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Abstract

We describe a computational framework for the comprehensive assessment
of contractile responses of enzymatically dissociated adult cardiac myocytes.
The proposed methodology comprises the following stages: digital video
recording of the contracting cell, edge preserving total variation-based image
smoothing, segmentation of the smoothed images, contour extraction from
the segmented images, shape representation by Fourier descriptors, and con-
tractility assessment. The different stages are variants of mathematically
sound and computationally robust algorithms very well established in the
image processing community.

The physiologic application of the methodology is evaluated by assessing
overall contraction in enzymatically dissociated adult rat cardiocytes. Our
results demonstrate the effectiveness of the proposed approach in character-
izing the true, two-dimensional, ‘shortening’ in the contraction process of
adult cardiocytes. We compare the performance of the proposed method to
that of a popular edge detection system in the literature.

The proposed method not only provides a more comprehensive assessment
of the myocyte contraction process, but can potentially eliminate historical
concerns and sources of errors caused by myocyte rotation or translation
during contraction. Furthermore, the versatility of the image processing
techniques makes the method suitable for determining myocyte shortening
in cells that usually bend or move during contraction. The proposed method
can be utilized to evaluate changes in contractile behavior resulting from drug
intervention, disease modeling, transgeneity, or other common applications
to mammalian cardiocytes.

Key words: cardiac myocyte, contractility, cell shortening, image
processing, Fourier descriptors, cell tracking
PACS: 87.19.Hh, 07.05.Pj, 33.20.Ea
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Introduction

Worldwide, it is estimated that 17.5 million people die of cardiovascu-
lar disease (CVD) every year, with an approximate cost of �310.23 billion
(World Heart Federation. Available at http://www.worldheart.org. Accessed
20090514). Because CVD remains the main cause of death in the world, con-
siderable amounts of resources are devoted to cardiovascular research every
year.

The study of cardiocyte contractility has helped unveil the fundamental
processes underlying heart function in health and disease [1, 2]. The analysis
of cardiocyte mechanics has historically proven an excellent tool in provid-
ing relevant information on the excitation-contraction coupling of the heart.
Many inotropic factors modulate the contractile behavior of the heart, which
can be conveniently studied in enzymatically dissociated (isolated) cardio-
cytes [3, 4, 5, 2]. Researchers commonly measure calcium transient signals,
gene and protein expression, and contractility to assess the function and state
of these isolated cardiocytes in all their stages [1, 6].

Isolated adult, neonatal, and embryonic cardiocytes from mammalian
hearts are widely used in cardiovascular research [3, 4, 5, 2]. Adult car-
diac ventricular myocytes have been used as analysis tool in cardiovascular
research for almost thirty years, and the popularity of this approach is con-
stantly reinforced by the numerous studies published every year [3]. How-
ever, during the last decade, the majority of researchers performing long-term
(longer than 1 week) studies have favored the use of embryonic and neonatal
cardiocytes [5]. Yet, changes in expression of ion channels and contractile
protein isoforms during the development of the cardiocytes, pose a prob-
lem when making the extrapolation to the fully developed adult cardiocyte.
These are strong reasons for researchers to consider using adult cardiocytes
when possible [5].

There are several methodologies for assessing the contractility of cardio-
cytes. The most popular methods include the ones that use laser diffraction
techniques [7] and photodiode arrays [8], and those that employ the monitor-
ing of microscopic cell images [9, 10, 11]. Among the latter of these is the edge
detection method that employs a raster-line to detect changes in myocyte
length by sensing left and right cell boundaries using a threshold [10]. This
edge detection method is a widespread approach in research involving adult
cardiocytes [4, 12, 13, 10]. This method presents some practical difficulties in
its implementation. Geometrical and boundary characteristics of adult car-
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diocytes are most commonly irregular due to gap junction ends (jagged edge
ends), multiple intercalated disks, and variable cell widths, which can po-
tentially complicate the application of the edge detection system on the car-
diocyte [4]. Cardiocyte motion can also occur in unexpected directions since
cardiocytes will commonly rotate or move vertically—perpendicular to the
raster line—depending upon the location or absence of adhesion points [4].
These conditions can lead to complications in the implementation of the
edge detection system, and consequently, can result in an inaccurate analy-
sis [4, 12, 13].

Background and Previous Work

The cardiac myocyte is approximately 25 µm in diameter and about
100 µm in length. It is composed of bundles of myofibrils that contain myofil-
aments. Myofibrils have distinct, repeating microanatomical units, termed
sarcomeres, which are the basic contractile units that make up a myocyte.
The region of myofilament structures between two Z-lines is defined as a
sarcomere. The Z-line’s associated structures are responsible for the lateral
alignment of myofibrils and the generation of active contraction in cardiac
muscles [14]. The distance between Z-lines—which is equivalent to the sar-
comere length—ranges from about 1.6 to 2.2 µm in human hearts. The
sarcomere is composed of thick and thin filaments, myosin and actin, re-
spectively. Chemical and physical interactions between the actin and myosin
cause the sarcomere length to shorten, allowing the myocyte to contract dur-
ing the process of excitation-contraction coupling [15].

Contractility can be defined as the intrinsic ability of the heart muscle
to generate force and to shorten. At the molecular level, the contractile pro-
cess originates from the change in concentrations of calcium (Ca2+) ions in
the myocardial cytosol. Ca2+ ions enter through the calcium channel that
opens in response to the wave of depolarization that travels along the sar-
colemma. These Ca2+ ions trigger the release of additional calcium from the
sarcoplasmic reticulum, thereby initiating a contraction-relaxation cycle [16].

The need for an accurate method to assess different aspects of a myocyte
has led researchers to explore several techniques in order to quantify contrac-
tility. Some of these methods are not very popular due to the expensive equip-
ment required, as in the case of the scanning ion conductance microscopy
method [6]. This method involves using a distance modulated approach for
scanning ion conductance microscopy. It provides a distance control mech-
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anism to image surface sections of contracting myocytes. This technique,
combined with laser confocal microscopy, measures myocyte height and local
calcium concentration during contractility.

Other methods—such as light diffraction techniques—have been applied
to the study of muscle mechanics since the nineteenth century [17]. The reli-
ability of these studies is relatively high, although they are highly dependent
upon different factors. These include the temporal resolution of the detec-
tion system, sarcomere periodicity values, and other optical artifacts [4]. The
sarcomere striation pattern detection method has also been used as a way
to quantify contractility. The method can achieve high temporal resolution
with the aid of CCD line array detectors and it provides a measure of average
sarcomere periodicity from the entire cell or cell regions [18]. One drawback
is this method’s vulnerability to errors introduced by cell geometry and ro-
tational and translational changes which can occur during contraction [4].

One of the first video-based efforts to measure contraction was performed
with the assistance of a device capable of capturing the extent and rate of
length shortening of isolated cardiac myocytes [10]. The video-based method
uses two tracking points at each end of the myocyte to track edge displace-
ment as the myocyte contracts. The distance between the two edges is mea-
sured using edge detection while a record of the data is stored in a separate
file. The method generally produces satisfactory results and has been an ap-
proved and widely used method for measuring contractile responses of adult
myocytes for over twenty years [4, 12].

Several problems have been identified with the application of the video-
based edge detection method for measuring adult myocyte contractility [4].
The method can potentially introduce errors to the analysis caused by several
factors. The first inconvenience when analyzing myocyte contractility with
this method is the need to have the cell positioned parallel to the raster-
line. The myocyte should be perfectly positioned in the center of the screen
(parallel to the raster-line), and the proper threshold conditions must be set
to detect the edges and follow them through a contraction. These threshold
conditions are somewhat difficult to set depending upon the characteristics
of the cell. The most important source of error that can be potentially
introduced during the application of this method is the result of unexpected
myocyte movements. Myocytes will often rotate sideways or out of the plane
of focus depending upon the presence or absence of adhesion points. The
changes in myocyte geometry, dynamic torquing, and rotation can lead to
errors in the experiment [4, 12, 2].
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We propose a complete computational framework based on well estab-
lished image processing techniques for the assessment of contractility of iso-
lated cardiac myocytes. The proposed methodology is a multi-step process
that provides a comprehensive account of the cardiac myocyte contraction
process. The proposed method is discussed in the next section.

Materials and Methods

The proposed computational framework for assessing the contractility in
cardiac myocytes comprises the following stages: digital video recording of
the contracting cell, edge preserving total variation-based image smoothing,
segmentation of the smoothed images, contour extraction from the segmented
images, shape representation by Fourier descriptors, and contractility assess-
ment.

Previous to the application of the proposed methodology, the specimen
is appropriately prepared as follows. Sprage-Dawley rats purchased from
Harlan (CA, U.S.A.) were used for this study. The cardiocytes were enzy-
matically dissociated as described in [19]. After the isolation, the cells re-
mained in the incuvator at least 12 hours in serum-free Medium 199 (GIBCO
12350, Invitrogen Corporation, Carlsbad, CA, U.S.A.) before any measure-
ments were performed. Once ready for measurements, the cells were washed
twice using serum-free media. Fresh media was then gently added back to
the wells. Cardiocytes were platted without Laminin to ensure that the cells
were free floating (without adhesion points) in the wells during the digital
video recording.

Digital Video Recording

To capture the contraction process of the isolated cardiac myocytes the
following procedure was employed. Cells were placed in a chamber mounted
on the stage of an inverted microscope (NIKON #ELWD, Nikon Corpora-
tion, Tokyo, Japan). Myocytes with obvious sarcolemmal blebs or spon-
taneous contractions were not used. Only rod-shaped myocytes with clear
edges were selected for recording of mechanical properties. The cells were
field stimulated with a supra-threshold (50%) voltage at a frequency of 0.33
Hz, for a 3 msec duration. The stimulation was performed using a pair of
platinum wires placed on opposite sides of the chamber connected to an elec-
trical stimulator (Grass SD9, Grass Technologies, West Warwick, RI, U.S.A.).
The polarity of the stimulatory electrodes was reversed automatically every
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10 stimuli to prevent electrode polarization. Myocyte motion was digitally
recorded with a camera (PULNIX TM-1327, JAI PULNiX Inc., San Jose,
CA, U.S.A.) mounted on the microscope, at a rate of 30 fps. Video files
containing the contraction activities were stored for the analysis.

Edge Preserving Total Variation-Based Image Smoothing

We chose a total variation (TV)-based method for smoothing isotropic
regions while preserving the cell’s edges in order to facilitate the segmenta-
tion step of the computational framework. Rudin, Lions and Osher [20] have
argued that there are a number of reasons for preferring TV-based image
smoothing models over their counterparts. TV-based algorithms are rela-
tively simple to implement and result in minimal ringing (non-oscillatory)
while recovering sharp edges (noninvasive). In other words, the TV-norm
allows piecewise smooth functions with jumps and is the proper space for
the analysis and recovery of discontinuous functions. Also, the TV-based
formulations make a priori assumptions about the noise, and therefore they
can be tailored to address the specific image restoration problem at hand.
Furthermore, empirical evidence suggests that ‘the human vision favors the
L1-norm’ [21]. In summary, the TV-based formulations seem to be a suitable
approach for restoring piecewise continuous functions from noisy and blurry
signals. Appendix A provides a more detailed exposition of the original TV-
based formulation due to Rudin, Osher and Fatemi [22] along with some of
the improvements proposed over the years, including the ones by two of the
authors of this paper [23, 24, 25].

The edge preserving TV-based image smoothing model used in our ex-
periments is given by

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ Λ (u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

(1)

where u and u0 are the filtered and the observed images, respectively. The
dynamic parameter Λ is defined as

Λ = − 1

2σ2
∇uT · (∇u−∇u0) , ∀ t, (2)
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with the approximation to the variance of the noise σ2 given by

var
(
ηt+1

)
= var

(
ut

)− var
(
Gσ ∗ ut

)
, ∀ t, (3)

and the dynamic time step expressed as

δt =
ε

5
+

(
1

4
− ε

5

)(
max (|∇u|)− |∇u|

max (|∇u|)
)

, ∀ t, (4)

with ε = 1/255. For more details on this model the reader is referred to [23].
The algorithm to implement the edge preserving total variation-based image
smoothing model is given in Appendix B. Fig. 1 shows an example of the
application of the edge preserving TV-based image smoothing model to a
frame depicting an adult myocyte.

Figure 1: Top: Original image of enzymatically dissociated adult cardio-
cyte taken from video depicting contractile activity. Contractile activity
was recorded using bright light microscopy, while the cell was in a field
stimulated chamber. Bottom: Smoothed image of the same enzymatically
dissociated adult cardiocyte during contractile activity, after applying the
edge preserving TV-based image smoothing algorithm.
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Segmentation of the Smoothed Images

Segmentation of an image produces a set of labeled partitions or segments
that represent the different components or features. This simplified image
allows for an easier extraction of the main contours of the image. In our ap-
plication this facilitates the identification of the contours of the cell that will
permit the assessment of contractility of the cardiac myocyte. Most segmen-
tation algorithms can be used for this purpose. In our application, the speed
of execution becomes the principal constraint—because the segmentation of
several hundreds of images is required. Thus, we implemented a fast and
robust segmentation technique based on the one presented in [26]. Fig. 2-
Top shows the segmented image of the cell after applying the segmentation
procedure.

Figure 2: Top: Segmented image of enzymatically dissociated adult myocyte
taken from video depicting contractile activity. Bottom: Final contour ex-
tracted from the segmented image of enzymatically dissociated adult my-
ocyte taken from video depicting contractile activity.

Contour Extraction from the Segmented Images

For the contour extraction step of the framework we employ the built-
in MATLAB® (The MathWorks, Inc., Natick, MA, U.S.A.) function that
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creates a contour plot of image data. We convolve the extracted contour with
a Gaussian kernel to eliminate the typical noise produced in the segmentation
procedure. We also re-sample the contour points in all the frames so that
they will have the same number of contour points and for this to be equal
to 2M , M ∈ N. This facilitates the implementation of the discrete Fourier
transform algorithm of the next section.

Shape Representation by Fourier Descriptors

Fourier descriptors have been extensively proposed for the purpose of
shape recognition, retrieval, classification, and analysis [27, 28, 29, 30, 31,
32, 33, 34, 35]. Among the contour based shape representation methods the
ones that have proven more promising for our application are the complex
coordinates function and the centroid distance function. In both methods,
the Fourier transformed coefficients form the Fourier descriptors of the shape.
These Fourier descriptors represent the shape of the object in the frequency
domain. The number of Fourier coefficients generated from the Fourier trans-
form is normally large. Nonetheless, the lower frequency Fourier descriptors
are the ones that contain the main information about the overall features of
the shape. The higher frequency Fourier descriptors, in turn, contain infor-
mation relative to the finer details of the shape. Therefore, only a relative
small number of Fourier descriptors are usually employed to capture the over-
all features of the shape [36]. For completeness, we present both methods in
the following subsections.

Complex coordinates function method

Let p (n) = (x (n) , y (n)), for 0 ≤ n ≤ N − 1, be a discrete function
representing the coordinates of a (closed) contour of an image’s shape in the
Cartesian space, such as the one in Fig. 2-Bottom. In the complex plane, we
can define this contour as a complex coordinates function q, such that

q (n) = x (n) + jy (n) . (5)

Then, the Fourier descriptors for the contour of the shape—described by
q—can be computed using the discrete Fourier transform (DFT) [37]. These
Fourier descriptors are the normalized Fourier coefficients

Q (k) =
1

N

N−1∑
n=0

q (n) e−j2πkn/N , k = 0, . . . , N − 1, (6)
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which represent the discrete contour of the shape in the frequency domain [38,
39].

In order to use the Fourier descriptors as abstract representation of image
features in each frame, it is customary to make them invariant to translation,
scale, rotation, and their starting point. (In some cases, retaining the step
information can be advantageous [38].) For our particular application, we
want the Fourier descriptors to change covariantly with the shape of the cell.
In other words, we want the Fourier coefficients to capture the contractions
of the cell, disregarding only the translation and rotation of the cell. (We also
want to make the Fourier descriptors independent of their starting point.)

Translation of the contour function by τ ∈ C results in a change only
to the first Fourier descriptor, Q (0). Therefore, by setting Q (0) = 0, we
move the centroid of the contour onto 0, and make the Fourier descriptors
invariant to translations. Invariance with respect to the starting point can
be achieved by subtracting the step of the second Fourier descriptor, ϕ1 =
tan−1 (Im Q (1)/Re Q (1)), weighted by k, from the step of all the Fourier
descriptors, Q (k) e−jϕ1k. Rotation of the contour function by an angle θ
corresponds to a constant step shift of θ in the Fourier descriptors. We can
make the Fourier descriptors rotation invariant by computing the magnitude
of the Fourier descriptors, |Q (k)|. The performance of this method is almost
identical that of the centroid distance function method explained int he next
subsection.

Centroid distance function method

A shape signature—a one-dimensional function derived from the shape
boundary coordinates p (n) = (x (n) , y (n)), for 0 ≤ n ≤ N − 1—can be
used to generate Fourier descriptors of the shape [39]. Fourier descriptors
derived from centroid distance function generally outperform other shape
signatures [36, 40]. The centroid distance function of a shape is expressed by
the distance of the points on the shape’s boundary from the centroid (xc, yc)
of the shape

r (n) =
(
(x (n)− xc)

2 + (y (n)− yc)
2)1

2 , (7)

where

xc =
1

N

N−1∑
n=0

x (n), yc =
1

N

N−1∑
n=0

y (n). (8)
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Fig. 3 shows the centroid distance function of the cell shape used in the de-
scription of these methods. Since function 7 is real-valued, there are only
N/2 distinct frequencies in the Fourier transform. Thus, only half of the
Fourier descriptors will be necessary to describe the shape. Also, by con-
struction, the shape signature r (n) is invariant to translation. Therefore, we
only need to make the Fourier descriptors invariant to rotation and the start-
ing point by identical procedures as in the case of the complex coordinates
function method. Fig. 4 shows two identical cell shapes, one of which has
been translated and rotated with respect to the other. Along with the two
shapes, Fig. 4 shows both of their first 30 Fourier descriptors superimposed.
We observe that both sets of Fourier descriptors match almost perfectly for
the case of translation, rotation, and starting point invariance.
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Figure 3: Top: Cell shape used in our discussion. Bottom: centroid distance
function of the cell shape. The profile of this centroid distance function will
be typical in our application.

Fig. 5 shows two cell shapes of which one is slightly smaller and has
been translated and rotated with respect to the other. Along with the two
shapes, Fig. 5 shows both of their first 30 Fourier descriptors superimposed.
We observe that their Fourier descriptors are able to capture this change in
shape size by making the Fourier descriptors variant to scale but invariant
to translation, rotation, and starting point.
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Figure 4: Top: Two identical cell shapes in which one of them has been
translated and rotated with respect to the other. Bottom: first 30 Fourier
descriptors for both shapes for the case of translation, rotation, and starting
point invariance.

Experimental Results

We tested the proposed approach by assessing the contractile responses
in isolated adult rat cardiocytes. We used a sequence of digitized images ob-
tained as previously described for both the proposed method and the raster-
line technique. Our results show good qualitative agreement between both
methods as far as frequency, pacing, and overall behavior of the contrac-
tions are concerned (see Fig. 6). Nonetheless, the raster-line method—being
a one-dimensional technique—is unable to capture the contraction processes
occurring outside its domain of influence. The proposed method, on the other
hand, captures the contraction of the cell as a two dimensional event over
the entire boundary of the cell. The proposed methodology was also able
to capture a slower recovery period than the raster-line method (see Fig. 7),

13



0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Figure 5: Top: Two cell shapes in which one of them is larger than the other.
Bottom: first 30 Fourier descriptors superimposed. We observe that their
Fourier descriptors are able to capture this change in shape size making the
Fourier descriptors variant to scale but invariant to translation, rotation,
and starting point. The ‘contraction’ of the shape is 8.15% as measured by
the Euclidean distance of the Fourier descriptors.

which can be attributed to the dimensionality characteristics of both meth-
ods. This means that the proposed method is capable of not only assessing
the myocyte’s length, but also its overall changes in shape and geometry.
In other words, it is capable of assessing the myocyte’s dimensional changes
during contraction while remaining invariant to rotation, translation and
starting point.
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Figure 6: Top: Contraction record of adult enzymatically dissociated rat my-
ocyte under electrical stimulation, analyzed using proposed image analysis
based contractility measuring method. Bottom: Contraction record of adult
enzymatically dissociated rat myocyte under electrical stimulation, analyzed
using edge detection system.

Discussion

We presented a complete computational framework for the comprehensive
assessment of contractile responses of isolated adult cardiac myocytes. The
proposed methodology comprises the following stages: digital video recording
of the contracting cell, edge preserving total variation-based image smooth-
ing, segmentation of the smoothed images, contour extraction from the seg-
mented images, shape representation by Fourier descriptors, and contrac-
tility measurements. These stages are based on mathematically sound and
computational robust algorithms that are very well established in the image
processing community. This makes the methodology easy to understand and
implement.

Our results show that this approach—being a two-dimensional technique—is
capable of capturing the contractile processes that are otherwise missed by
the one-dimensional techniques. This capability makes the method suitable
for determining myocyte contraction in cells that usually bend or move dur-
ing contraction, e.g., atrial myocytes and isolated smooth muscle cells, or in
cardiac myocytes which develop spatially nonuniform oscillatory contractile
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Figure 7: Average of four contractions shown in Figure 6 for both the video-
based edge detection system (dashed) and our proposed image analysis based
contractility measuring method (solid). The contractile responses were nor-
malized to fit a desired range. Both records exhibit similar behaviors during
the pre-contraction period, and the contraction to 90% relaxation period,
whereas the records show a noticeable difference in the late relaxation pe-
riod that can be attributed to the two dimensional properties of the proposed
image analysis based contractility measuring method.

activity induced by intracellular calcium fluctuations [10, 41].
Our future work entails the application of the proposed method to ana-

lyzing the contractility of myocytes that have been exposed to a drug over
a given period of time. We have been investigating one category of the
mechanisms that may be responsible for the observed effects on heart cells
from a synthetic antidiabetic drug, rosiglitazone (AVANDIA, GlaxoSmithK-
line, Brentford, United Kingdom) of the thiazolidinedione (TZD) family of
insulin-sensitizing compounds used in the treatment of type II diabetes. We
are anticipating that the proposed method will be an essential tool in that
it will complement the analysis of our drug studies, which have been also
performed using microarray, Ca2+ transient, gene and protein expression
measurements. Furthermore, we are in the process of deploying a more so-
phisticated image acquisition technology that includes a high-speed camera.
This will allow for a more in-depth analysis of the contraction process un-
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dergone by the cardiac myocyte.

Appendix A: Total variation-based models in image processing

Rudin, Osher and Fatemi [22] proposed removing noise from images by
minimizing the TV norm of the estimated solution. They derived a con-
strained minimization algorithm as a time-dependent nonlinear PDE, where
the constraints are determined by the noise statistics. They stated that the
space of bounded (total) variation (BV) is the proper class for many basic
image processing tasks. Thus, given a noisy image u0 = f +η, where the true
image f has been perturbed by additive white noise η, the restored image
u ≈ f is the solution of

min
u∈BV(Ω)

TV (u) = min
u∈BV (Ω)

∫

Ω

|∇u| dx, (9)

subject to the following constraints involving the noise:

1

2

∫

Ω

(u− u0)
2 dx =

1

2
|Ω|σ2,

1

|Ω|
∫

Ω

u0dx =
1

|Ω|
∫

Ω

udx,

(10)

where |Ω| represents the area of the image. The first constraint uses a priori
information that the standard deviation of the noise is σ, while the second
constraint assumes that the noise has zero mean. (It can also be shown
that Eqs. 9 and 10 imply that the noise is normally distributed [43].) The
TV-norm does not penalize discontinuities in u, and; therefore, it allows the
recovery of the edges in the observed image u0.

To solve this minimization problem we would usually solve its associated
Euler-Lagrange equation, namely

−∇ ·
( ∇u

|∇u|
)

+ λ (u− u0) = 0, (11)

on a closed domain Ω, and subject to homogeneous Neumann boundary
conditions on the boundary ∂Ω. The solution procedure proposed in [22]
employs a parabolic equation with time as an evolution (scale) parameter,
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or equivalently, the gradient descent method, i.e.,

ut −∇ ·
( ∇u

|∇u|
)

+ λ (u− u0) = 0, (12)

for t > 0, on a closed domain Ω, with the observed image as initial con-
dition, u (x, 0) = u0 (x), and homogeneous Neumann boundary conditions,
〈g · ∇u,n〉 = 0, on the boundary ∂Ω. For the parameter λ, they suggested a
dynamic value λ (t) estimated by Rosen’s gradient-projection method, which
as t →∞ converges to

λ = − 1

2 |Ω|σ2

∫

Ω

[
|∇u| − ∇uT

0∇u

|∇u|
]

dx. (13)

Existence and uniqueness results for this nonlinear PDE have been obtained
by Lions, Osher and Rudin [44]. Other successful implementations of this
minimization problem include the second order cone programming [45], con-
vex programming [46], duality [47], and a fast and exact minimization method
based on graph cuts [48, 49].

Nonetheless, the Rudin-Osher-Fatemi model, in its original form, presents
several practical challenges [50]. This evolution scheme is not trivial to imple-
ment since it is highly nonlinear and not well-posed [51]. When the scheme
converges it does so at a linear rate. It can also run into trouble when
|∇u| → 0 beyond machine accuracy. In practice, it is very common to use a
slightly modified version of the TV-norm [50]

∫

Ω

(|∇u|2 + ε
)1

2 dx, (14)

where ε is a small positive number which ‘smoothes out the corner’ at
|∇u| = 0. The two other practical (observable) limitations presented by
the Rudin-Osher-Fatemi original model are the loss of contrast [52, 53] and
the ‘staircase’ effect, i.e., a strong preference for piecewise constant patches
[54, 55]. The Rudin-Osher-Fatemi model has been extensively studied and
improved upon by many scientists [50, 56, 52, 57, 58, 59, 55, 60, 61, 20, 62,
51, 63, 53, 64, 65].

Marquina and Osher [55] proposed a different version of the transient
parabolic equation that helps speed up the convergence of the time-marching
scheme. The new evolution equation is
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ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ |∇u|λGσ ∗ (Gσ ∗ u− u0) = 0, (15)

for t > 0, on a closed domain Ω, with the observed image as initial con-
dition, u (x, 0) = u0 (x), and homogeneous Neumann boundary conditions,
〈g · ∇u,n〉 = 0, on the boundary ∂Ω, and where Gσ is a blurring operator
(Gaussian kernel). This approach fixes the staircase problem of the original
scheme and is used for the removal of both blur and noise.

Bazán and Blomgren [24] implemented a variation of the Blomgren, Chan
and Mulet’s [56] version of the Rudin, Osher and Fatemi’s [22] Euler-Lagrange
equation as modified by Marquina and Osher [55]. They referred to this ap-
proach as: Parameter-Free Adaptive Total Variation-Based Noise Removal
and Edge Strengthening Model. For our current application, we will use this
method for estimating the unknown noise level and their pixel-wise defini-
tion for the parameter λ. Given the assumption that the image has been
perturbed by additive white noise, u0 = f + η, and that this noise is in-
dependent from the signal, the variance of the noisy image must be equal
to the sum of the variance of the true image and the variance of the noise,
i.e., var (u0) = var (Gσ ∗ u0) + var (η). Here, the variance of the (unknown)
true image is approximated by the variance of the convolved noisy image
with a Gaussian kernel of width σ = 1. This parameter will be updated at
every iteration which provides a positive effect. For the parameter λ they
proposed a variation of the method suggested in [22]. Instead of integrating
(or summing) over the domain Ω, they assumed a pixel-wise parameter as

Λ ≡ |∇u|λ = − 1

2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
. (16)

For a detailed explanation of the attributes of the dynamic parameter Λ, the
reader can consult [23].

Due to the high nonlinearity of the TV-based models, to ensure stability,
the required time step is very small. Song [51] has shown that the CFL
condition for the Rudin-Osher-Fatemi model is δt/δx2 6 c |∇u|, with c > 0.
He has also shown that the CFL condition for the Marquina-Osher model
is δt/δx2 6 c, with c > 0. As a rule of thumb, Gilboa [66] has suggested
(assuming δx = 1) setting the value of δt = ε/5, where ε is the regularization
constant used in Eq. (14). Weickert, Romeny and Viergever [67] have shown
that for explicit discretization schemes, the stability condition for the Perona-
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Malik-type models (assuming δx = 1 and ∀s : g (s) 6 1) is δt < 1/2d, with d
being the number of dimensions of the data. In his dissertation, Bazán [23]
argued that since the explicit discretization schemes used in the TV-based
models produce updates of the following form

ut+1 = ut + δtF
(
ut,∇ut, u0,∇u0, λ

)
, (17)

then, in practice, the smaller the time-step, the slower the restoration pro-
cess. He used the aforementioned findings to devise an ‘adaptive time-
step’ δt (x, t), which does not only make the TV-based schemes more stable
(smooth), but also speeds up the restoration process. The proposed adaptive
time-step is

δt (x) =
ε

5
+

(
1

2d
− ε

5

)(
max (|∇u|)− |∇u|

max (|∇u|)
)

, ∀ t, (18)

where, as before, ε is the regularization constant used in Eq. (14), and d
is the number of dimensions of the data. For a detailed description of the
characteristics of the adaptive time-step the reader is referred to [23].

Appendix B: Numerical implementation of the edge preserving to-
tal variation-based image smoothing

The algorithm to implement the parameter-free adaptive TV-based noise
removal and edge strengthening model is as follows:

N ⇐ 100 % number of iterations
ε ⇐ 1/255 % regularization parameter
σ ⇐ 1 % Gaussian kernel’s width
d ⇐ 2 % dimensionality of problem
u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients

c1 ⇐ corr (u, f) % performance measure
c̄1 ⇐ corr (u, u0) % correlation measure
for i = 1 to N do

uσ = Gσ ∗ u % convolve image with Gaussian kernel
σ2 = var (u)− var (uσ) % estimate variance of the noise
∇u ⇐ [ux uy]

T
% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients
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g ⇐ 1√
u2

x+u2
y+ε

% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

Λ = − 1
2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
% forcing term parameter

φ = |∇u|∇ · (g · ∇u)− Λ (u− u0) % diffusion term

δt (x) = ε
5

+
(

1
2d
− ε

5

) (
max(|∇u|)−|∇u|

max(|∇u|)

)
% time-step

u ⇐ u + δtφ % evolve the image
ci+1 ⇐ corr (u, f) % update performance measure
c̄i+1 ⇐ corr (u, u0) % update correlation measure
ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion
if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met
end if

end for
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