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FAST WAVE PROPAGATION BY MODEL ORDER REDUCTION

V. PEREYRA1 and B. KAELIN2

Abstract. Large scale wave propagation simulation is currently achievable in reasonable turnaround times by using
distributed computing in multiple cpu clusters. However, if one needs to perform many such simulations, as is the case in
optimization, tomography, or seismic imaging, then the resources required are still prohibitive. Model order reduction of large
dynamical systems has been successfully used in several application domains to paliate that problem and in this paper we
explore one of its manifestations, Proper Orthogonal Decomposition, for wave propagation. We describe the method and show
how it can be easily interfaced with two different high fidelity simulators. We exemplify its use on several problems of increasing
complexity and size.

Key words. Wave propagation; Model Order reduction; Proper Orthogonal Decomposition;
AMS subject classification. 65M99

1. Introduction. There are many applications that require the repeated transient simulation of acous-
tic, elastic or electromagnetic wave propagation. To name a few: structural analysis, blast on structures,
vibrations of Navy vessels, sonar, design of piezoelectric transducers for medical ultrasound, medical imaging
and therapeutics uses of ultrasound, earth seismic imaging for the Oil Industry and Earthquake Seismology,
Optimization driven by Simulation for material identification and optimal design. As such, any significant
improvement in the performance of numerical simulators would be very important.

Model Order Reduction (MOR) refers to a collection of techniques to reduce the number of degrees
of freedom of the very large scale dynamical systems that result after space discretization of time-dependent
partial differential equations. Some of these techniques have been successfully employed in the simulation
of VLSI circuits, computational fluid mechanics, real-time control, heat conduction and other problems
[1, 3, 5, 7]. Not much has been done for wave propagation, although it does not seem that there are
fundamental difficulties for its application [2].

However, since none of these techniques are trivial to interface with existing large scale high fidelity codes,
it is important to be able to select wisely the correct approach in order to minimize development costs. At
this time we have centered our attention on the class of methods that go by the name of Proper Orthogonal
Decomposition (POD). We start from the premise that it is possible to run a few full simulations within
the domain of interest. POD uses snapshots from these simulations to form an orthogonal basis for the
solution space. This can be thought of as a problem-dependent modal decomposition, as opposite to the use
of artificial basis functions (Fourier expansions, wavelets). By using truncated Singular Value Decompositions
it is possible to reduce even further the size of this basis without sacrificing accuracy and also to prevent
the introduction of high frequency noise. The dynamic behavior of a new problem is calculated by solving
projected collocation equations for the time dependent coefficients of a linear combination of the natural
basis functions.

A different class of methods, tailored to problems where even a few high fidelity simulations are not
an option, is based on Krylov subspace machinery for large-scale matrix computations [5]. These methods
generate reduced-order models that are in a certain sense optimal, directly from the large-scale data matrices
describing the given linear system. Interfacing these techniques with high-fidelity codes is less trivial, and
would require major modifications. Therefore, we will focus first on POD-type methods. In a later stage we
will explore hybrid approaches that combine the easy of use of POD methods with the powerful approximation
properties of Krylov subspace-based order reduction.

We show numerical results in one and two dimensions displaying compression rates from 701 to 34,222
and with overall acuracy between 1% and 10%.

2. Model Order Reduction. The purpose of Model Order Reduction (MOR) is to replace a large
dynamical system by a smaller one that still captures the dynamics of interest with sufficient accuracy. For
wave propagation, when is possible to perform some high-fidelity calculations using existing finite difference
or finite element codes, the approach that we will discuss here is called Proper Orthogonal Decomposition
(POD), the Karhunen-Loeve Transform, Principal Components Analysis or, in more modern terms, the
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3 MODEL ORDER REDUCTION BY PROPER ORTHOGONAL DECOMPOSITION

Singular Value Decomposition. This technique will allow us to analyze a complex spatio-temporal dynamic
behavior and extract from it a (small) set of dominant components (data driven modes), separating them
from noise and inessential underlying dynamical behavior, while still giving a sufficiently accurate description
of the dynamics of interest.

It is similar to a mode analysis using Fourier, wavelets or other artificial bases, but in the approach under
discussion we will use snapshots extracted from a number of high-fidelity simulations that have appropriate
inputs, in order to extract the most important problem specific modes. The ideal application is one in which
we have a parametrized model that needs to be calculated many times, such as in optimization, inversion,
parametric studies, multiple inputs or source wavelets.

Another important application occurs in imaging using full wave solvers and reflection data. This
requires forward simulation from the sources and integration backward in time from the receivers. Snapshots
of these two calculations need to be correlated to form an image in space of the materials sensed by the
imaging process. That requires generating, keeping and accessing a large number of very large 3D snapshots.
This is done currently in massively parallel super-computers and requires considerable network traffic that
slows down the process. An intriguing possibility is to perform the model order reduction described below,
employing a smaller number of snapshots and using the reduced system to generate the finer mesh of
snapshots on the fly. This application would require only one simulation per source and if the snapshots
can be taken reasonably far apart, POD would considerably reduce network traffic and access to secondary
storage (the two weak components of large distributed systems, which improve considerably slower than
what Moore’s law postulates).

The procedure consists of the following steps:
• A pre-processing step in which a few large scale high-fidelity calculations are performed. In all the

examples below we have used just one simulation to extract snapshots.
• An SVD of the matrix whose columns are spatial snapshots extracted from those simulations is

calculated and truncated at the required error level.
• The space-time approximate solution is written as a linear combination of the k selected modes (left

singular vectors) with (unknown) time dependent coefficients.
• This Ansatz is replaced in the original equations in a Ritz-Galerkin collocation approach and due to

the orthogonality of the modes, a reduced system of ODE’s will result. Solving for the coefficients
of the linear combination for a problem with new inputs, a very economical procedure results -
compared to the original high-fidelity calculation.

3. Model Order Reduction by Proper Orthogonal Decomposition. Let us consider a first-order
hyperbolic system already discretized in space:

w′ = Aw + Bu(t),(3.1)
v = Cw,

where w(t), B ∈ RM and A, C are appropriate matrices and ’ represents time differentiation. Matrix A is
sparse in the finite element or finite differences case, but full if an spectral method is used. The vector u
contains the inputs (forcing function, time dependent boundary conditions), while the vector v contains the
desired outputs (for instance, seismograms at a few locations). The vector B distributes the time dependent
forcing function over the desired spots in the spatial mesh. For the state vector w, M is the number of
degrees of freedom in space, generally very large.
We assume that we either can observe (measure) the system for various inputs at different times or that we
can numerically simulate it. Let Φ = {φi} i = 1, ..., l (l << M), be the M × l matrix whose columns are
these spatial snapshots, and let Φ = UΣV T be its Singular Value Decomposition, where U, V are orthogonal
matrices and Σ contains the singular values σi in its diagonal, sorted in descending order of magnitude.
Since the vectors in U, V have norm l2 equal to 1, the Frobenius norm is given by the sum of squares of the
singular values:

E2 =
l∑

i=1

σ2
i .
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3 MODEL ORDER REDUCTION BY PROPER ORTHOGONAL DECOMPOSITION

If we truncate the SVD at the mth term, with m ≤ l << M then the error (or left-over energy) is:

δ2
m =

l∑

i=m+1

σ2
i .

Thus if we want to preserve a certain fraction of the total information, say 0 < p ≤ 1, then m must be
chosen so that:

δ2
m
∼= (1− p2)E2.

Let the truncated set of left singular vectors of Φ be called Um. We now seek solutions of system (3.1)
(with the same spatial discretization), of the form:

w(x, t) = Um a(t),(3.2)

where a(t) is a vector of time dependent coefficients of dimension m to be determined. The coefficients
a(t) for a new input are determined via Galerkin collocation. We replace in system (3.1) the Anzatz (3.2),
obtaining:

Um da/dt = AUm a(t) + Bu(t),
v = CUm a(t).

Multiplying by UT
m the differential equation and since the columns of Um are orthogonal, we get:

da/dt = UT
mAUm a(t) + (UT

mB) u(t),
v = (CUm) a(t),(3.3)

which is the reduced system of ODE’s of dimension m, whose solution will produce the time dependent
coefficients a(t). Combining these coefficients with the spatial modes Um as in (3.2) produces the full solution
for a new problem. The matrix of the reduced system Am = UT

mAUm, is not sparse.

Summary. The steps to follow then are:
1. Run s full simulations with the same spatial mesh (for instance, changing the source location).
2. Extract k snapshots from each simulation, for a total of l = k ∗ s columns in Φ.
3. Calculate the SVD of Φ (complexity of the SVD for a M × l matrix is O(M × l2)).
4. Truncate at level p < 1.
5. With the resulting m modes construct the matrices of the reduced system:

Am = UT
mAUm, Bm = UT

mB(x), Cm = C(x)Um.

6. To solve a new problem (say with the source at a different position, or a diferent input source),
we solve the reduced systems of ODE’s for the coefficients aj(t), j = 1, ...,m, in the representation
3.2 of the solution. Of course, we can also solve the same problem, with the object of producing
intermediary time snapshots between the selected sparse ones.

7. To obtain the solution in the original space do: w = Ua.
8. Validation: compare reduced results with full high fidelity results (at the sensors!).

Comments. In the previous algorithms there are some undetermined quantities, namely: the number
of full simulations s, the number of snapshots b and the level p. A possible way of deciding the proper number
of simulations and snapshots (besides some experimentation) would be to start with s = 1, and increment it
if necessary. A good indicator that we have enough snapshots would be when small (normalized, i.e., divided
by the largest one) singular values start showing. Using an updating algorithm for the successive SVD’s
would be an efficient way to proceed [6].
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4 EXAMPLE: SCALAR WAVE EQUATION

Since the real expense is in the simulation, one can take b reasonably large to start with, and let the
SVD analysis decide if some snapshots are not contributing information to the reduced transfer function. In
this way there is no a priori guess and we would stop as soon as there is enough information content in our
data set of snapshots.

The use of a high-order method provides already a beneficial reduction in the initial number of spatial
degrees of fredom (by a factor of up to 10,000 in 3D, when compared with a second order finite element
method). For realistic problems, the original system will still be too large and too time consuming for
wholesale real-time simulation, and thus we need to be able to speedup the calculation further by using
these order reduction techniques.

4. Example: Scalar Wave Equation . We consider as a simple test problem to validate these ideas,
the 1D scalar wave equation in a semi-infinite homogeneous half space, writen in first order form:

v′ = ρ−1px,

p′ = Kvx,

where v, p are the velocity and the vertical component of the stress, respectively, while ρ, K are density and
the bulk modulus respectively. The initial and boundary conditions are:

v(0, x) = 0,
p(0, x) = 0,
p(t, 1) = 0,
p(t, 0) = Ricker(t),

where the forcing function is a 50 Hz Ricker wavelet with amplitude 1. We take for this experiment,
ρ = 2000 k/m3, cp = 3000 m/s, K = 1.8× 1010P.

Once the problem is discretized in space (on a staggered mesh using second order accurate centered
differences) we obtain the following block structure:

[
w′

1

w′
2

]
=

[
0 A12

A21 0

] [
w1

w2

]
+ 2/ρ B R(t),(4.1)

where the vectors w1, w2 contain the discretized values of v and p respectively, A12, A21 are bi-diagonal and
B is a vector with all zeroes except for the first component that is equal to 1. The 2 in the forcing term
comes from the top and bottom free surface conditions. To advance in time we use leapfrog, assuming that
w1 is available at t and w2 is available at t + dt/2 :

w1(t + dt) = w1(t) + dt A12w2(t + dt/2),
w2(t + 3dt/2) = w2(t + dt/2) + dt A21w1(t + dt).

4.1 is the full system of ODE’s that we want to reduce. Due to the special structure it is convenient to
continue the reduction in block form. Thus, let Φ1,Φ2 be the matrices of snapshots for v, p respectively, and
let

Φ1 = U1Σ1V
T
1 , Φ2 = U2Σ2V

T
2 ,

be their Singular Value Decompositions. Introducing the Ansatz:

w1 = U1a1(t), w2 = U2a2(t)

and replacing in the differential equation, after some additional manipulations we obtain the reduced system:
[

a′1
a′2

]
=

[
0 UT

1 A12U2

UT
2 A21U1 0

] [
a1

a2

]
+ 2/ρ

[
UT

1 B1

0

]
R(t).

Observe that we can choose a different number of modes for each of the two sets of variables.
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5 NUMERICAL RESULTS
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Figure 5.1. Comparison of FLEX (solid curves) and MOR (dashed curves) results. Ricker source at top (left end),
t=0.4125. Top figure: velocity; bottom figure: vertical component of the stress.

5. Numerical Results. We run the second order finite elements code FLEX for 5000 time steps, with
δt = 0.00033, corresponding to a CFL condition of 0.99 for the problem above and collect 100 equally spaced
time snapshots. FLEX uses leapfrog, a second order explicit integrator in time and essentially symmetric
differences (on an staggered mesh) in space. For the reduced system we use as time integrator the code
SVODE of Brown, Hirschman and Byrne [4] in its stiff option.

The first experiment simply tries to reproduce the results of FLEX by solving the same problem but
with the reduced system. In Figure 5.1 we cross-plot the results of the 2 codes for a snapshot at the 1250th
time step. The results are good to eye-ball accuracy. Observe that the two sets of variables differ in about
7 orders of magnitude.

In the second experiment (Figure 5.2) we solve the reduced system with a Ricker source at x = 500,
with a frequency of 40 Hz and amplitude equal to 2 and show the snapshot at the 750th time step. We still
cross-plot with the results for FLEX with the original source in order to verify visually if there are changes
in wave form or amplitude. Now we see wave pulses propagating in both direction from the center for the
velocity component, some extraneous results for the vertical component of the stress and substantial high
frequency noise. Observe that the expected vertical stress amplitude is still 1, because of the way in which
we apply this forcing function.

Finally, we repeat the second experiment but taking only 66 left singular vectors (i.e., we drop the 34
vectors associated with the smallest singular values, see Figure 5.3). Now, as hoped, we get much cleaner
results and the system has 132 variables instead of 2000, a factor greater than 15 order reduction! (Figure
5.4).

These results will not be totally surprising to anyone familiar with least squares fitting. The bad results
obtained when using too many basis functions are just another manifestation of the phenomenon of over-
fitting; i.e., we are approximating very faithfully spurious noise and amplifying it as we integrate along.
Thus, it is doubly beneficial to filter out these highly oscillatory modes associated with the small singular
values, since we also get an additional reduction in the size of the problem, i.e., enhanced data compression
plus high frequency noise filtering.
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6 WAVE EQUATION IN SECOND ORDER FORM
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Figure 5.2. Source for MOR (dashed curves) at x=500; Ricker wavelet, frequency = 40 Hz, amplitude = 2. FLEX
results (solid curves) are still for problem with source at x=0; they are shown only for wave shape comparison.

6. Wave Equation in Second Order Form. Some solvers keep the equations in second order form:

wtt = v2 ' w + Bu(t),

or, after space discretization:

w′′ = Aw + Bu(t).(6.1)

We follow the same procedure, by proposing the Ansatz w(x, t) = Uma(t), and replacing in the differential
equation 6.1 obtaining:

a′′(t) = UT
mAUma(t) + UT

mBu(t).

Introducing the auxiliary variables: a1(t) = a(t); a2(t) = a′(t), then we obtain the first order form of
the reduced equations for use in a conventional ODE integrator:

a′1 = a2,

a′2 = Ra1 + UT
mBu(t),

where R = UT
mAUm.
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Figure 5.4. Same as in Figure 5.2, but MOR uses only 66 modes, instead of 100
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8 COMPLEXITY

−1
560

8
315

−1
5

8
5

−205
72

8
5

−1
5

8
315

−1
560

Table 7.1
Coefficients for 8th order aproximation to the second derivative

7. Interfacing with a high order finite difference solver. We consider now a finite difference
solver using a high order spatial approximation. This is a a valuable approach when either high accuracy
or long integrations are required, but also as a way to decrease the number of spatial degrees of freedom
required, a significant problem in 3D.

For nodes in the interior of the mesh (i.e., at least 4 nodes away from any boundary), we shall use an 8th
order approximation in the space finite difference solver. The discretization formula for the second spatial
derivatives is centered and symmetric:

[uxx]i,j,k (
∑

l=−4,4

alui+l,j,k/δx2,

where the coefficients ak are given in Table 7.1 [9, 8]:
The approximation is used for all the coordinate directions. For instance, for the Laplacian in 3D we

would have:

∆u(xi, yj , zk) ( v(xi, yj , zk)
∑

l=−4,4

ak[ui+l,j,k/δx2 + ui,j+l,k/δy2 + ui,j,k+l/δz2],

where v is the velocity of propagation.
In order to compare the accuracy of the reconstruction we will integrate the reduced system so as to

reproduce all the time steps of the high fidelity code (which are provided and from where we extract one
every nsjump ones for the reduction phase). Thus, if Ψ is the M×k matrix of snapshots, corresponding to k
integration steps with the high fidelity code, then Φ (M × l) are the selected snapshots, with l = k/nsjump.

The ultimate purpose of this experiment is to assess the possibility of using the reduced system to
reconstruct on the fly non-selected snapshots. Since we don’t have control on the internal stepsize in the
ODE integrator there is a strong possibility that the discrete source wavelet will need to be evaluated at
times other than j ∗ dt and therefore we will use linear interpolation as needed.

8. Complexity. The above algorithm can help in two respects:
• Reduced computation when solving many similar problems;
• Reduced storage.

In order to get a feeling for its potential in these two aspects we will make some storage and flop counts to
compare the direct (D) and reduced (R) approaches.

We assume that we have M discrete state variables (spatial mesh), T total number of time steps, and
that m snapshots are used for reduction (m << T ).

Work for D, 1 time step: O(M).
Work for R, 1 time step: O(m2), since reduced system is not sparse.
Work for reduction (pre-process): SVD of M ×m matrix: O(Mm2).
Reconstruction of 1 snapshot w(t) = Uma(t): O(Mm).
Storage for T full snapshots: T ∗M words.
Storage for m reduced snapshots: m ∗M words.
We show in Table 8.1 the cost of computation in flops and storage in words for two possible approaches

to the calculation of a number of snapshots for forward modeling with the reduced system to be used for
wave equation imaging. The first one assumes that the calculation for all desired snapshots is done a priori
and the corresponding coefficients a(t) are saved and then used to reconstruct a particular snapshot. In
the second approach, in order to reconstruct a snapshot we integrate the reduced system using as initial
conditions the closest saved snapshot (for the computational cost we consider the worst possible case, when
me need to integrate essentially to the next saved snapshot (T/m time steps)). By choosing to integrate
from the closest snapshot (i.e., backwards if necessary) we can halve that count. In both cases we assume
that only the restricted set of m snapshots is available, for an additional storage cost of M ∗m words.

8



9 2D NUMERICAL RESULTS

Modality Computation Storage Reconstruction (one snapshot)
1. Pre-calculate and save T ∗m2 (pre-process) T ∗m M ∗m
2. Calculate on the fly T/2 m2 M ∗m

Table 8.1
Two possible approaches

(a) Reduced order 3 layer model (b) Exact calculation for 3 layer model

Figure 9.1. Propagation through a 3 layers model

9. 2D Numerical Results. We consider a simple 2D problem to start: propagation in a square
homogeneous domain with a source term (Ricker wavelet) applied in the center. To simplify even further we
will stop the propagation before the signal reaches the boundaries, so that we do not have to worry about
boundary conditions at this stage. Specifically we have the following uniform mesh:

nx = 261, ny = 261, dx = dy = 26.8, dt = 0.0024,

and we run for 550 time steps, extracting field snapshots every fourth step. Using a threshold of 0.9999999
the program selects 86 modes, which corresponds to the number of degrees of freedom of the reduced system.
This is a reduction in dimensionality of 68121/86 = 791. Once the dynamics is calculated the reconstructed
approximate field is essentially identical to the high fidelity calculation, showing no visible dispersion.

9.1. A three layer example. Then we consider a model with three horizontal constant velocity layers,
leaving everything else the same as above. The results are entirely similar, although now, for the same level
of energy we require only 82 modes, for a compression ratio of 831. The results are shown in Figures (9.1
a,b). We also explore for this model what happens when one uses different number of snapshots for the
analysis (the original set of 550 snapshots is decimated by taking one out of nsjump, for various values of
nsjump). The results are shown in Table 9.1.

9.2. A large scale inhomogeneous velocity problem. Now we consider a portion of a real model
with variable velocity involving a (high velocity) salt body Figure (9.2). This is a much larger problem with
a complex heterogeneous velocity, involving a 2001×2001 points mesh with an spacing of 26.8 m. The source
is still applied in the center of the model. The original solver produces 251 snapshots spaced at 0.0024 sec
(that requires 4.02 Gbites of memory!). We use for the reduction one out of every two (126 snapshots) and

9



9.2 A large scale inhomogeneous velocity problem 9 2D NUMERICAL RESULTS

#snap rank nsjump Compression ratio result
275 82 2 831 OK
139 71 4 959 OK
69 63 8 1081 OK
55 50 10 1362 OK but starts showing some oscillations ahead of front
35 32 16 2129 It does not work

Table 9.1
Running for different number of snapshots

Figure 9.2. Velocity for 2D inhomogeneous model, courtesy of BP.

the SVD analysis cuts this further to 117 modes. That is a reduction in the number of degrees of
freedom by a factor of 34,222.

10



11 CONCLUSIONS

(a) Reduce order solve (b) Full solve

Figure 9.3. Exact and reduced solutions for timestep = 533

In Figure (9.3) we see the comparison of snapshots for the original and reduced system. In this problem
there is no direct comparison of amplitudes since the full fidelity results have been corrected for geometrical
spreading while the reduced ones have not. However, all the different phases show in the reduced solution
at the correct spatial spots.

10. Solving as a second order system. It would be of interest to solve the problem in its original
second order form and also using the same procedure that is used in the high fidelity code, instead of reducing
to first order and using a high order external integrator. We do that in this section and show that the results
are similar, although the procedure is faster. We use a simple second order approximation to the second
derivative centered at the previous point to obtain an explicit integrator:

ai = 2ai−1 − ai + Rai−1 + UT
mBu(t− dt).

The initial conditions are a0 = a1 = 0.
For the 3 layers problem we see in Fig. a comparison between the exact and the approximate solutions

after 500 integration steps. For better comparison we have extracted a 1D section around the middle of the
model.

11. Conclusions. We have described a model order reduction method based on projection into a small
subspace of time snapshots of the solution of a wave propagation problem. We have shown, in 1 and 2
dimensional problems, from simple to fairly complex media, that the method gives reasonably accurate
solutions with a very significant reduction in the number of spatial degrees freedom. The approximations
show very low dispersion and some visible dissipation.

For problems in which the kinematics is important, such as in large scale seismic imaging, these approxi-
mations should be adequate, although they would require further testing. The impact of the order reduction
will be most appreciated in large scale three-dimensional problems that need to be solved repeatedly with
small variations in the source position or in material properties.

11
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