conditions for the existence of local solutions composed of rarefaction and shock
waves [13]. We assume solutions of the systems of conservation laws that are smooth.

Different methods have been utilized for numerically solving systems of conservation laws.
Among them finite differences, finite volume, and some monotone and flux limited schemes.
For higher-order methods, avoiding the oscillations produced when one of the previous
method was utilized to obtain high-order accurate solutions, leads to essentially non-
oscillatory (ENO) schemes and later to weighted essentially non-oscillatory (WENO) meth-
ods. The complexity of the computational grid structure involved in ENO and WENO
triggered the evolution towards discontinuous Galerkin methods, in the sense that ENO
schemes expressed in the volume form, do allow the usage of non-uniform and fully un-
structured grids, although the computational cost remains high [14]. Since we focus on
smooth solutions, we do not have to deal with these situations.

Mimetic methods attempt to mimic properties of the solutions such as symmetries, con-
servation laws, fundamental identities and/or some integral vector calculus identities and
with that aim they try two different approaches: traditionally, they construct vector cal-
culus differential operator discrete analogs enforcing high-order accurate approximations
of integral identities (among them [21, 3, 4, 5]), or more recently, their goal is to repli-
cate a discrete version of the vector, and/or tensor, and/or exterior calculi (for example
[19, 2, 17, 15, 16]), algebraic topology structures (as in [11, 12]), or geometric and structure-
preserving methods [20], and the references therein.

One mimetic technique that is not computationally expensive is the one given by the
mimetic differences (MD) developed originally by [3] and efficiently improved by [4]. They
belong to the first group. They satisfy the integration by parts (IBP) formula in one-
dimension (1D), and later via interpolation operators [6], the three-dimensional (3D) ana-
logue or extended Gauss’ divergence theorem. These approaches introduce independently
discrete analogs D and G of the divergence and gradient first-order differential operators.
These operators achieve uniform accuracy over the whole domain, including grid points
near and at the boundary. This is a unique feature of MD not only among any other
mimetic approach but also among any spatial discretization method in general. Moreover,
it achieve a high-order approximation of the discrete analog of the IBP formula, with the
weighted inner product Q and P for integral with divergence and gradient integrands [3, 4].
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It turns out that these weights are bonafide high-order quadratures [1] on its own. Addi-
tionally, it has been demonstrated that MD operators verify vector calculus identities [8],
and that MD schemes conserve energy for the advection equation [7, 9].

This paper targets at proving that MD schemes preserve mass and energy for systems of c
conservation laws in d dimensions. This is exhibited by some numerical examples.

The rest of the paper is organized in the following way. In Section 2, the systems of
nonlinear conservation laws with boundary and initial conditions are described. In Sec-
tion 3 mimetic difference and its major analog operator properties for any number of
dimensions are stated. In Section 4, mass preservation of MD schemes established for the
one-dimensional (1D) scalar and system cases, as well as for the general system in any
number of dimensions. In Section 5, a similar pattern is utilized for demonstrating the
preservation of energy of mimetic schemes for general systems of conservation laws. In
Section 6, numerical validation is shown via several examples. In Section 7 conclusions of
this work are drawn.

2 Systems of conservation laws

Even though this paper consider systems of conservation laws in general, some specific
geometry and associated boundary conditions are given to facilitate the proofs of mass and
energy preservation.

Given the following sets

I = {1, · · · , c}, J = {1, · · · , d}, L = [−1, 1]d, L0 = [−1, 1]d−1, K = [0, T ],

consider the system of c conservation laws in d-dimensions, with x = (x1, · · · , xd), and the
unknown u(x, t) = (u1(x, t), · · · , uc(x, t))T , and initial condition u0(x) = (u01(x), · · · , u0c(x))T ,
that are described by

ut + div(F (u)) = 0c×1, (x, t) ∈ L̊× K̊, (1)

u(x, 0) = u0(x), x ∈ L, (2)

with L̊ = int(L), the interior of L, and that hold boundary conditions given by

ui(x1, · · · , xj−1,−1, xj+1, · · · , xd, t) = g−i (x1, · · · , xj−1, xj+1, · · · , xd, t), i ∈ I, j ∈ J,

ui(x1, · · · , xj−1, 1, xj+1, · · · , xd, t) = g+i (x1, · · · , xi−1, xi+1, · · · , xd, t), i ∈ I, j ∈ J,

where g±i : L0 ×K → Rc, i = 1, · · · , c, are smooth functions. The flux F is given by

F (u) =

 F11(u) · · · F1d(u)
...

. . .
...

Fc1(u) · · · Fcd(u)

 .
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Notice Fij : Rd × K̊ → R, i ∈ I, j ∈ J . Denote Fi(u) = (Fi1(u), · · · , Fid(u))
T , i ∈ I.

3 Mimetic differences

In this section, we present a summary of mimetic difference operators in 1D and in general
d-dimensions and their major properties and relationships.

3.1 Some mimetic difference operator properties in 1D

In [−1, 1], MD utilizes a mesh of N uniform cells and a staggered grid. The staggered grid
is composed of a face grid that contains the edges of the cells (or nodes)

XF =

{
xl = −1 +

2l

N
, 0 ≤ l ≤ N

}
,

and a center grid, that includes all center cells and domain boundary points,

XC = {−1} ∪
{
xl+ 1

2
= −1 +

1

N
+

2l

N
, 0 ≤ l ≤ N − 1

}
∪ {1}.

In MD, it is traditionally assumed that scalar fields are defined at XC , and vector fields are
defined at XF . In general, where the data is located and where the space partial derivative
is calculated is not essential, since there exist mimetic high-order interpolation operators
from XC to XF and vice-versa [6]. Nevertheless, suppose data is located following the
classic assumption. That said, the discrete version of the components of the unknown u,
given by U , take values on XC . Furthermore, presume that each of the components of the
flux takes values on centers and vertices and return values on centers and vertices.

The MD discrete analog of the divergence operator D has a non-square matrix represen-
tation D : XN → XC . In addition, it presumes that the discrete analog of the gradient
operator is a transformation G : XC → XN . The condition that D and G of discrete
constant fields should be zero impose the zero row sum constraint on both.

Moreover, MD operators are chiefly constructed to approximate with high accuracy the
integration by parts formula (IBP) for 1D scalar field f and 1D vector field v⃗,∫

U
v⃗ · ∇f dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U
f v⃗ · n⃗ dS. (3)

For achieving this, it is required to use Q,P positive diagonal matrix weights that define
genralized inner products and the mimetic discrete analog is defined as

∆x ⟨DV,F ⟩Q +∆x ⟨V,GF ⟩P = VNFN − V0F0. (4)
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where F, V are the projections of f, v⃗ to XC , XN , respectively. It can be shown that both
Q and P exist and that define high-order quadratures for any smooth functions [1].

When considering the constant discrete scalar field F ≡ 1 in (4), it follows that

(∆x) DTQ1 = (−1, 0, · · · , 0, 1)T ∈ RN+2. (5)

3.2 Some mimetic difference operator properties in d-dimensions

In [−1, 1]d, MD utilizes ml cells along axis Xl, l = 1, · · · , d. The staggered grid is com-
posed of cell centers and cell vertices XC , and of cell centered faces XF , given respectively
by

XF =

d⋃
j=1

∏
l<j

(Xj
C \ {−1, 1})

×Xj
F ×

∏
l>j

(Xj
C \ {−1, 1})

 ,
XC =

d∏
j=1

Xj
C .

Extensions of the 1D divergence D, gradient G, and inner product weight operators Q and
P are built by utilizing Kronecker products of the 1D operators and some near identity of
convenient orders. So, one has that the matrix representations of:

1. The discrete analogs of the order k divergence Dx1,··· ,xd
: XC → XF , is

D
(k)
x1,··· ,xd

= [D
(k)
x1,··· ,xd,1

, · · · , D(k)
x1,··· ,xd,d

]

=
[
Îmd

⊗ · · · ⊗ Îm2 ⊗D(k)
x1
, · · · , D(k)

xd
⊗ Îmd−1

⊗ · · · ⊗ Îm1

]
,

where D
(k)
xp is the 1D divergence operator of accuracy order k along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 ,
with Iq×q is the q × q identity matrix.

2. The discrete analogs of the order k gradient Gx1,··· ,xd
: XC → XF ,

G
(k)
x1,··· ,xd

=


G

(k)
x1,··· ,xd,1

...

G
(k)
x1,··· ,xd,d

 =


ÎTmd

⊗ · · · ⊗ ÎTm2
⊗G

(k)
x1

...

G
(k)
xd ⊗ ÎTmd−1

⊗ · · · ⊗ ÎTm1

 ,
where G

(k)
xp is the 1D gradient operator of accuracy order k along the p-axis.
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3. The mimetic discrete inner product weight operators Qx1,··· ,xd
∈ R|XC |×|XC |, where

|XC | =
∏
j = 1d(mj + 2), is the cardinality of XC ,

Q(k)
x1,··· ,xd

=


Imd+2 ⊗ · · · ⊗ Im2+2 ⊗Q

(k)
m1+2

. . .

Q
(k)
md+2 ⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,
where Q

(k)
m ∈ Rm×m is the 1D inner product weight Q of accuracy order k.

4. The mimetic discrete inner product weight operators Px1,··· ,xd
∈ R|XF |×|XF |, where

|XF | =
∑d

j=1(mj + 1)
∏

l ̸=j ml, is the cardinality of XF ,

P(k)
x1,··· ,xd

=


Imd+2 ⊗ · · · ⊗ Im2+2 ⊗ P

(k)
m1+1

. . .

P
(k)
md+1 ⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,
where P

(k)
m ∈ Rm×m is the 1D inner product weight P of accuracy order k.

In d-dimensions, d > 1, there are different partial derivatives. For the gradient, each of
them is approximated at exactly one of the faces of the hyper-cube [−1, 1]d. Similarly,
for the divergence, each component takes its input from a different face of [−1, 1]d. Since
scalar fields defined on [−1, 1]d are defined at centers, then different quantities may be at
different set of points making difficult to compute their product in the extension of the
integration by part formula in d-dimensions. High-order interpolation to move the data
from one set of points to another are needed.

The d-dimension versions of them are defined also by Kronecker products between the cor-
responding 1D interpolation version and some identity matrices. They are given by

1. Interpolations from XC to XF given by

(ID)
(k)
x1,··· ,xd

=


(ID)

(k)
x1,··· ,xd,1

. . .

(ID)
(k)
x1,··· ,xd,d



=


ÎTmd

⊗ · · · ⊗ ÎTm2
⊗ (ID)

(k)
x1

. . .

(ID)
(k)
xd ⊗ ÎTmd−1

⊗ · · · ⊗ ÎTm1

 ,
where (ID)

(k)
xp is the 1D interpolation operator from Xp

C to Xp
F of accuracy order k

along the p-axis.
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2. Interpolations from XF to XC given by

(IG)
(k)
x1,··· ,xd

=


(IG)

(k)
x1,··· ,xd,1

. . .

(IG)
(k)
x1,··· ,xd,d



=

 Îmd
⊗ · · · ⊗ Îm2 ⊗ (IG)

(k)
x1

. . .

(IG)
(k)
xd ⊗ Îmd−1

⊗ · · · ⊗ Îm1

 ,
where (IG)

(k)
p is the 1D interpolation operator fromXp

F to Xp
C of accuracy k along

the p-axis.

The extension of the 1D integration by parts formula to d-dimension is called the extended
Gauss divergence theorem. The discrete analog of the extended Gauss divergence theorem,
neglecting the order of accuracy k, reads(

d∏
l=1

∆xl

)
⟨Px1,··· ,xd

Gx1,··· ,xd
F, V⃗ ⟩+

(
d∏

l=1

∆xl

)
⟨Qx1,··· ,xd

F,Dx1,··· ,xd
V⃗ ⟩ = F T B̄x1,··· ,xd

V⃗ ,

where F is the projection onto XC of scalar field f : Rd → R, V⃗ is the projection onto XF

of vector field v⃗ : Rd → Rd, and boundary operator

B̄x1,··· ,xd
=

 Imd+2 ⊗ · · · ⊗ Im2+2 ⊗ B̄x1

. . .

B̄xd
⊗ Imd−1+2 ⊗ · · · ⊗ Im1+2

 ,

where B̄xp is the one dimensional boundary

B̄xp =


−1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · 0 1

 ,

matrix along the p-axis. It can be proven by a direct computation (see [9, pp. 11-13]) that
for a discrete constant scalar field F , one obtains(

d∏
l=1

∆xl

)
DT

x1,··· ,xd
Qx1,··· ,xd

1 =

 1⊗ 1⊗ bm1+1

. . .

bmd+1 ⊗ 1⊗ 1

 , (6)

with bm = [−1, 0, · · · , 0, 1] ∈ Rm.
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4 Mimetic schemes mass preservation for conservation laws

In this section, mass preservation for conservation laws is established. First, the 1D scalar
case is treated, then the 1D system of conservation laws, and lastly the general case. For
mass preservation of the mimetic scheme, we understand that its numerical solution should
verify a discrete analog of the integral form of the scalar conservation law∫

L
u(x, T ) dx−

∫
L
u(x, 0) dx = −

∫ T

0

∫
∂L
n⃗ · f(u, x, t) dS dt, (7)

or in the 1D case∫
L
u(x, T ) dx−

∫
L
u(x, 0) dx = −

∫ T

0
(F (u(1, t))− F (u(−1, t))) dt. (8)

4.1 One-dimensional scalar conservation law (c = 1, d = 1)

The equation is

ut + (F (u))x = 0, x ∈ (−1, 1), t ∈ (0, T ), (9)

u(x, 0) = u0(x), x ∈ [−1, 1],

u(−1, t) = g−(t), t ∈ [0, T ],

u(1, t) = g+(t), t ∈ [0, T ].

In finite differences, one assumes a uniform mesh in space, with N cells, and M constant
time steps (in addition to the step zero where the initial data is), defined on [−1, 1]× [0, T ].
The space mesh size is given by ∆x = 2

N , and the time step size by ∆t = T
M . To prove

mass preservation, usually a discrete scheme for the conservation law is proposed and
after a discrete integration in space followed by a discrete integration in time, one makes
∆x,∆t → 0, and finds that the scheme converges to (8), the integral form of (9). Notice
that in this approach, u on the continuum is projected on the computational grid as U at
nodes and the divergence is approximated by fluxes computed at cell centers but utilizing
data from some nodes.

4.1.1 Mimetic difference scheme of the conservation law

The partial differential equation of the 1D scalar conservation law is given by

ut = −(F (u))x.

If Um = (Um
0 , · · · , Um

N ), for the m-th time step, with Um
n , n ∈ J values taken at the nodes

XC , and if one utilizes forward Euler as a time discretization for ut, then the mimetic
scheme is given by

1

∆t
(Um+1 − Um) = −DIDF (Um),
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where ID is the mimetic interpolation operator from centers to nodes.

Multiplying by 1TQ on the left, where Q is the mimetic quadrature weight positive diagonal
operator for the divergence and 1 is a vector of ones, one gets from (5)

1

∆t
1TQ(Um+1 − Um) = −(1TQD)IDF (Um) = − 1

∆x
(−1, 0, · · · , 0, 1)IDF (Um)

= − 1

∆x
ID(F (u(1, tm))− F (u(−1, tm))). (10)

This reflects conservation at the discrete level, provided U0 is defined such

(∆x)1TQU0 ≈
∫ 1

−1
u0(x) dx,

which is know to hold for the high-order quadrature Q [1]. Notice that, the term on the
left of

∆x1TQ(Um+1 − Um) = −∆t ID(F (u(1, tm))− F (u(−1, tm))),

is a high-order approximations of integral
∫ 1
−1(U

m+1(x)− Um(x)) dx.

4.1.2 Mass conservation for periodic boundary conditions

Suppose Q = diag(wn) ∈ R(N+2)×(N+2).

Under periodic boundary conditions, (10) becomes

∆x
N∑

n=0

wnU
m+1
n = ∆x

N∑
n=0

wnU
m
n = · · · = ∆x

N∑
n=0

wnU
0
n,

and this reflects the conservation at the discrete level, since ∆x
∑N

n=0wnU
0
n is a high-order

approximation of
∫ 1
−1 u0(x) dx.

4.1.3 Mass conservation for non-periodic boundary conditions

In this case, one can sum (10) from m = 0 to m =M to obtain

(∆x)

M∑
m=0

N∑
n=0

wn(U
m+1
n − Um

n ) = −(∆t) ID

[
M∑

m=0

F (U(1, tm))−
M∑

m=0

F (U(−1, tm))

]
,

and by the telescoping property one has

M∑
m=0

N∑
n=0

wn(U
m+1
n − Um

n ) =

N∑
n=0

wn

(
M∑

m=0

(Um+1
n − Um

n )

)
=

N∑
n=0

wnU
M
n −

N∑
n=0

wnU
0
n.

9



Therefore,

∆x

(
N∑

n=0

wnU
M
n −

N∑
n=0

wnU
0
n

)
= −(∆t) ID

[
M∑

m=0

F (U(1, tm))−
M∑

m=0

F (U(−1, tm))

]
, (11)

and if ∆x,∆t→ 0 then (11) approaches the integral form of the conservation law (8).

4.2 One-dimensional systems of conservation laws (c > 1, d = 1)

If u(x, t) = (u1(x, t), · · · , uc(x, t))T and F (u) = (F1(u), · · · , Fc(u))
T , then (1) becomes u1

...
uc


t

+

 F1(u)
...

Fc(u)


x

=

 0
...
0

 ,

with initial conditions ui(x, 0) = u0i (x), ∀i ∈ I.

Its mimetic scheme, for a forward Euler discretization in time tm, is

1

∆t
(Um+1

i − Um
i ) = −DIDFi(U

m), ∀i ∈ I,

Multiplying by 1TQ on the left, one obtains,

1

∆t
1TQ(Um+1

i − Um
i ) = − 1

∆x
ID(Fi(u(1, tm)− Fi(u(−1, tm)), i ∈ I,

or equivalently,

∆x

∆t


N∑

n=0
wn(U1(xn, tm+1)− U1(xn, tm))

...
N∑

n=0
wn(Uc(xn, tm+1)− Uc(xn, tm))

 = −ID

 F1(U(1, tm))− F1(U(−1, tm))
...

Fc(U(1, tm))− Fc(U(−1, tm))

 .

(12)

For periodic boundary conditions, (12) implies,

∆x
N∑

n=0

wnUi(xn, tm+1) = ∆x
N∑

n=0

wnUi(xn, tm) = · · · = ∆x
N∑

n=0

wnUi(xn, 0), ∀i ∈ I,

and this reflects the conservation at the discrete level, since ∆x
∑N

n=0wnUi(xn, 0) is a

high-order approximation of
∫ 1
−1 u

0
i (x) dx, ∀i ∈ I.
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For non-periodic boundary conditions, sum (12) from m = 0 to m = M , and utilizing the
telescoping property implies

(∆x)


N∑

n=0
wn(U1(xn, T )− U1(xn, 0))

...
N∑

n=0
wn(Uc(xn, T )− Uc(xn, 0))

 = −(∆t) ID


M∑

m=0
(F1(U(1, tm))− F1(U(−1, tm)))

...
M∑

m=0
(Fc(U(1, tm))− Fc(U(−1, tm)))

 ,

and if ∆x,∆t→ 0 then the integral form of the conservation law is obtained.

4.3 Systems of conservation laws of arbitrary dimensions (c, d > 1)

If x = (x1, · · · , xd), u(x, t) = (u1(x, t), · · · , uc(x, t))T and F (u) = (F1(u), · · · , Fc(u))
T , then

(1) becomes  u1
...
uc


t

= −


∑d

j=1(F1j)xj

...∑d
j=1(Fcj)xj

 ,

with initial conditions ui(x, 0) = u0i (x), ∀i ∈ I.

If one uses a lexicographic ordering in d-dimensions and Ui stands for Ui at all points in
XC accordingly, then for any fixed i ∈ I, its mimetic scheme can be written as

1

∆t
(Um+1

i − Um
i ) = −Dx1···xd

IDx1···xd
Fi(U

m), ∀i ∈ I.

Multiplying by (
∏d

j=1∆xj)1
TQx1···xd

on the left, one obtains using (6) that

(

d∏
j=1

∆xj)1
TQx1···xd

(Um+1
i − Um

i ) = −∆t (

d∏
j=1

∆xj)1
TQx1···xd

Dx1···xd
IDx1···xd

Fi(U
m)

= −∆t IDx1···xd

d∑
l=1

(Fil(u(x
+
l , tm))− Fil(u(x

−
l , tm))),

(13)

where x±l = (x1, · · · , xl−1,±1, xl+1, · · · , xd).

The left hand side of (13) is the difference of discrete mass Mm+1
i of Ui at time tm+1 and

the discrete mass Mm
i at time tm. If the positive diagonal matrix Qx1···xd

= diag(wn1,··· ,nd
)

11



then (13) can be written as

 Mm+1
1 −Mm

1
...

Mm+1
c −Mm

c

 = −∆t IDx1···xd


d∑

l=1

(F1l(U(x+l , tm)− F1l(U(x−l , tm)))

...
d∑

l=1

(Fcl(U(x+l , tm)− Fcl(U(x−l , tm)))

 . (14)

For periodic boundary conditions, (14) implies,

Mm+1
i = Mm

i = · · · = M1
i = M0

i ,

and this reflects the conservation at the discrete level, since M0
i is a high-order approxi-

mation of
∫
L u

0
i (x) dx, ∀i ∈ I.

For non-periodic boundary conditions, sum (14) from m = 0 to m = M , and utilizing the
telescoping property implies

 MM
1 −M0

1
...

MM
c −M0

c

 = −(∆t) IDx1···xd


M∑

m=0

d∑
l=1

(F1l(U(x+l , tm)− F1l(U(x−l , tm)))

...
M∑

m=0

d∑
l=1

(Fcl(U(x+l , tm)− Fcl(U(x−l , tm)))

 ,

and if ∆x1, · · · ,∆xd,∆t→ 0 then the integral form of the conservation law is obtained.

5 Mimetic schemes energy preservation for conservation laws

In this section the preservation of energy of mimetic schemes is shown. Even though one
can split the proofs in three different cases, as in the case of mass preservation, we utilize
the formula of the divergence of a product of a scalar and a vector field to exhibit the
preservation of 1D scalar and systems of conservation laws and then the general case.
It turns out that the approach followed for the one-dimension cases, does not work in
several dimensions systems of conservation laws due to the presence of both gradient and
divergence differential operators. In that case, one requires the utilization of the fact that
both one-dimensional P and Q are quadratures for general functions. A mimetic scheme
is proposed and it is demonstrated that when ∆x1, · · ·∆xd,∆t → 0 the scheme preserves
energy in the sense that it approaches the integral formulation of the general sysem of
conservation laws.
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5.1 One-dimensional scalar conservation law (c = 1, d = 1)

Consider

ut = −(F (u))x.

If one multiplies by u, one gets

1

2

d(u2)

dt
= −u (F (u))x = ux F (u)− (uF (u))x,

where the product rule of spatial differentiation has been applied. Assuming that the
discrete projection of u(x, t), at any fixed t is defined at XC by

Un(t) = (U(x0, tn), U(x 1
2
, tn), · · · , U(xN− 1

2
, tn), U(xN , tn))

T ,

then the mimetic difference discrete analog scheme is

1

2∆t
(U2

n+1 − U2
n) = DIDdiag(U)F (U)−DIDH(U),

where H(U(xi, t)) = U(xi, t)F (U(xi, t)), xi ∈ XC , and ID is the interpolation operator
from centers XC to nodes XF . Therefore,

∆x

2∆t
1TQ(U2

n+1 − U2
n) = (∆x) [1TQD{IDdiag(U)F (U)− IDH(U)}],

and since Q is actually a high-order quadrature, i.e., (∆x)1TQW is a high-order approxi-
mation of

∫ 1
−1W (x) dx, then

1

2
(E(Un+1)− E(Un)) = ∆t (−1, 0, · · · , 0, 1)(IDdiag(U)F (U)− IDH(U))

= ∆t ID(diag(U(1, tn))F (U(1, tn))−H(U(x(1, tn)))

− ∆t ID(diag(U(−1, tn))F (U(−1, tn))−H(U(−1, tn))) = 0,

where the left term comes from a definition of discrete energy, i.e., E(U) = (∆x)1TQU2,
the first identity comes from (5) and the last one from the definition of H(U).

Hence, the discrete energy is preserved at every time step.
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5.2 One-dimensional systems of conservation laws (c > 1, d = 1)

If u(x, t) = (u1(x, t), · · · , uc(x, t))T and F (u) = (F1(u), · · · , Fc(u))
T , then (1) becomes

dui
dt

= −(Fi(u))x, i ∈ I,

with initial conditions ui(x, 0) = u0i (x), ∀i ∈ I.

If one multiplies the i-th equation, i ∈ I, by ui and applies the product rule differentiation,
one obtains

1

2

d(u2i )

dt
= −ui (F (u))x =

dui
dx

F (u)− (ui F (u))x, i ∈ I,

whose mimetic difference discrete analog scheme, utilizing a forward Euler time discretiza-
tion, is

1

2∆t
(U2

n+1 − U2
n) = DIDdiag(Ui)F (U)−DIDHi(U), i ∈ I,

where Hi(U(xj , t)) = Ui(xj , t)F (U(xj , t)), xj ∈ XC , and ID is the interpolation opera-
tor from centers XC to nodes XF . Therefore, multiplying on the left by (∆x)1TQ, one
gets

∆x

2
1TQ(U2

n+1 − U2
n) = ∆t (∆x1TQD)(IDdiag(Ui)F (U)− IDHi(U)), i ∈ I,

and from the discrete energy definition, one gets for a fixed i ∈ I,

1

2
(E(Un+1)− E(Un)) = ∆t (−1, 0, · · · , 0, 1)(IDdiag(Ui)F (U)− IDHi(U))

= ∆t ID(diag(Ui(1, tn))F (U(1, tn))−Hi(U(x(1, tn)))

− ∆t ID(diag(Ui(−1, tn))F (U(−1, tn))−Hi(U(−1, tn))) = 0,

where the last identity comes from the definition of Hi(U), i ∈ I.

5.3 Systems of conservation laws of arbitrary dimensions (c, d > 1)

If x = (x1, · · · , xd), u(x, t) = (u1(x, t), · · · , uc(x, t))T and F (u) = (F1(u), · · · , Fc(u))
T , then

(1) becomes  u1
...
uc


t

= −


∑d

j=1(F1j)xj

...∑d
j=1(Fcj)xj

 ,
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and if one multiplies the i-th equation i ∈ I, by ui one gets

1

2

du2i
dt

= −ui
d∑

j=1

(Fij)xj = Fi · grad(ui)− div(ui Fi), (15)

and the corresponding mimetic scheme is

1

2∆t
((Um+1

i )2 − (Um
i )2) = diag(Fi(U))IGGUi −Dx1,··· ,xd

Hi(U),

where Hi(U) = UiFi(U).

The presence of the bothG andD in the right hand side of the previous identity complicates
matters if one pursues to proceed in the same way as before. Ideally, one would like to
change the G operator by D but the discrete analog of the integration by parts formula
also includes weights P and Q. These two inner weights are identity matrices for the case
of second-order accuracy (k = 2), but even in that case, the presence of Fi(U) and Ui in
the gradient term makes impossible to utilize the same approach as before. Fortunately,
both P and Q are quadratures and that allows a new approach.

Another way of writing the discrete analog of (15) is

1

2∆t
((Um+1

i )2 − (Um
i )2) =

d∑
j=1

Gx1···xd,jUiI
D
x1···xd,j

Fij −
d∑

j=1

Dx1···xd,jHij(U).

Therefore,

1

2∆t

 d∏
j=1

∆xj

1T ((Um+1
i )2 − (Um

i )2) =

d∑
j=1

 d∏
j=1

∆xj

1T Gx1···xd,jUiI
D
x1···xd,j

Fij

−
d∑

j=1

 d∏
j=1

∆xj

1T Dx1···xd,jHij(U),

and since each component of G and D are one-dimensional quadratures one gets, for
∆x1, · · · ,∆xd small, that
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1

2∆t

 d∏
j=1

∆xj

1T ((Um+1
i )2 − (Um

i )2) =

d∑
j=1

[ Ui(x1, · · · , xj−1, 1, xj+1, · · · , xd)IDx1···xd,j
Fij(x1, · · · , xj−1, 1, xj+1, · · · , xd) −

Ui(x1, · · · , xj−1,−1, xj+1, · · · , xd)IDx1···xd,j
Fij(x1, · · · , xj−1,−1, xj+1, · · · , xd) ] −

d∑
j=1

(Hij(x1, · · · , xj−1, 1, xj+1, · · · , xd)−Hij(x1, · · · , xj−1,−1, xj+1, · · · , xd)) = 0,

because of the definition of Hi. Hence,

1T (Um+1
i )2 = 1T (Um

i )2,

which shows energy preservation of the scheme if one uses the discrete standard energy
definition.

6 Numerics

Two examples are considered. The first example refers to a 1D linear conservation law.
The second one introduces a two-dimensional system of four conservation laws.

6.1 One-dimensional advection equation

Consider the one-dimensional advection equation [18, p. 2546].

∂ψ

∂t
+ U

∂ψ

∂x
= 0, (16)

where velocity U = 10ms−1 is constant in a periodic domain −8 ≤ x ≤ 8 km using a
grid spacing of ∆x = 100m. The initial position is given by ψ0(x) = cos(2πxl ) exp(−x2

d2
),

where d = 4 km and l = 2.5 km. Equation (16) is numerically integrated utilizing the
fifth-order filtered leapfrog (LF-MMK) with γ6 = 0.1 time discretization, which is second-
order accurate. Three choices of time steps ∆t such hat the corresponding to Courant
numbers µ = U∆t

∆x are 0.2, 0.4 and 0.6. Spatial derivatives are approximated by fourth-
order Corbino-Castillo mimetic method, and the total number of time steps is chosen so
that the initial perturbation is transported one revolution around the domain.

The fifth-order LF-MMK needs initial data to be able to start. This initial data is obtained
by performing a half-step forward Euler followed by three leapfrog steps.
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Figure 1: The numerical solution of the 3D advection equation utilizing the fifth-order
LF-MMK scheme. The initial condition is displayed on the right lower panel. Some plots
of the numerical solution are shown on the left upper (400 s), right upper (800 s), left lower
(1200 s), and right lower (1600 s) panels.

In Figure 1 one can see the evolution and the level of accuracy of the numerical solution
of the fifth-order LF-MMK time scheme together with the fourth-order Corbino-Castillo
mimetic difference at 400s, 800s, 1200s, 1600s, respectively. It is clear that mass is preserved
along the time integration.

In addition, the total energy of the solution of the advection equation with constant ve-
locity should be also constant. Utilizing the fifth-order LF-MMK time scheme (of second
order accuracy in time) together with the fourth-order Corbino-Castillo mimetic difference
operator at each time step is exhibited in Figure 2. Observe it is almost constant. Only
the first steps (which are obtained via a forward Euler and a leapfrog schemes) have a little
different total energy.
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Figure 2: Total energy at each time step of the solution of the advection equation.

6.2 Two-dimensional Euler equations

The following problem has been taken from [14, pp.18-19].

Consider the 2D Euler equations

∂q

∂t
+∇ · f = 0, (17)

with

q =


ρ
ρ u
ρ v
E

 , f1 =


ρ u

ρ u2 + p
ρ u v

(E + p)u

 , f2 =


ρ v
ρ u v

ρ v2 + p
(E + p)v

 ,

where ρ is the density, u the horizontal velocity, v the vertical velocity, and E the total
energy. The equations are closed by the ideal gas law

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
,

where γ is a fluid-dependent constant, which for typical atmospheric gases can be taken to
be γ = 7

5 .

For a smooth exact solution, initially centered at (x0, y0) and convected at the constant
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velocity (u0, v0), one can consider an isentropic vortex given as

ρ =

(
1−

(
γ − 1

16γπ2

)
β2e2(1−r2)

) 1
γ−1

,

u = u0 − βe(1−r2) y − y0
2π

,

v = v0 + βe(1−r2) x− x0
2π

,

p = ργ ,

or equivalently

E =
ργ

γ − 1
+

1

2
ρ(u2 + v2),

where

r =
√

(x− u0t− x0)2 + (y − v0t− y0)2.

Assume a [−5, 5]× [−5, 5] 2D domain, with β = 5.0, and the initial position of the vortex
and the initial convection velocity given by

x0 = y0 = 0, u0 = 1, v0 = 0.

We employed Corbino-Castillo fourth-order mimetic operators in conjunction with a second-
order leapfrog scheme for the temporal discretization to resolve (17). The visual represen-
tation of our findings is illustrated in Figures 3 through 6, presenting the approximated
solutions for the conserved quantities (ρ, ρu, ρv, E) after 0.1 seconds. Figure 7 portrays
the variation of each quantity over time. This is obtained by numerically integrating the
solution surfaces at various stages.

19



Figure 3: Density profile after 0.1 seconds. Figure 4: Momentum in the u-direction.

Figure 5: Momentum in the v-direction. Figure 6: Total energy after 0.1 seconds.

Figure 7: Variability of the four quantities of interest over time.
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We thanks Dr. Johnny Corbino for the implementation of this example.

7 Conclusions

This document first establishes the known properties of the different high-order mimetic
difference operators before demonstrating the mass and energy preservation for systems of
conservation laws. The mathematical proof relies on two properties of the inner product
weight associated to the divergence discrete analog. Firstly, a relationship that comes from
the enforcement of a high-order accurate approximation of the integration by parts formula
and secondly, the quadrature character of these inner product weights.

In addition, the mass conservation property is numerically illustrated by the simulation of
several scalar and system of conservation laws examples on one-dimension and on several
dimensions.
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