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Abstract. In this initial chapter we consider some of the basic methods used
in the fitting of data by real and complex linear combinations of exponentials.
We have selected the two classes of methods that are most frequently used
in many different fields: Variable Projections for solving this separable non-
linear least squares problem and derivatives and variants of Prony’s method,
which rely on evenly sampled data and take special advantage of the partic-
ular form of the approximation. We also have implemented some of these
methods and compare them in a few examples to support some comments on
their advantages and disadvantages and exemplify their performance in terms
of computing time and robustness, specially considering that this is a notori-
ously ill-conditioned problem in many cases.

0.1. Introduction (VP September 4)

Fitting data with linear combinations of real or complex exponentials is perva-
sive within many disciplines in Sciences and Engineering. Since Gaspard Riche de
Prony invented a method in 1795 [14] to solve this problem for evenly spaced sam-
ples there have been many developments and applications. We will survey some of
the more successful ones and then let leading experts from different fields describe
their applications and experiences.

One obvious reason why these types of approximation functions are important
is that combinations of exponentials are solutions of homogeneous linear ordinary
differential equations and as such they naturally model many different physical
processes. Thus, if we have measurements of a quantity that can be modelled by
the solution of such an equation, fitting this data to a linear combination of expo-
nentials can give valuable information on decay rates or other material properties
of the physical system. Also, exponentials have good approximation properties on
compact domains and, of course, complex exponentials lead to Fourier expansions.

If we know the exponents and are only interested in the coefficients of the linear
combination and if we choose to minimize the l2 norm of the residuals between
observed and calculated values, then this fitting is a linear least squares problem.
The interesting and more challenging case though, is when we want not only the
weights but also the exponents, which leads to a nonlinear least squares problem.
As indicated by Beylkin and Monzon [5], this is akin to Fourier series with adaptive
exponents that can lead to more concise approximations as exemplified in a number
of challenging examples.

It was observed (see [17, 19, 21]) that it is very useful to separate the treatment
of the weights from that of the parameters appearing nonlinearly. Although the
context of so-called separable problems is more general than fitting exponentials,
the latter one turns out to have many successful applications.

Many algorithms have been developed for separable nonlinear least squares
problems (SNLS). The Variable Projections algorithm designed and analyzed by
G. Golub and V. Pereyra [17] resulted in a computer program (VARPRO) that is
in the public domain and has had great impact in many disciplines, as shown in
the survey paper [19] and in several chapters of this book.

Another set of techniques, somewhat misnamed as “linear methods,” are of
importance because of their prevalence in the application fields. Among them
are the Prony-type or polynomial methods. An important variant is the Modified
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Prony method, originated by M. Osborne in [37]. It extends the “Prony method”
for extracting sinusoidal or exponential signals from uniformly sampled time series
data when there is no noise, to the case when the signal is imbedded in noise. It
is similar to the discrete Fourier transform insofar as it extracts information from
a uniformly sampled signal by approximating it with a sum of real or complex
exponentials. The modified Prony method has been exhaustively analyzed [39,
40] for fitting with exponentials or other functions that satisfy a linear difference
equation with constant coefficients, and a MATLAB program by G. K. Smyth, one
of the coauthors, is available on the Internet [56].

Another Prony-type method is the linear-prediction algorithm presented in
[35, 51]. It follows the general structure of the Prony method but uses a truncated
singular value decomposition (TSVD) of a Hankel matrix defined by the noisy signal
to solve for the nonlinear parameters. This allows one to determine the number of
representative exponential terms of the fitting function that is appropriate for the
noise level.

A different approach that uses the separability of the approximating model
is found in the subspace-based matrix-pencil methods. We outline below the
HTLS/HSVD methods, extensively analysed and used by the Katholieke Univer-
siteit Leuven group [31, 51]. (See also the chapter in this book by Sima, Poullet
and Van Huffel.) They also start with a Hankel matrix of the data, but, instead
of working with the recurrence relationships, by comparing a Vandermonde and an
SV decompositions one can state a linear least squares problem for a matrix whose
SVs are the nonlinear parameters. These algorithms use numerical linear algebra
techniques, but generalized eigenvalues and zeros of polynomials are hardly linear
problems, so that is the reason against cataloging them as “linear techniques”.

Last but not least, alternatively to separation of linear and nonlinear variables,
nonlinear optimization techniques can also be applied directly to the full functional
problem. A prominent position in this approach is held by the secant type code
NL2SOL [13], used for example in AMARES, a software for biomedical applica-
tions. It has the advantage of ease in incorporating a priori knowledge about the
parameters.

A detailed survey with many references and interesting discussions can be found
in [25]. Some pitfalls on the indiscriminate use of the results of exponential fitting
are discussed in [54]. See also [61] for an interesting discussion on the potential
ill-conditioning of these problems that was already pointed out by Lanczos in 1956
[30]. In the following sections we will review some of these methods and compare
them on several examples.

Acknowledgement

We would like to thank P. C. Hansen and M. Saunders for reading carefully this
chapter and making many suggestions that considerably improved its presentation.

0.2. Separable nonlinear least squares and its solution by Variable
Projections

A separable nonlinear least squares problem was defined in [17], as one for
which the model used to approximate the data is a linear combination of nonlinear
functions that can depend on multiple parameters. The ith component of the
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residual vector is written as

(0.2.1) ri(a,α) = yi −
n∑
j=1

ajφj(α; ti), i = 1, . . . , N, N > n+ k.

Here the ti are independent variables associated with the observations yi, while the
a = {aj} and the components of the k-dimensional vector α are the parameters to
be determined by minimizing the functional ||r(a,α)||22, where ||.||2 stands for the
l2 vector norm, i.e., the functional to be minimized is the sum of squares of the
residuals. We can write this functional using matrix notation as

(0.2.2) r(a,α) = ‖r(a,α)‖22 = ‖y −Φ(α)a‖22,
where the columns of the matrix Φ(α) correspond to the nonlinear functions
φj(α;ti) of the k parameters α evaluated at all the ti values, and the vectors a
and y represent the linear parameters and the observations respectively. The min-
imization problem is then,

(0.2.3) min
a,α
‖r(a,α)‖22.

Now it is easy to see that if we knew the nonlinear parameters α, then the
linear parameters a could be obtained by solving the linear least squares problem:

(0.2.4) a = Φ(α)+y,

which stands for the minimum-norm solution of the linear least squares prob-
lem (0.2.2) for fixed α, where Φ(α)+ is the Moore-Penrose generalized inverse
of Φ(α)1(which can be ill-conditioned or even rank-deficient). Substituting this a
into the original functional gives the problem

(0.2.5) min
α
‖(I−Φ(α)Φ(α)+)y‖22,

where the linear parameters have been eliminated. Some good references for non-
numeric persons further reading on these basic concepts are [7, 20].

We define,

(0.2.6) rV P (α) = (I−Φ(α)Φ(α)+)y,

and call it the Variable Projection (VP) of y. Its name stems from the fact that
the matrix in parentheses is the projector onto the orthogonal complement of the
column space of Φ(α), which we will denote in what follows by P⊥Φ(α). We will
also refer to ‖rV P (α)‖22 as the Variable Projection functional.

This is a more powerful paradigm than the simple idea of alternating between
minimization of the two sets of variables (such as the NIPALS algorithm of Wold
and Lyttkens [62]), which can be proven theoretically and practically not to result,
in general, in the same enhanced performance.

In summary, the Variable Projection algorithm consists of first minimizing
(0.2.5) and then using the optimal value obtained for α to solve for a in (0.2.4). One
obvious advantage is that the iterative nonlinear algorithm used to solve the first
minimization problem works in a space of smaller dimension and in consequence
fewer initial guesses are necessary. However, the main payoff of this algorithm is the
fact that, as the minima for the reduced functional are better defined than those
for the full one, it always converges in fewer iterations than the minimization of

1The generalized inverse plays a similar role for rectangular matrices as the inverse does for
square ones. For a definition see [7].
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the full functional, including convergence when the same minimization algorithm
for the full functional diverges (see for instance [27]).

A different reason to use the reduced functional is to observe from the above
results that, since the linear parameters are determined by the nonlinear ones, then
the full problem must be increasingly ill-conditioned as, and if, it converges to
the optimal parameters. That is probably why the important problem of real or
complex exponential fitting is so hard to solve directly. See for instance [55] for a
theoretical discussion of this issue and an interesting application to the training of
nonlinear neural networks [49, 50, 43].

It was also proven in the original paper [17] that the set of stationary points of
the original and reduced functionals are the same. This theorem has been reassuring
to many practitioners and has been used to derive other theoretical results in similar
situations. Further comments on the basic results can also be found in the textbooks
of Seber and Wild [53] and Björck [7].

0.3. Complex VARPRO

In this Section we consider the development of a Variable Projection type solver
(VARPRO) for separable nonlinear least problems (SNLLSQ) [17, 19], for the case
in which the model is a linear combination of complex exponentials.

We will discuss the essential elements of a modern VARPRO type implementa-
tion, without attempting to reproduce all the aspects of the compact original 1973
one, which was constrained by the computer capabilities of that time frame. We
can do a much simpler job now that memory is not an issue. Also the code can use
reliable off-the-shelf open software as available.

Calculation of the VP functional and its derivative. There are two ways
to calculate the necessary quantities and we explore them both: Singular Value
Decomposition (SVD) or Linear Least Squares (LLSQ). The advantage of the first
is that it gives good quantitative information about the condition of the problem
and it facilitates its regularization if necessary.

The SVD of the complex matrix Φ = UDV∗ always exist. U, V are unitary and
D = diag(σj) is diagonal with the same rectangular shape of Φ, and the ∗ stands
for transposed conjugate. The diagonal contains the singular values of Φ, which
are real and non-negative. As in the real case, the SVD is rank revealing: small
singular values (relative to the largest) are a sign of ill-conditioning, while in the
extreme case, zero singular values indicate rank deficiency. In all cases, truncating
the small singular values regularizes the problem and gives the best approximation
of that rank to the original matrix in the Frobenius norm.

If we calculate the SVD of the m × n matrix Φ = UDV∗, then the Variable
Projection functional can be written as

rV P (α) = ‖U
[

0 0
0 Im−r

]
U∗y‖22 = ‖

[
0 0
0 Im−r

]
U∗y‖22,

where r is the numerical rank of Φ and we can eliminate the first U because it is
a unitary matrix. Thus, if we call ỹ = U∗y, we have

rV P (α) =
m∑

i=r+1

ỹi
2.
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Unfortunately most SVD codes compute only the “thin” matrix U (m × n),
which is not sufficient for this calculation. In that case we need to obtain a as
indicated below in 0.3.3 and then calculate the residual directly as in 0.2.1.

Gradient. For the complex exponential case, since the gradient of the func-
tional will be real, we need to be careful with how we compute it. First of all we
observe that for any complex vector f(z),

D(f∗f) = Df∗f + f∗Df = Df∗f + (Df∗f)∗ = 2<(Df∗f).
Here D stands for the Fréchet derivative.

Therefore, for f = P⊥Φy, we will have

1
2
∇rV P (α) = <(y∗DP⊥∗Φ P⊥Φy) = −<(y∗(P⊥ΦDΦΦ+ + (P⊥ΦDΦΦ+)∗)P⊥Φy),

where the expanded expression comes from the derivative of the pseudoinverse as
derived in [17, 19]. This is a 3-dimensional tensor consisting of the gradients with
respect to the vector α of each component of Φ :

DΦ =
{
∂Φi,j
∂αl

}
.

The columns of Φ are exponentials sampled at the data points and therefore
DΦ can be easily generated. But, because of the properties of the pseudoinverse,
Φ+P⊥Φ = 0, and therefore the first term in the formula above drops out, leaving

(0.3.1)
1
2
∇rV P (α) = −<(y∗(P⊥ΦDΦΦ+)∗P⊥Φy) = −<(y∗Φ+∗DΦ∗rVP ).

Hessian. Marquardt’s method for solving nonlinear least squares problems (as
well as the Gauss-Newton method) uses a simplified Hessian that does not require
second derivatives. This approximation is constructed with the Jacobian matrix of
the vector residual:

(0.3.2) H(α) = J∗J,

where J = DP⊥Φy.
From [17] we know that

J = −(P⊥ΦDΦ)Φ+y − ((P⊥ΦDΦ)Φ+)∗y.
Kaufman [26] has introduced a simplification that does not impair the efficiency of
the iterative method and makes the cost of the iterations similar to that for the full
functional. Kaufman’s simplification consists of dropping the second term in the
formula above. This is justified by observing that during calculation of the Hessian
some of the terms cancel out. In summary, we can use in 0.3.2 the approximation:

J = −(P⊥ΦDΦ)a.

Ruano and his collaborators [49, 50] have introduced an interesting analysis
that seems to indicate that from Kaufman’s idea follows that there is actually
a family of equally suitable Jacobians and they have introduced an even more
simplified one that works well in their applications.
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Alternative: no SVD’s. Observing the formulas above we see that there are
several multiplications by Φ+. These multiplications can be interpreted as LLSQ
solves, since

Φ+y = a ⇔ min
a
‖Φa− y‖22.

Φ+y = a is an overdetermined system of linear equations and therefore a whole
sub-space of y’s gets mapped into the same a. Thus, if we solve first these LLSQ
problems (same matrix, multiple right-hand sides, a very economical proposition),
then

rV P = ‖y −Φa‖22,
1
2
∇rV P (α) = −<(a∗DΦ∗rVP),

J = −P⊥ΦDΦa.

Regularized VARPRO using PRAXIS. Sometimes is more expedient to
use an optimization code that does not require derivatives to minimize rV P (α)
. A good choice is the intelligent search method of R. Brent, implemented in
the program PRAXIS [8]. Observe that by choosing the numerical rank of Φ
appropriately we will be regularizing the problem in case of severe ill-conditioning or
actual rank deficiency (see [22] for detailed discussions on ill-conditioned problems).
Finally we obtain a by using a regularized version of 0.2.4:

(0.3.3) a = Φ+y = VD+
r U∗y = VD+

r ỹ =
r∑
j=1

vij ỹj/σj ,

where we have assumed that the singular values are in descending order and that we
have chosen to truncate the SVD after the first r components, so that σr+1/σ1 < τ,
for a given threshold τ.

0.4. Prony-type or polynomial methods

In the next sections we consider the following simplified problem. Given N
equally spaced samples of a signal (ti, yi), i = 1, · · · , N, ti = i∆t, ∆t = 1

N , use
the model function

(0.4.1) µ(t) =
n∑
j=1

ajφj(αj) =
n∑
j=1

aje
αjt,

with N and n to be defined for each method, in order to interpolate or best fit the
data in the least squares sense.

Prony’s classical method interpolates a sequence of N = 2n observations by a
linear combination of n exponentials, separating the computation of the nonlinear
and linear parameters. The method takes advantage of the fact that the zj ≡ eαj∆t
satisfy a linear difference equation that can be written as a recurrence equation,

(0.4.2)
n+1∑
k=1

δkE
k−1 µ(t) = 0,

where E is the translation operator, E µ(t) = µ(t+4t), and δ = (δ1, δ2, · · · , δn+1)
are called the Prony recurrence parameters.
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A more convenient matrix form for the recurrence equation is

(0.4.3) X>δ µ=0

where µ = (µ(t1), µ(t2), · · · , µ(tN )), and the (N,N−n) matrix Xδ is the rectangular
Toeplitz matrix

Xδ =



δ1
. .
. . δ1
. .

δn+1 .
.

δn+1


.

Alternatively, if y = (y1, y2, · · · , yN ) is the vector of data and Y(y) the (N −
n, n+ 1) Hankel matrix defined using this vector,

Y(y) =



y1 y2 ... yn+1

. . . .

.

. . . .
yN−n . ... yN


,

then
Xδy = Y(y)δ.

Equivalently, the zj are the roots of the characteristic polynomial associated
with δ

δn+1z
n − δnzn−1 − · · · − δ1 = 0.

The unknown coefficients δk can be determined, assuming that there is no error in
the observations, from the linear system of equations

n+1∑
k=1

δkE
k−1 yi = 0, i = 1, . · · · , n.

For the system to be determined, one unknown must be fixed and the Prony choice
is δn+1 = 1.

There have been several attempts at adapting the Prony technique to the more
general, approximation problem, i.e., a generalization to the overdetermined case,
when N � 2n, leading to a least squares approximation. The structure of these
Prony-type algorithms is:
Nonlinear stage:

• Determine the Prony recurrence parameters from a least squares formu-
lation.

• Determine the roots of the characteristic equation.
• Determine the nonlinear parameters αj by taking ln(zj).

Linear stage:
• Insert the αj into the model and solve the resulting linear least squares

problem in the aj .
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The algorithms differ in the techniques used to determine the Prony parameters.
The current-day Prony’s method and the Pisarenko or covariance method fail for
large data sets (see [40]). We will describe in more detail the modified Prony
method [37, 38, 39, 40] and the linear predictor method [35, 51]. The following
table lists the best known algorithms.

Method Technique
Classic Prony Linear system X>δ y = 0

Prony minδ y>XδX>δ y, δn+1 = 1
Pisarenko minδ y>XδX>δ y, ‖δ‖2 = 1

Linear predictor minδ y>XδX>δ y, δK = 1, K > n

Modified Prony minδ y>XδX+
δ y, ‖δ‖2 = 1

The modified Prony method. The modified Prony method described in
[38] estimates any function µ(t) that solves a linear homogeneous difference equa-
tion. This includes linear combinations of real and complex exponentials and
damped/undamped sinusoids, without an a priori knowledge of how many terms
fit best, but automatically adapting to the most appropriate number, and also, as
in the other Prony-type methods, avoiding the evaluation of exponentials.

It will be assumed (see [38]) that the minimization problem (0.2.3) has a single
isolated minimum for α in an appropriate subset, and that Φ(α) is continuously
differentiable and has full rank there.

To set up a least squares formulation for the Prony parameters δ we go back
to the reduced minimization problem obtained in Section 0.2 for the nonlinear
parameters α

(0.4.4) rV P (α) = ‖rVP (α)‖22 = ||y −PΦy||22 = ||P⊥Φy||22.
Here, PΦ = Φ(α)Φ(α)+ is the projection onto the column space of Φ and P⊥Φ is
therefore the projection onto its orthogonal complement. But, if we set µ = Φ(α)a,
and use (0.4.3), then P⊥Φ is also the projection onto the column space of Xδ and
the reformulation as a minimization problem with respect to δ is

(0.4.5) rV P (δ) = yTPXδy = yTXδ(XT
δ Xδ)−1XT

δ y.

In this case X+
δ = (XT

δ Xδ)−1XT
δ , because assuming that Φ(α) is a full-rank matrix

implies that Xδ has full column rank as well. When using the Prony parameters δ
there is one more variable to be determined than when using the minimisation in
α (the characteristic polynomial is not monic); thus an additional condition must
be added, for example that δ is normalized: δT δ = 1.

Including a constant term, i.e., choosing α1 = 0 so that

µ(t) = a1 +
n∑
i=2

aie
αit,

is equivalent to imposing a constraint
∑n+1
j=1 δj = 0 = g>δ = 0 on the parameters,

with e> = (1, 1, · · · , 1)>.
The objective function to be minimized is then

(0.4.6) F (δ, λ, ν) = rV P (δ) + λ(1− δ>δ) + 2νeT δ,

with λ, ν Lagrange multipliers.
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Differentiating with respect to δ and the Lagrange multipliers one obtains the
necessary minimization conditions, which take the form of a generalized eigenprob-
lem: Determine λ and v so that,

(A− λP)v = 0,(0.4.7)
vTPv = 1(0.4.8)

where

A =
(

Bδ g
g> 0

)
, v =

(
δ
ν

)
, P =

(
In+1 0

0 0

)
.

The symmetric (n+ 1)× (n+ 1) matrix Bδ(δ) has elements:

Bδij = yTXδi (X
T
δ Xδ)−1XT

δj y − yTXδ(XT
δ Xδ)−1XT

δi Xδj(X
T
δ Xδ)−1XT

δ y,

where Xδj = ∂Xδ/∂δj .
In the case of a model without constant terms, the matrices involved are reduced

to A = Bδ, v = δ, P = I.
It can be shown [38, 39] that the Lagrange multiplier λ must be zero at a so-

lution of the generalized eigenproblem. The similarity to an eigenproblem suggests
the use of an iterative algorithm for linear eigenproblems, where at each step the
eigenvalue nearest to zero is chosen as the new λ(k+1) and the corresponding vector
as v(k+1). Convergence is assumed when λ(k+1) is small compared to ‖Bδ‖2.

The detailed minimization algorithm is described in [39], and the simplifica-
tions for exponential fitting are sketched in [40]. See also [38] for some practical
considerations, among them that the algorithm seems to be relatively insensitive
to the starting values. The algorithm has been analyzed [38] as a nonlinear vector
iteration in v and although it was not possible to obtain an estimate for the conver-
gence rate it was asserted that the iteration will be successful if the functional at
the minimum rV P (δ∗) is small; in data fitting problems this requires small exper-
imental error and that the model be appropriate, i.e., the number of exponential
terms must be the correct one.

After the Prony parameters δ are estimated, the rate constants are recovered
as the roots zj = eαj∆t of the characteristic polynomial:

p(z) = δn+1z
n + δnz

n−1 + ...+ δ1 = 0.

Unfortunately, for large values ofN, i.e., small ∆t (remember ∆t = 1
N ), this is an ill-

conditioned problem because the roots will cluster around 1. Osborne [41] analyses
this case showing favorable asymptotic results for the convergence of VARPRO type
methods that use the Gauss-Newton minimization approach.

There remains the important question of the relation between the critical point
sets for the problems rV P (δ) and ‖r(a, α)‖22. In fact, the two sets may be different:

min
δ
rV P (δ) ≤ min

α
r(a, α).

The Prony parametrization is more general and may yield a larger set of solu-
tions, including for example repeated roots of the characteristic polynomial. There
is, however, a close relation between the two sets as the theorem in [40] proves:

“The Prony parametrization does in fact solve the exponential fitting problem
in the sense that if α is a minimizer of problem (0.4.4), then the corresponding
elementary symmetric functions give Prony parameters that satisfy the necessary
condition (0.4.7).”
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Fast linear prediction method. As mentioned in the Introduction, the fit-
ting technique suggested in [35] and [51] follows the general structure of the Prony
method, but in the process also determines the appropriate number of exponential
terms that best represent the data.

In general, even though one knows that the data y = (y1, y2, . · · · , yN ) can be
modeled by yi ≈ µ(ti), with µ(t) =

∑n
i=1 aie

αit, where α1 may be zero, the correct
number of terms is generally not known. The model satisfies a difference equation,
stated in the digital signal processing literature as a forward linear predictor with
coefficients f = (f1, f2, · · · , fK), for any K ≥ n,

µ(ti) =
K∑
k=1

fkµ(ti−k),

or recast in the recurrence equation format,

(0.4.9)
K+1∑
k=1

δkµ(ti−k+1) = 0, i = K + 1, ..., N.

Here δ1 = 1 and δK+1 = fK , k = 1, · · · ,K.
We define now a (N − K,K + 1) Hankel matrix Ȳ(µ) using the µ(ti). If

the model has n exponential terms, the Hankel matrix has rank n and that is
independent of the choice of K. The rank can be computed from the SVD of the
“exact” matrix Ȳ(µ), where the singular values σ̄i will be zero from n+ 1 onwards:
σ̄1 ≥ σ̄2 ≥ · · · = σ̄n > σ̄n+1 = · · · = σ̄K+1 = 0.

Unfortunately one does not have the exact µ but the noisy data y. In this case,
if one computes the SVD of the (N − K,K + 1) Hankel matrix Y(y) = UΣV>,
then the singular values σi will all generally be different from zero. One can define
n as the numerical rank with respect to a given tolerance τ [20, p. 261] if σn+1

σ1
< τ.

This tolerance should be consistent with the data precision; for example, if the data
have p correct decimal digits a good choice is τ = 10−p.

The matrix Y(y) can then be approximated by the truncated SVD (TSVD)
expansion [20]:

(0.4.10) Y(y) u UnΣnV>n ,

where Σn (n × n), contains the non-zero singular values of Y(y) and Un ((N −
K)×n), V>n (n× (K+1)) are the corresponding sub-blocks of the unitary matrices
involved in the SVD.

One could compute the Prony parameters δ using the recurrence equation and
the matrix Ȳ(µ) if the signals were noiseless: yi = µ(ti),2

(0.4.11) Ȳ(µ):,1:K f = Ȳ(µ):,K+1.

However, this relation is only approximate for the Y(y) and

Y(y):,1:K f ≈ Y(y):,K+1,

needs to be solved by linear least squares. Inserting the TSVD into (0.4.11) gives
an under-determined system of equations for f :

min‖f‖22 such that V>n 1 :K ,1 :n f = VnK+1 ,1 :n
>.

2For convenience we use the colon notation for matrices (see [20], pp.7): if Am×n , then Ak,:

designates the whole kth-row, whereas Ak,i:j denotes the positions between the ith and the jth
columns. Similarly for columns.



0.5. SUBSPACE OR MATRIX-PENCIL METHOD HTLS/HSVD 12

After this system is solved for the K + 1 Prony parameters δ, the relevant roots
zj = eαj∆t of the characteristic equation corresponding to the recurrence (0.4.9)
are computed. Note that there are n roots that should be separated from the other
K − n extraneous roots [51].

There remain several practical issues: one is the choice of K. In order to obtain
a reliable value of n, K should be large - for some applications between N/3 and
N/2. This implies costly computations of both the SVD of Y(y) and the roots
of the characteristic polynomial. In [35] there are some pre-processing steps that
might reduce these costs.

0.5. Subspace or matrix-pencil method HTLS/HSVD

A subspace-based method starts with the model µ(ti) for ti = i4t, i = 0, · · · , N−
1, rewritten with the change of variable eαjti = eαji∆t = zij :

(0.5.1) µ(ti) =
n∑
j=1

ajz
i
j .

To describe the algorithm we will assume that the data are noiseless yi = µ(ti).
The first step is to arrange the model values in an L ×M Hankel matrix, with L
and M greater than n and L+M = N − 1, the number of data samples:

Ȳ(µ) =


µ(t0) µ(t1) ... ... µ(tM )
µ(t1) µ(t2) ... ... µ(tM+1)
. . . . .
. . . . .

µ(tL) µ(tL+1) . . µ(tN−1)

 .

The optimal values for L and M will be discussed later. It is easy to see that Ȳ
can be expressed in terms of matrices where the aj and zj appear explicitly - the
so-called Vandermode decomposition,

Ȳ(µ) = S̄C̄T̄>.

Here S̄(L+1)×n and T̄(M+1)×n are Vandermonde matrices defined by the vector
z = (z1, z2, · · · , zn), and C̄ = diag(a1, a2, · · · , an),

Ȳ(µ) =


1 1 ... 1
z1 z2 ... zn
... ... ... ...
zL1 zL2 ... zLn




a1

a2

an




1 1 ... 1
z1 z2 ... zn
... ... ... ...
zM1 zM2 ... zMn


>

.

An interesting property of the matrix S̄ is shift-invariance. If Z = diag(z), it
can easily be proved that

S̄2 :L+1 ,: = S̄1 :L,:Z,

where S̄2 :L+1 ,:, S̄1 :L,: are derived by removing respectively the first or the last row
from S̄.

On the other hand, the rank of Ȳ(µ) is n. Therefore, in terms of the thin
SVD [20, p. 72], Ȳ(µ) can be written as Ȳ = ŪnΣ̄nV̄>n , where Σ̄n contains the
non-zero singular values of Ȳ(µ), and Ūn ((L+ 1)× n), V̄>n (n× (M + 1)) are the
corresponding sub-blocks of the unitary matrices involved in the normal SVD.
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Comparing this expression with the Vandermonde decomposition, one can see
that the columns of S̄ and Ūn generate the same subspace and can therefore be
obtained one from the other by a multiplication with a non-singular matrix Q̄:

Ūn = S̄Q̄.

But then Ūn inherits the shift-invariance property of S̄:

(0.5.2) Ūn 2 :L+1 ,: = Ūn 1 :L,:Q̄−1ZQ̄.

The matrix Q̄−1ZQ̄ that can be computed from this equation is similar to Z. This
implies that by calculating the eigenvalues of Q̄−1ZQ̄ one has the elements of the
vector z.

In the real case, with noisy data, if the noise-to-signal ratio is small enough,
these calculations can be repeated “approximately” using the Hankel matrix Y(y)
instead. Now, as in the previous section, one determines the numerical rank of
Y(y) with respect to a given tolerance. Assuming that it is n, the matrix Y(y)
can be approximated by the rank-n matrix obtained by the TSVD,

Y(y) ' Yn = UnΣnV>n ,

where Σn = diag(σ1, · · · , σn) . The matrix Y(y) has no Vandermonde decompo-
sition, so the shift-invariance equation (0.5.2) is only approximately valid and the
next problem must be solved by least squares:

(0.5.3) Un 2 :L+1 ,: ' Un 1 :L,:Q−1ZQ.

One could use ordinary least squares, or the more adequate total least squares
(in Magnetic Resonance Spectroscopy (MRS) applications these are known as the
HSVD or the HTLS method, respectively), which has been found to be better for
problems with noise-contaminated data. This is so, because the assumption used in
TLS is that there are errors in both the matrix and the right-hand side and the idea
is to minimize both. The application of TLS to the present problem is carefully
described in [24] for multimensional TLS problems. Both methods involve an SVD
computation, either of Un 1:L,: for ordinary least squares, or of the augmented
matrix [Un :L; Un :L+,:] for HTLS.

The matrix Y(y) should be chosen as square as possible [31, p. 25]. The size
of Y(y) will be decisive in whether an iterative Lanczos method with reorthogonal-
ization (for larger sets) or the Golub-Kahan QR based algorithm is more efficient
for the computation of the SVD (see [24, Chapter 5] or [20, Chapter 9]).

0.6. Numerical results

There are several codes based on variable projections in the public domain. A
basic version can be found in Netlib [64] under the name of VARPRO. An extension
for problems with multiple right-hand sides is VARP2, also in [64]. In the Port
library, at the same site, there are careful implementations by Gay and Kaufman of
versions for the case of constrained and unconstrained separable nonlinear problems.
All these apply to linear combinations of real exponentials and many other basis
functions.

We include in the Appendix an executable for a GUI based version of VARPRO
using the Gay and Kaufman code as the computational engine. This program
includes a pre-packaged catalogue of the most commonly used functions, such as
sigmoids, Gaussians, etc., in addition to exponentials (see Documentation in the
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Table 1. Properties of various methods. FLP is the fast linear
prediction method and M-P the HSVD matrix-pencil method.

Property Mod. Prony FLP M-P VARPRO
Non-uniform spacing no no no yes
Ill-conditioned Φ(α) no yes yes yes
Equality constraints no no no yes
Complex models yes yes yes yes

Estimates “best” # of terms no yes yes no
Needs parameter initial guess no no no yes

Appendix) and it is fairly straightforward to use. This code allows multiple input
variables t, which is quite useful for training Neural Networks [43] (Sigmoids or
Radial functions) and other applications.

As mentioned in the introduction, the only available version of the modified
Prony algorithm is the Matlab program by G. K. Smyth [56]. Although it is only
implemented for models with no constant term, it can be easily modified to include
this option and that is what we used in the numerical results below.

The matrix-pencil methods are straightforward to implement and there are a
number of references in the specialized literature of programs tailored to specific
problems in signal processing and high-resolution imaging [31, 51]. Again, we
implemented a basic Matlab version, using ordinary least squares (HSVD) to solve
problem (0.5.3). Table 1 summarizes some of the advantages and disadvantages of
the different algorithms as described in the literature.

The variable projections implementation that we used permits initial guesses
for the nonlinear parameters or provides a number of initial values at random and
chooses the computations that give the best results. The modified Prony algorithm
also has options, either to input suitable initial values or to compute them. For
these two methods both approaches were tried.

Neither the fast linear prediction algorithm nor the matrix-pencil method re-
quire initial values. A drawback is then that they do not allow for a restriction
on the possible parameter values, i.e., for the incorporation of some a priori infor-
mation. On the other hand, when approximating data, these two subspace-based
methods have as advantage that they automatically choose the most appropriate
number of exponential terms. Of course, any of the methods can be run repeatedly
with different number of terms and the best results (based on RMS, say) can be
chosen, although there may be pitfalls associated with this approach..

All methods except VARPRO compute polynomial roots or eigenvalues of the
form: eαj∆t, which are therefore sensitive to the size of4t. An additional difference,
polynomial rootfinding, used in modified Prony and forward linear prediction, is
an ill-conditioned problem, even more so for multiple, or clusters of roots, as is
the case in some applications. On the other hand, the eigenvalue problem for a
symmetric matrix, as is Q−1ZQ for the matrix-pencil methods HTLS/HSVD, is
well-conditioned.

The conditioning or sensitivity of a nonlinear least squares problem to changes
on the data, i.e., an estimate of how well the parameters can be determined, is
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given, to a first approximation, by the condition number3 of the Jacobian J of r:
Jij = ∂ri

∂xj
, at the minimum x∗ ≡ (a, α).

A necessary condition for a critical point to be a minimum is that the matrix
H be positive definite, with H = J>J +

∑N
i=1 riGi , where Gi is the Hessian of a

component ri: Gijk = ∂2ri
∂xj∂xk

. In [7, Chapter 9] a more geometrical interpretation
using the normal curvature matrix is given.

The data sets were chosen to test two data fitting applications, parameter
estimation and data representation. We include timings as a reference, although
the Matlab implementations are not optimal and cannot be directly compared with
the VARPRO Fortran one. For the VARPRO runs with random initial guesses,
the listed time is an average of the times for 40 trials. In the tables below, we
list under (# l) and (# nl) the minimum number of correct decimals of the linear
and nonlinear parameters computed by the programs. The tests were run under
Windows with an Intel T9300, 2.5GHz, chip.

Simulated data problems. In the following two tests we try to recover the
parameters of a linear combination of exponentials to which noise has been added.
A measure of the sensitivity of the parameters to data perturbations can be derived
if one assumes that r(a,α) 0.2.2 is well approximated by a quadratic function in a
neighbourhood of the point x∗ ≡ (a, α),

(0.6.1) H4x = −J>r.

Here, 4x is the parameter’s perturbation.
For more details see [61] and also the chapter “Two exponential models for

optically stimulated luminiscence” in this volume.

Test #1. This data set is taken from [36]. It has 46 data points (yi, ti), i =
0, · · · , 45, with ti = 0.02i and yi ≈ µ(ti) = 4e−4ti − 4e−5ti , with noise added to
the model so that the yi have between one and two correct decimals (all the values
of yi are in the interval [0, 0.35]). The methods, VARPRO, modified Prony, and
matrix-pencil (HSVD) were tested.

The relative bounds for the parameters established using equation (0.6.1) give
a large uncertainty region that is consistent with the large errors in the data:

|δa1|
|a1|

≤ 12.19,
|δa2|
|a2|

≤ 12.18,
|δα1|
|α1|

≤ 1.32,
|δα2|
|α2|

≤ 1.44.

A plot of the surface r(a,α) as a function of the nonlinear parameters α ∈
[−6, 0] × [−6, 0], assuming that the optimal linear parameters a are computed via
linear least squares for eachα, shows a mostly flat surface, convex near the nonlinear
parameters (−4,−5), and with a “saddle” close to the (0, 0) corner. For confluent
parameter values α1 = α2, there is a discontinuity in the surface, (the model has
only one term). The plot of the curve r(a, α) for the confluent case has a well
defined minimum at α = 1.27. VARPRO converges to this α when starting from
randomly chosen initial values (see Table). However, a check of the eigenvalues of
H proves that this cannot be a local minimum as the matrix is not positive definite.

For the HSVD, two options were tried: allow the algorithm to estimate the
appropriate number of exponential terms, given the level of noise, or force it to

3The Euclidean condition number of a rectangular matrix A is κ2(A) = ‖A‖2
‚‚A+

‚‚
2
.
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Figure 0.6.1. Norm of residual surface as function of the nonlin-
ear parameters. The diagonal, where the parameters coincide and
there is a discontinuity is plotted separately.

Table 2. Results for Test #1

Method Initial guess # of terms Max. rel. error RMS # digits Time (sec.)
VARPRO random - 6.93e-1 5.33e-2 none 0.0018

“ α = (−1;−2) - 2.02e-1 1.49e-2 4l, 4nl 0.01
Mod. Prony computed - 2.38e-1 1.49e-2 2l, 3nl 0.46

“ α = (−1;−2) - 2.38e-1 1.49e-2 3l, 3nl 0.31
HSVD - 2 2.35e-1 1.49e-2 none 0.06

“ - estimated: 3 2.25e-1 1.48e-2 none 0.08

Table 3. Results for Test #2

Method Initial guess # of terms Max. rel error RMS # digits Time (sec.)
VARPRO random - 7.31e-4 3.14e-5 4l,4nl 0.05

Mod. Prony computed - 2.77e-1 1.89e-2 none 0.14
FLP - 4 - O(10−4) 3l,3nl -
HSVD - 4 6.3e-4 3.14e-5 3l,3nl 1.92

use the (in this case known) 2-term approximation. In this last case, even though
the RMS is small, the method failed to return an approximation of the parameter
values. The reason is the assumption on which the method is based, namely that the
shift-invariance property (0.5.2) for the model matrix Ȳ(µ) case is approximately
valid for the data matrix (0.5.3). For the present data set the noise is too large
and this hypothesis does not hold. In fact, if instead of using the above data one
decreases the noise level to HSVD returns with 1-2 correct decimals, both, for the
linear and the nonlinear parameters. RMS stands for Residual Mean Squares, i.e.,
the square root of the average sum of squares of residuals.

Test #2. This set [35] is obtained from a model with a constant term, yi ≈
µ(ti) = 10−2 + 2e−0.5ti + 4e−ti + 8e−2ti , where ti = 0.01i for i = 0, · · · , 999. The
yi are derived from the model values by rounding to 6 decimal digits and adding
noise of the order O(10−3). Here, under method FLP, we list results from [35].
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Table 4. Parameter’s uncertainty

parameter bound
a1 3× 10−2

a2 3.16× 10−2

a3 4.95× 10−3

a4 7.47× 10−3

α2 8.8× 10−3

α3 1.31× 10−2

α4 2.05× 10−3

Table 5. Results for Test #3

Method # terms Max. rel error RMS Time (sec.)
VARPRO 10 + constant 3.51e-7 3.39e-7 0.28

“ 12 + constant 3.65e-7 3.17e-7 0.22
Mod. Prony 10 + constant 9.93e-4 5.37e-4 0.08

“ 12 + constant too ill-cond - -

The condition number of the Jacobian at the model parameters is κ2(J) =
3.86 × 103 but the relative bounds for the parameters give a considerably smaller
uncertainty region:

Here, the poor results of the modified Prony method can be explained because
the roots of the characteristic polynomial zj = eαj4t are 0.9802, 0.9905 and 0.99501,
i.e., they are close together, so that even a small perturbation in the coefficients δ
affects them.

Approximation of difficult functions with high accuracy. Next we present
some results of exponential fitting for a couple of difficult functions mentioned in
recent work by Beylkin, Monzon and Mohlenkamp [4, 3]. The challenge is that
high precision is required and the problems are very ill-conditioned.

Test #3. We use the algorithms to fit 1/x sampled uniformly over the inter-
val [0.01, 1] (100 samples) with a linear combination of exponentials. To have an
estimate for the appropriate number of terms, the data were arranged in a 55× 45
Hankel matrix and the numerical rank was computed, suggesting the use of 16 terms
for the approximations. However, the numerical tests with the different algorithms
show that it is not possible, or of any advantage to use this many terms, as one can
see from the table below. HSVD cannot be used for this example (at t0 = 0 the
data is not defined).

Test #4. Finally, we consider the approximation of the Bessel function J0, a
damped oscillating function in the range [0, 20π], using 1000 equally spaced sam-
ple points. In VARPRO we take as basis functions the real part of a complex
exponential with a complex weight. Since Real(φ(x)) = Real[(a + ib)e(c+id)x] =
a ecx(cos(dx) − b/a sin(dx)), we can consider the real basis functions ψ(x) =
ecx(cos(dx)−λ sin(dx)) with real weights as our approximants. As explained above
the number of terms in HSVD are chosen automatically, depending on the level of
noise in the data. We considered the data correct up to 6, 12 and 16 decimals, for
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Table 6. Results for Test #4

Method # terms Max. rel error RMS Time (sec.)
VARPRO 21 1.68e-4 2.81e-7 1.4

“ 28 1.66e-4 2.81e-7 1.64
Mod. Prony 10 with constant term 0.99 0.18 0.09

“ 10 too ill-cond - -
HSVD 13 5.63e-5 9.04e-8 1.7

“ 21 5.11e-11 6.04e-14 1.65
“ 99 2.33e-11 2.9e-14 1.85

Figure 0.6.2. Results for Jo

the 13, 21 and 99 terms approximation. The non-VARPRO methods use complex
exponential approximations. In 0.6.2 we show the fit (true and approximated are
indistinguishable) and the absolute error for VARPRO using 20 terms.

These results are quite competitive with those obtained by Beylkin et al using
quite different techniques. What is very interesting in their approach is that the
approximation of 1/x, which might seem an elementary example, is transformed
into a powerful tool to obtain approximations to the Green function when x is
interpreted as the Laplacian. Coming from a totally different direction, related
results are obtained in the article by Pereyra, Suaya and Srivastava in this book.
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Table 7. Absolute errors on retrieved nonlinear parameters

R(α∗ − α) I(α∗ − α)
−0.0072 −0.0045

0.12 0.19
−0.046 −0.073
0.0037 −0.015

Numerical results for the complex case. We have implemented the sim-
plest method of section 0.3. We used subroutine CGESVD from LAPACK to cal-
culate the SVD of the complex matrix Φ. We have run a number of tests using
randomly generated target values for the nonlinear parameters to create artificial
data sets in order to validate the algorithm. The main observation is that, as we
have indicated before, it is wise to make several runs using different randomly cho-
sen initial values and then select the best fit from them. For a particular case with
4 exponentials, we chose to make 10 runs and the 7th gave the smallest residual
norm, namely 2.9 10−11.

We consider now some typical real data provided by Navin Srivastava (UC
Santa Barbara). See more details in the Chapter by Pereyra, Suaya and Srivastava
in this book. The model for this problem is:

Φ(λ; a,α) =
n∑
j=1

aje
αjλ/z,

where z = 2π105(1 + i), i =
√

(−1). Thus, it can be writen as:

Φ(λ; a,α) =
n∑
j=1

aje
(1−i)αjλ/4π105

,

with αj real and aj complex. There are also some additional restrictions:

0 < <(aj) < 1, αj ≤ 0,
∑

aj = (1, 0).

The constraints on the nonlinear parameters α are introduced as a large penalty
on the goal functional. However, for the VP algorithm there is no possibility of
introducing constraints on the linear parameters, because they are eliminated from
the problem and are recovered at the end as functions of the nonlinear ones. What
happens is that through the definition of a (0.3.3), the constraints get translated
into constraints on the nonlinear parameters.

In Table 8 we show some results of fitting the first data set with an increasing
number of exponentials. We observe a consistent behavior, in the sense that an
increasing number of exponentials improves the RMS. Two other good things seem
to happen:

• The problems are not too ill-conditioned.
• The constraints on the linear parameters are satisfied automatically (to

high precision!) - that is shown in column 3; recall that the ai’s are
complex. This is altogether not very surprising if the model is a good
approximation, because for small values of λ the data is essentially (0, 1)
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Figure 2

Table 8. Results for complex data. For cases 2, 4, 6, 8 we run
only one trial; for case 10 we run 3 different randomly chosen initial
values.

# exp. RMS Σai
2 0.025 (1.01,0.003)
4 0.0019 (0.9996,-2.7(-5))
6 0.00034 (0.99999, 5.2(-5))
8 0.000082 (0.9999998, -3.5(-6))
10 0.000031 (0.999989,-9.3(-6))

and due to the small factor, the exponentials are essentially equal to 1
and therefore the model reduces to the sum of the linear parameters.

0.7. Sensitivity

Regarding the issue of sensitivity of the fitting parameters with respect to
variations in frequency, one has to be careful. As shown above, this problem has
multiple solutions. The different trials were started with random guesses for the
nonlinear parameters generated in [−1, 0]. What we recommend to obtain a stable
solution is to use continuation in frequency. By this we mean start at the easiest
end of the frequency spectrum, using the multiple trial approach. Select the best
solution, in terms of fit and compliance with the ′a′ constraints. Then use this
solution to start the calculation for the next neighboring frequency and so on. Do
not use multiple trials during the continuation, but monitor the results. It might
need to be re-started if it goes off the tracks.

As an example we have generated the data for freq = 9× 1010, sigma4 = 100.
The resulting parameters are shown below for the case of 8 exponentials. We
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Table 9. Results for perturbed frequency. Residual: 8.5045642E-05.

Exponential Real(α) Imaginary(α) a
1 -0.177E+00 0.955E-02 -0.107E-01
2 -0.111E+01 0.133E+00 -0.806E+00
3 -0.272E+00 0.145E-01 0.236E-01
4 -0.121E+01 0.253E+00 0.919E+00
5 -0.498E+01 0.354E+00 -0.106E+00
6 -0.996E+01 -0.425E-01 -0.217E+00
7 -0.258E+01 0.302E+00 0.151E+00
8 -0.160E+02 -0.233E-01 0.447E-01

used as an starting point the values of the nonlinear parameters calculated for
freq = 1010, sigma4 = 100. There are no significant changes in the parameters or
the performance of the fit.

0.8. Some Applications

A number of important applications of the above and other special methods
are presented in the next chapters of this book. We survey here some additional
applications related to classical and modern telecommunication and other problems,
which can be cast as Separable Nonlinear Least Squares (SNLS) problems of fitting
a linear combination of complex exponentials, where the linear coefficients represent
amplitude while the nonlinear ones are the phases of the signals.

Roy and Kailath [48] describe in detail applications to practical signal pro-
cessing problems. The objective there is to estimate from measurements a set of
constant (time-independent) parameters upon which the received signal depends.
Among these, high-resolution direction of arrival (DOA) estimation is important
in many sensor systems such as radar, sonar, electronic surveillance, and seismic
exploration. High-resolution frequency estimation is important in numerous appli-
cations, such as the design and control of robots and large flexible space structures.
In such problems, the functional form of the underlying signals can often be as-
sumed (e.g., narrow-band plane waves, cisoids). The quantities to be estimated are
parameters in these functional descriptions, such as frequencies and directions of
arrival for plane waves, or cisoid frequencies.

Several approaches have been developed through the years for solving these
problems, including Capon’s [11] maximum likelihood and Burg’s [9] maximum
entropy methods. These methods have significant limitations and Pisarenko was
one of the first to consider the structure of the data model to estimate the param-
eters of cisoids in additive noise using a covariance approach. Schmidt [52] and
Bienvenu [6] were the first to exploit correctly the measurement model in the case
of a sensor array of arbitrary form. Schmidt’s algorithm, MUSIC (MUltiple SIgnal
Classification), which according to that author was inspired by the separation of
variables technique, has been widely studied and was considered in an MIT study
of that time as the most promising high-resolution algorithm. However, MUSIC’s
success came at a high computational cost that involved a search in parameter
space and the storage of array calibration data.

Roy and Kailath developed a new algorithm, called ESPRIT, that dramatically
reduced the computational cost and storage for sensor arrays that show what they
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call displacement invariance. These are arrays where the sensors come in matched
pairs with identical displacement vectors.

Unfortunately, many of the earlier simplified algorithms are ineffective when
some of the sources are coherent. This can stem from multipath effects or it can
be introduced artificially to impede detection. Kumaresan and Shaw [28] and
Cadzow [10] have studied in detail the application of separation of variables to this
classical problem. More recently, a number of new algorithms have been developed
to consider the more challenging problem of multiple broad-band source location.
A variety of least squares modeling methods provide viable means for overcoming
the difficulties of coherent sources.

Cadzow [10] presents a method that models the signal eigenvectors. These are
linear combinations of steering vectors instead of the sensor signals, which intro-
duces a smoothing effect and decreases the computational cost, while the use of the
Variable Projection (VP) approach produces significant additional computational
savings. As Roy and Kailath [48] indicate, VP-type algorithms were considered too
expensive until fairly recently, thus justifying the use of the simplified SVD based
ones. However, the increasing power of modern computers has rendered some of
those arguments and simplified methods obsolete, especially in low signal-to-noise
situations, where they do not work well.

Friedlander [15] has analyzed the sensitivity of the Maximum Likelihood method
for the problem above. This is a separable problem and the sensitivity study in-
volves the differentiation formulas of [17]. This analysis is valuable because the
fast algorithms require a knowledge of the antenna array that is hard to come by
in real situations, and thus have not been used as often as they deserve.

Talwar et al. [58, 57] have considered the problem of estimating co-channel
digital signals using an antenna array when the spatial response of the array is
unknown. Traditional techniques, such as MUSIC or ESPRIT, are dependent on
the reliability of the array manifold. In the application the authors envision (mo-
bile communications), the array manifold is poorly determined because of a highly
variable propagation environment. They consider instead a block SNLS approach,
which is both fast and reliable.

Rao and Arun [46] discuss the problem of estimating closely spaced frequen-
cies of multiple, superimposed sinusoids from noisy measurements as a SNLS
problem. This variant of the problem discussed earlier has wide applications in
radio-astronomy, interference spectroscopy, seismic dataprocessing, and MR spec-
troscopy. Because of the cost of the computation, as compared to the simplified
methods, SNLS is only advisable at low signal-to-noise ratios.

Zhou, Yip and Leung [63] consider the DOA problem for multiple moving
targets by a passive array of sensors, a problem of great interest in communications,
air traffic control, and tactical and strategic defense operations. In satellite and
personal communication systems it is also advantageous to deploy sensor arrays
to reject undesired signals. The classical techniques mentioned above deteriorate
rapidly in the presence of moving targets, since they provide poor resolution because
of the spread array spatial spectrum caused by the target motion. This deterioration
increases with the number of sensors. Zhou et al. propose a maximum likelihood
algorithm, where the target motion is assumed to be locally linear, which helps
eliminate the spread spectrum effects and provides accurate target dynamical state
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estimates. Since they use the array signal model for an array of omnidirectional
sensors, their approach leads to a separable problem that is solved by aVPmethod.

Lilleberg et al. from Nokia Mobile Phones [32] consider a near-far resistant
iterative algorithm for multiuser signature sequence delay estimation. VP is used
to separate the delay and data to be estimated, obtaining a so-called blind maximum
likelihood estimator that does not require any knowledge of user amplitudes and
data.

Heredia and Arce [23] have considered the splitting of a signal into a set of
multilevel components as an SNLS problem. They use as a comparative example
a system identification problem for wave propagation through a nonlinear multi-
layer channel, where they test the new concepts against Linear, Volterra, and Neural
Network alternatives. They show that the realization of piecewise linear filters with
unknown thresholds leads to a SNLS problem. In the test problem they verify that
the new approach can cope with the difficulties of the problem that trip the Volterra
and Neural Network approaches.

Baum et al. [1] review the singularity expansion method (SEM) for quanti-
fying the transient electromagnetic scattering from targets illuminated by pulsed
EM radiation. The SEM theory suggests that the late-time scattered field of
a target, interrogated by pulsed EM radiation, can be represented as a sum of
natural-resonance modes. Since the excitation-independent natural frequencies de-
pend upon the detailed size and shape of the target, the full complement of those
frequencies is unique to a specified target and provides a potential basis for its
identification. The first efforts to extract such natural frequencies from measured
target pulse responses were based on Prony’s method. However, in the practical
low signal-to-noise environment in which this inverse problem occurs, only one or
a few modes could be extracted reliably using that inherently unstable algorithm.
Although several efforts have improved the reliability of Prony-based methods, re-
alistic problems require a nonlinear approach, and since the problem is separable,
VP has found another good application in the radar cross-section identification
business.

In [2], Beece et al. use a VP algorithm in an exponential fitting problem
associated with the effect of viscosity on the kinetics of the photochemical cycle
of bacteriorhodopsin. Marque and Eisenstein [34] extend this work to consider
pressure effects on the photocycle of purple membrane. By considering several
kinetic data sets taken at the same temperature and pressure but with different
monitoring wavelengths and an exponential model, they are able to use VARP2 to
separate the variables and efficiently solve a problem with multiple right-hand sides.
The first to use this method in these type of problems was Richard Lozier [33], who
motivated the development of the VARP2 extension and became a champion in
this field for many years (we thank Randy LeVeque for this insight).

A recent flurry of activity in using VP has occurred in the problem of super-
resolution, i.e., the combination of multiple resolution signals that requires regis-
tration (alignment) [12, 47, 60].
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0.9. Appendix

In this Appendix we collect additional material that might be useful to some
readers. First of all, we offer an executable and corresponding documentation for
the Gay-Kaufman VARPRO code (nsf) [16] with a GUI that, we hope, will facilitate
considerably its use: VARPRO_doc.pdf, varpro.1.0.setup.zip.
We also include a number of data sets related to the problems used to compare
codes in this chapter. For tests #1 to #4 in the Numerical results section, there
is a corresponding file with extension .dat: Test_1_t_y.dat, Test_2_t_y.dat,
Test_3_t_y.dat, Test_4_t_y.dat. The files contain N records, each with a data
pair (yi, ti), as described in section 0.6.



Bibliography

[1] Baum, C. E., E. .J. Rothwell, K-M. Chen, and D. P. Nyquist, “The singularity expansion
method and its application to target identification.” Proc. IEEE 79:1481-1492 (1991).

[2] Beece, D., S. F. Bowne, J. Czege, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, J.
Marque, P. Ormos, L. Reinisch, and K. T. Yue, “The effect of viscosity on the photocycle of
bacteriorhodopsin.” Photochemistry and Photobiology 33:517-522 (1981).

[3] Beylkin, G. and M. Mohlenkamp, “Numerical operator calculus in higher dimensions”. Proc.
Nat. Academy of Sciences 99:10246-10251 (2002).

[4] Beylkin, G. and L. Monzon, “On generalized Gaussian quadratures for exponentials and their
applications”. Applied and Computational Harmonic Analysis, 12:332-373 (2002).

[5] Beylkin, G. and L. Monzon, “On approximation of functions by exponential sums”. Appl.
Comput. Harmon. Anal. 19:17-48 (2005).

[6] Bienvenu, G., and L. Kopp, “Adaptivity to background noise spatial coherence for high reso-
lution passive methods.” Proc. IEEE on Acoustics, Speech, and Signal Processing, 5:307-310
(1980).

[7] Björck, Å., Numerical Methods for Least Squares Problems. SIAM Pub., Philadelphia, PA
(1996).

[8] R. P. Brent, Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood
Cliffs, NJ (1973).

[9] Burg, J. P., “Maximum entropy spectral analysis.” Soc. Exploration Geophysicists 37th An-
nual Meeting Extended Abstracts (1967).

[10] Cadzow, J. A., “Multiple source location–The signal subspace approach.” IEEE Trans. on
Acoustics, Speech, and Signal Processing 38:1110-1125 (1990).

[11] Capon, J., “High-resolution frequency-wavenumber spectrum analysis.” Proc. IEEE 57:1408-
1418 (1969).

[12] Chung, J., E. Haber and J. Nagy, “Numerical method for coupled super-resolution”. Inverse
Problems 22:1261-1272 (2006).

[13] Dennis, J. E., D. M. Gay and R. W. Welsch, “NL2SOL-An adaptive nonlinear least squares
algorithm”. ACM TOMS 7:369-383 (1981).

[14] de Prony, Baron Gaspard Riche, “Essai éxperimental et analytique: sur les lois de la dilatabil-
ité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes
températures.” Journal de l’École Polytechnique 1:24-76 (1795).

[15] Friedlander, B., “Sensitivity analysis of the maximum likelihood direction-finding algorithm.”
IEEE Trans. on Aerospace and Electronic Systems 26:953-968 (1990).

[16] D. Gay and L. Kaufman, NSF, port library, http://www.netlib.org/port/dnsf.f (last accessed:
9/2/2009).

[17] Golub, G. H. and V. Pereyra, “The differentiation of pseudoinverses and nonlinear least
squares problems whose variables separate”. SIAM J. Numer. Anal. 10:413-432 (1973).

[18] Golub, G. H. and R. LeVeque, “Extensions and uses of the variable projection algorithm for
solving nonlinear least squares problems’. Proceedings of American Numerical Analysis and
Computer Conference (1979).

[19] Golub, G. H. and V. Pereyra, “Separable nonlinear least squares: the Variable Projection
method and its applications”. Inverse Problems 19:R1-R26 (2003).

[20] Golub, G. H. and C. F. Van Loan; Matrix Computations, 3rd. ed., John Hopkins Univ. Press,
Baltimore (1996).

[21] Guttman, I., V. Pereyra and H. D. Scolnik, “Least squares estimation for a class of non-linear
models”. Technometrics, 15:209-218 (1973).

25



BIBLIOGRAPHY 26

[22] Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems. SIAM Pub., Philadelphia,
PA (1998).

[23] Heredia, E. A. and G. R. Arce, “Piecewise linear systems modeling based on a continuous
threshold decomposition.” IEEE Trans. on Signal Processing 44 (1996).

[24] V. Huffel, S. and J. Vandewalle, The Total Least Squares Problem, SIAM Pub., Philadelphia,
PA (1991).

[25] Istratov, A. A. and O.F. Vyvenko, “Exponential analysis in physical phenomena”. Rev. Sc.
Instruments 70:1233-1257 (1999).

[26] Kaufman, L., “A variable projection method for solving separable non-linear least squares
problems”, BIT 15:49-57 (1975).

[27] Krogh, F. T., “Efficient implementation of a variable projection algorithm for nonlinear least
squares problems”. Comm. ACM 17:167-169 (1974).

[28] Kumaresan, R. and A. K. Shaw, “Superresolution by structured matrix approximation.” IEEE
Trans. on Antennas and Propagation 36:34-44 (1988).

[29] Kung S. Y., K. S. Arun and Bhaskar Rao D. V., “State-space and singular value
decomposition-based approximation methods for the harmonic retrieval problem”, J. Opt.
Soc. Am. 73: 1799-1811 (1983).

[30] Lanczos, C., Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ (1956).
[31] Laudadio, T., Subspace-Based Quantification of Magnetic Resonance Spectroscopy Data Us-

ing Biochemical Prior Knowledge, Ph. D. Thesis, Faculty of Engineering, K. U. Leuven,
Leuven, Belgium (2005).

[32] Lilleberg, J., E. Nieminen and M. Latva-aho, “Blind iterative multiuser delay estimator
for CDMA.” Proc. IEEE Int. Symp. Personal Indoor and Mobile Radio Communications
(PIMRC), pp. 565-568. Taipei, Taiwan (1996).

[33] Lozier, R. H., R. A. Bogomolni and W. Stoeckenius. Biophys. J. 15:955-962 (1975).
[34] Marque, J. and L. Eisenstein, “Pressure effects on the photocycle of purple membrane.”

Biochemistry 23:5556-5563 (1984).
[35] Nielsen, H. B., “Multi-exponential fitting of low-field H NMR data”, Tecnical report IMM-

REP-2000-03, Dept. of Mathematical Modelling, Technical University of Denmark (2000).
[36] Nielsen, H. B., “UCTP test problems for unconstrained optimization”, Tecnical report IMM-

REP-2000-17, Dept. of Mathematical Modelling, Technical University of Denmark (2000).
[37] Osborne, M. R. “A class of nonlinear regression problems”, in Data Representation, R. S.

Anderssen and M. R. Osborne, eds., University of Queensland Press, St. Lucia, pp. 94-101
(1970).

[38] Osborne, M. R. “Some special nonlinear least squares problems”. SIAM J. Numer. Anal.
12:571-592 (1975).

[39] Osborne, M. R. and G. K. Smyth, “A modified Prony algorithm for fitting functions defined
by difference equations”. SIAM J. Sci. Comp. 12:362-382 (1991).

[40] Osborne, M. R. and G. K. Smyth, “A modified Prony algorithm for exponential function
fitting”. SIAM J. Sci. Comp. 16:119-138 (1995).

[41] Osborne, M. R., “Separable least squares, variable projections, and the Gauss-Newton algo-
rithm”. ETNA 28:1-15 (2007).

[42] Papy, J. M., L. De Lathauwer and S. Van Huffel, “Exponential data fitting using multilinear
algebra: The single-channel and multi-channel case”. Numerical Linear Algebra with Appl.
12:809-826 (2005).

[43] Pereyra, V., G. Scherer and F. Wong, “Variable projections neural network training”. Math-
ematics and Computers in Simulation 73:231-243 (2006).

[44] Pereyra, V., “Fast computation of equispaced Pareto manifolds and Pareto fronts for multi-
objective optimization problems”. Mathematics and Computers in Simulation 79:1935-1947
(2009).

[45] Pereyra, V., M. Saunders and J. Castillo, “Equispaced Pareto front construction for con-
strained multiobjective optimization”. Submitted for publication to ETNA (2009).

[46] Rao, B. D., and K. S. Arun, “Model based processing of signals: a state space approach.”
Proc. IEEE 80:283-309 (1992).

[47] D. Robinson, F. Farsiu and P. Milanfar, “Optimal registration of aliased images using variable
projection with applications to super-resolution”. The Comp. J. (2007).

[48] Roy, R. and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance
techniques.” IEEE Trans. on Acoustics, Speech, and Signal Processing 37:984-995 (1989).



BIBLIOGRAPHY 27

[49] António E. Ruano, Pedro M. Ferreira, C. Cabrita, S. Matos, “Training neural networks and
neuro-fuzzy systems: an unified view”. Proceedings IFAC 15th Triennial World Congress
(2002).

[50] A. E. B. Ruano, P. J. Fleming and D. I. Jones, “Connectionist approach to PID autotuning”.
Contro Th. Appl. IEE Proc. D 139:279-285 (2002).

[51] Sarkar T. K. and O. Pereira, “Using the matrix pencil method to estimate the parameters of
a sum of complex exponentials”, IEEE Antennas and Propagation, 37: 48-55 (1995).

[52] Schmidt, R. O., “Multiple emitter location and signal parameter estimation.” Proc. RADC
Spectrum Estimation Workshop (1979).

[53] Seber, G. A. F. and C.J. Wild, Nonlinear Regression. Wiley Interscience, New York (2003).
[54] Shrager, R. I. and R. W. Hendler, “Some pitfalls in curve-fitting and how to avoid them: A

case in point”. J. Biochem. Biophys. 36:157-173 (1998).
[55] Sjöberg, J. and M. Viberg, “Separable non-linear least squares minimization – possible im-

provements for neural net fitting”. IEEE Workshop in Neural Networks for Signal Processing.
Amelia Island Plantation, FL (1997).

[56] Smyth G., http://www.statsci.org/other/prony.html, 30 June 2009.
[57] Talwar, S., Blind Space-Time Algorithms for Wireless Communication Systems. Ph. D. The-

sis, SCCM, Stanford University (1996).
[58] Talwar, S., M. Viberg and A. Paulraj, “Blind estimation of multiple co-channel digital signals

arriving at an antenna array.” IEEE SP Letters 1:29-31 (1994).
[59] Van Blaricum M. L. and R. Mittra, “Problems and solutions associated with Prony’s method

for processing transient data”, IEEE Transactions on Antennas and Propagation, AP-26:174-
182 (1978).

[60] P. Vandenwalle, “Super-resolution from unregistered aliased images”. Master Thesis in E. E.,
Katholieke Univ. Leuven, Belgium (2006).

[61] Varah, J. M., “On fitting exponentials by nonlinear least squares”. SIAM J. Sci. Stat. Comput.
6:30-44 (1985).

[62] Wold, H. and E. Lyttkens, “Nonlinear iterative partial least squares (NIPALS) estimation
procedures”. Bull. ISI 43:29-51 (1969).

[63] Zhou, Y., P. C. Yip and H. Leung, “Tracking the direction-of-arrival of multiple moving
targets by passive arrays: algorithm.” IEEE Trans. on Signal Proc. 47:2655-2666 (1999).

[64] http://www.netlib.org, 30 June 2009.


	_CSRSR2009-04.pdf
	0.1. Introduction (VP September 4)
	Acknowledgement
	0.2. Separable nonlinear least squares and its solution by Variable Projections
	0.3. Complex VARPRO
	0.4. Prony-type or polynomial methods
	0.5. Subspace or matrix-pencil method HTLS/HSVD
	0.6. Numerical results
	0.7. Sensitivity
	0.8. Some Applications
	0.9. Appendix
	Bibliography


