Solving the Schrodinger Equation Using Mimetic
Differences

Mani Amani and Miguel A. Dumett

April 17, 2024

Publication Number: CSRCR2024-05

Computational Science &

i | COMPUTATIONAL SCIENCE

Database Powered by the E N I N E E RI N
Computational Science Research Center

Computing Group & Visualization Lab

SAN DIEGO STATE
UNIVERSITY

Computational Science Research Center
College of Sciences
5500 Campanile Drive
San Diego, CA 92182-1245
(619) 594-3430

Solving the Schrodinger Equation
using Mimetic Differences

Mani Amani* Miguel A. Dumett

April 17, 2024

Abstract

In this document we solve the Schrodinger equation with unbounded
potential utilizing mimetic differences.

1 Introduction

The Schrodinger equation, formulated by Erwin Schrodinger in 1925, is a corner-
stone of quantum mechanics, providing a quantitative description of the dynam-
ics of quantum systems. It is a linear partial differential equation that governs
the wave function of a quantum system, which is a complex-valued function
representing the probability amplitude of a system’s quantum state. The wave
function itself encapsulates all the information about a system’s state, enabling
the calculation of physical properties like energy, momentum, and position.

There have been a plethora of previous studies that have successfully solved
the Schrédinger equation using different explicit and implicit methods, such as
Crank-Nicholson or finite difference methods. In this manuscript, we propose a
mimetic difference method to solve the system.

The Schrédinger equation can be reformulated and non-dimensionalized into
the following equation and can be solved with Dirichlet boundary conditions.

'%—@’_@_’_ () (1)
Yot T 92 Oy? WAL, yu

We propose to solve the partial differential equation using a Mimetic differences
scheme. This would consist of discretizing the spatial derivative using mimetic
methods and discretizing the time using traditional time integrators. We follow
the work of [3] and analyze solving the Schrodinger equation using this method
given by conditions and solutions presented by the authors.

*Computational Science Master’'s Program at San Diego State University (ma-
mani5250@sdsu.edu).

tEditor: Jose E. Castillo

fComputational Science Research Center at San Diego State University
(mdumett@sdsu.edu).

Mimetic Discretization

The mimetic discretization is given by methods developed by[1] and using the
MOLE package [2] to solve. In this specific equation, we only have one mimetic
operator which is the Laplacian. This term can be rewritten into the Laplacian
U and the function multiplication given by w can be transformed into a diagonal
matrix to be accounted for in the numerical analysis. The mimetic discretization
of equation (1) can be formulated into:

du . .

ikl (LU + diag(w(z,y) - U)) (2)
Where L is the Laplacian operator. After the space discretization is complete we
proceed with the time discretization. This spatial discretization turns the Par-
tial Differential Equation (PDE) into an Ordinary Differential Equation (ODE),
which can be solved using integration with respect to time.

Time discretization
We opted for a Runge-Kutta 4 method for increased stability in calculating

the time derivative. Forward and Backward Euler proved unstable to solve the
equation. The Pseudocode of the RK4 method is given by the following:

Algorithm 1 Runge-Kutta 4th Order Method (RK4)

1: function RK4(yo, to, tend, h)

2 Y <— Yo

3 t <+ to

4 while t < tonq do

5: k1<_h'f(t=y)

6 ko< h-f(t+05-h,y+0.5-k)
7 ks < h-f(t+0.5-h,y+0.5- k)
8 ks < h- f(t+h,y+ks3)

9: y<—y+%-(k1+2~/€2+2‘k3+k4)
10: t—t+h

11: end while

12: return y

13: end function

Experimentation and Results

We discretize the x and y space by 0.1 increments and we discretize the time by
dt = 0.0005 as prescribed by the reference paper. To encapsulate longer-term
dynamics and demonstrate the stability of the system, we simulate the solution

from t=0 to t=4 seconds. The analytical solution of the equation is equal to
u(w,y,t) = *y*exp(it)

The domain is defined as 0 <z <1 and 0 <y < 1. Given the domain, by using
the analytical solution, the boundary conditions of the function are given by:

u(0,y,t) =0,
u(l,y,t) = yeap(it),
u(z,0,t) =0,
u(z,1,t) = x%exp(it)

And the initial condition is given by:
u(z,y,0) = a?y?
The potential function is given by the following:

2 2
Wy =1-= -

22 2
To avoid an undefined term at x = 0 and y = 0, we opted to add a slight
perturbation of e = 1078 to those terms to calculate computable numbers.
This system is highly prone to instability. Utilizing higher-order accuracy and
implicit integration schemes is crucial to ensure accuracy.

Time Error
1 5.3474 x 1073
2 6.1664 x 1073
3 4.1387 x 1073
4 1.6512 x 1073

Table 1: Error at times t =1,2,3,4

1.0000

Mimetic Solution at Time

Mimetic Solution at

o

(n)iesy

3.0000

Mimetic Solution at Time

2.0000

Mimetic Solution at Time

(nheey

4.0000

Mimetic Solution at Time

Result for Mimetic Method Simulation at Various t Values

Figure 1

=1.0000

Time t

0.0000

Timet=

0 o
=3

(&)n jo ped eoy

(1 *A “x)n Jo ped [eay

0.2

=3.0000

Time t

=2.0000

Time t

(3 *A*x)n jo ped jeay

=4.0000

Time t

(3 ‘A *x)n jo ped jeay

Figure 2: Result for Analytical Method Simulation at Various t Values

The errors are given by the following:

1073 Infnitny Norm of the Mimetic Scheme

ik T T T
10+
2
1|
W
=
s i
i
=
3
=
1 i 1 i i i i i 1
] 1000 2000 3000 4000 5000 6000 7OODO BOOCO 9000
Time Step
Figure 3: Error Over Time Plot
Conclusion

To conclude, we demonstrate impressive accuracy using the MOLE library and
mimetic differences in solving the Schréodinger equation.

References

[1] José E Castillo and Guillermo F Miranda. Mimetic discretization methods.
CRC Press, 2013.

[2] Johnny Corbino, Miguel A Dumett, and Jose E Castillo. Mole: Mimetic
operators library enhanced. CSRC Report Sep, 25, 2017.

[3] Mehdi Dehghan and Ali Shokri. A numerical method for two-dimensional
schrodinger equation using collocation and radial basis functions. Computers
& Mathematics with Applications, 54(1):136-146, 2007.

Code

ele g

close all;

addpath (’../mole MATLAB’) ;

9677/ SCHORDINGERS EQUATION AUTHOR: MANI AMANVSSSTSISISISTS TSI o

Gk W N e

7 % Parameters

s Lxy = 1;

o k = 4; %Order of accuracy

10 m 10; %Spatial discretization

11 n = 10;%Spatial discretization

12 dx = Lxy/m;

13 dy = Lxy/n;

14 dt = 0.0005;

15 tSteps = 2000; % Defining number of time steps for the system to
simulate

17 % Staggered grid setup

15 xgrid = [0 dx/2:dx:Lxy—dx/2 Lxy];
19 ygrid = [0 dy/2:dy:Lxy—dy/2 Lxy];
o [X, Y] = meshgrid (xgrid, ygrid);

22 % Mimetic Laplacian operator

23 L = lap2D(k, m, dx, n, dy);

2« U_first = X."2 .x Y. 2;

xsW=1-2 ./ (X."24+1e—8) — 2 ./ (Y."24+1e—8); %To Prevent negative
infinity in the potential function

26 H=@(U) (L * U+ (diag(W(:)) = U)) = 1i; %Spatial discretization
using mimetics

7 U.old = U_first (:);

20 % Video setup

30 videoFile = Mimetic_simulation .mp4’;

31 v = VideoWriter (videoFile , 'MPEG-4’);

32 v.FrameRate = 30;

33 v.Quality = 100;

34 Y%open (v);

35 errors = zeros (tSteps, 1); %Saving all the errors

36 TSI ISTIST TSI TS Time Loop Intiation WSS TISTISTISITISTIS o
37 for ii = 0:tSteps

38 % Time—stepping with RK4

39 k1l = dt * H(U.old);

40 k2 = dt * H(U.old + 0.5 = kl);

a k3 = dt * H(U_old + 0.5 * k2);

42 k4 = dt = H(U_old + k3);

43 U.new = U_old + (k1 + 2xk2 + 2xk3 + k4) / 6;
44

45 % Boundary conditions and reshaping

46 U_-matrix = reshape(U-new, m+2, n+2);

a7 t = ii *x dt;

48 U_matrix (:, end) = xgrid."2 .* exp(li * t);
49 U._matrix (end, :) = ygrid."2 .*x exp(li * t);
50 U_matrix (1, :) = 0;

51 U_matrix(:, 1) = 0;

52 U.new = reshape (U_matrix, (n+2)*(m+2),1);

54 % Visualization

55 figure (1) ;

56 surf(X, Y, real (U_matrix)); %Both real part and imaginary parts
can be depicted , use imag() for imaginary

57 title ([’Mimetic Solution at Time = ’, num2str(t, *%.4f7)]);

58 xlabel (’x’); ylabel(’y’); zlabel(’Real(U)’);

59 zlim ([—1, 1]);

60 drawnow ;

61

62 % Capture and save frame

63 %frame = getframe (gcf);

64 %owriteVideo (v, frame);

65

66 % Error calculation

67 U_.analytical = X."2 % Y."2 .x exp(li * t);

68 errors (ii+1) = norm(real (U_.matrix) — real(U_.analytical),’inf’);

69

70 % Save figure at time t = 1ls, Just to get the Last frame for
reference

71 if abs(t — 1.0) < 0.0005 %Some tolerence, can be changed
depending on the desired time

72 savefig (gcf, 'Figure_at_Time_1.fig’); %Figure name

73 print (’Figure_at_-Time-1’, ’~dpng’);

74 end

76 U_old = U.new; %Update the vector for further calculation

77 end

78

79 % Close video and display info

s0o %close (v);

s1 disp (['Video saved as ’, videoFile]);
s2 disp (’Maximum error at any timestep:’);
53 max(errors)

sa figure;

s5 plot (errors);

s6 title (’Error over Time’);

s7 xlabel (’Time Step’);

ss ylabel (’Max Absolute Error’);

J

