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Abstract

In this report, we utilize the Mimetic Operators Library Enhanced to construct discrete analogs of
the Corbino-Castillo mimetic differences for solving some partial differential techniques for deblurring
images.

1 Introduction

Image processing is a pivotal field within computer science and engineering, encompassing a wide array of
techniques aimed at manipulating and enhancing digital images to extract meaningful information or improve
their visual quality. One fundamental challenge in image processing is image deblurring, which involves the
restoration of blurred or degraded images to recover their original clarity and sharpness.

The importance of image deblurring, see Figure 1, lies in its wide range of applications across various
domains. In fields such as medical imaging, astronomy, surveillance, and photography, obtaining clear and
accurate images is crucial for analysis, diagnosis, interpretation, and decision-making processes. Blurred
images can result from factors such as motion blur, defocus blur, or imperfections in imaging devices, and
addressing these blurs is essential for ensuring the reliability and usefulness of the captured visual data.

Figure 1: Image Debluring

Among the numerous methods developed for image deblurring, the shock filter has emerged as a notable
approach for enhancing image quality. The shock filter operates based on principles derived from mathe-
matical equations and concepts related to image analysis and edge detection. By leveraging the properties
of shock waves and nonlinear operators, the shock filter aims to identify and enhance image features, partic-
ularly edges and singularities, which play a crucial role in defining object boundaries and structures within
images.
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The development of a multidimensional shock filter necessitates the resolution of differential equations
[5], incorporating nonlinear amalgamations of propagation components and edge-detection operators. These
equations are tailored to identify and amplify edges by modifying the spatial dynamics surrounding pivotal
features in the image, see Figure 2. Through prioritizing the zero crossings of differential operators and
elements sensitive to curvature, the shock filter adeptly refines edges, thereby augmenting the clarity of the
entire image [4].

Figure 2: (a) Gaussian filter effect on edges, (b) Shock filter effect on edges

Moreover, the shock filter’s implementation could involve intricate computational procedures and iter-
ative algorithms aimed at processing image data efficiently while maintaining computational tractability.
Techniques such as discretization, numerical analysis, and optimization could be employed to ensure the
filter’s effectiveness and stability during the deblurring process.

The application of the shock filter has yielded promising results in various experiments and real-world
scenarios. By demonstrating its capabilities on standard images and datasets, researchers have showcased
the filter’s ability to significantly enhance image quality, restore details, and improve visual fidelity. Fur-
thermore, the shock filter’s adaptability to different types of images, including grayscale and color images,
underscores its versatility and potential for widespread use in diverse applications requiring image deblurring
and enhancement.

2 Methods

This section outlines the approach taken to apply the shock filter, a fundamental technique in image en-
hancement. This segment provides a concise overview of the computational and mathematical procedures
involved in utilizing the shock filter to sharpen edges and improve image clarity.

In a single dimension, the shock filter is expressed as a partial differential equation (PDE):

ut = − |ux|F (uxx) (1)

with F defined as (2) F (x) > 0 if x > 0
F (x) = 0 if x = 0
F (x) < 0 if x < 0

(2)

For this case, the function sign will be used to fulfill the place of F , see (3)

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

(3)

Equation (1) could be extended to work in 2D by using (4)

ut = − |∇u|F (L(u)) (4)
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In order to detect borders in horizontal and vertical directions it is possible to use (5)

L(u) = ∆u (5)

To enhance this, it is possible to employ a different definition for L, thereby incorporating non-tangential
directions into the search path, see (7)

L(u) = ∇u ·
[
uxx uxy

uyx uyy

]
∇u (6)

L(u) =
[∂u
∂x
∂u
∂y

]
·
[
uxx uxy

uyx uyy

] [∂u
∂x
∂u
∂y

]

L(u) =
[∂u
∂x
∂u
∂y

]
·
[
uxxux + uxyuy

uyxuy + uyyuy

]
L(u) = u2

xuxx + 2uxuyuxy + u2
yuyy (7)

ut = − |∇u|F (u2
xuxx + 2uxuyuxy + u2

yuyy) (8)

2.1 Preprocessing

Before applying the filtering, it is a common and essential practice to preprocess the image by normalizing
its pixel values. This preprocessing step ensures that the pixel intensities are within a standardized range,
typically between 0 and 1. Normalization is crucial for ensuring that the filtering process operates consistently
across different images and prevents any biases that might arise from variations in pixel intensity scales.

Conversion to Grayscale (if necessary): If the image is in color, it’s often converted to grayscale to simplify
the processing. This step involves transforming the image from a multi-channel representation (e.g., RGB)
to a single-channel representation where each pixel represents the intensity of light.

2.2 Initial condition and boundary condition

After the process mentioned in the preceding section has been completed, it is possible to proceed to dis-
cussing the practical application of the filtering technique. This includes not only solving the partial differ-
ential dquation (PDE) but also defining initial and boundary conditions. In this case, the initial condition
refers to the state of the images after the preprocessing steps have been carried out.

The choice of boundary conditions plays a critical role in shaping the behavior of filtering algorithms,
particularly when dealing with edge detection and enhancement. One commonly used boundary condition
is the Neumann boundary condition. In this context, Neumann boundaries assume that the gradient of the
image intensity at the edges is zero. This means that the rate of change of pixel values at the boundary
is constrained, resulting in a smoothing effect along the edges of the image. While Neumann boundary
conditions can help reduce artifacts and maintain continuity, they may also lead to the loss of sharpness
in important features and edges. Therefore, careful consideration of the trade-offs between smoothness and
edge preservation is essential when selecting Neumann boundaries for image filtering tasks.

3 Metrics

When assessing the efficacy of image deblurring techniques, it is essential to employ appropriate metrics to
quantitatively measure the extent of improvement achieved. Two commonly used metrics for this purpose
are the Mean Structural Similarity Index (MSSI)[1] and the Peak Signal-to-Noise Ratio (PSNR).

The MSSI metric evaluates the structural similarity between the original and deblurred images by con-
sidering luminance, contrast, and structure. Higher MSSI values indicate greater similarity between the
images.
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On the other hand, the PSNR metric measures the quality of the deblurred image by quantifying the
ratio between the maximum possible power of the image signal and the power of the noise present in the
deblurred image [6], implying superior deblurring performance. By utilizing this metric, researchers can
comprehensively evaluate the effectiveness of different deblurring algorithms and make informed decisions
regarding their suitability for practical applications.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(9)

The Structural Similarity Index (SSIM) formula, (9), is a crucial tool for evaluating the likeness between
two images, commonly applied in various image processing and computer vision contexts. Within the SSIM
equation, the mean pixel intensity of each image (µx and µy) and their corresponding standard deviations
(σx and σy) are computed, representing the central tendency and variability of pixel values, respectively.
Additionally, the covariance (σxy) between pixel values is determined, indicating their joint variation.

These components collectively contribute to the numerator of the SSIM formula, which assesses the
similarity between local pixel intensity patterns. The denominator, incorporating the products of mean
and variance terms alongside stabilization constants c1 and c2, serves to normalize the SSIM computation,
mitigating potential instability.

Through this formulation, SSIM offers a comprehensive evaluation of luminance, contrast, and structural
similarity between images, yielding a single scalar value that quantifies their overall resemblance. Higher
SSIM values signify a greater likeness between the images, facilitating robust evaluation and comparison of
image processing algorithms across academic research and practical applications [1].

PSNR = 10 · log10
(
MAX2

MSE

)
(10)

Where MAX is the maximum value of a pixel (255).

MSE =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]2

4 Numerical solution - Mimetic scheme

Implementing a shock filter using mimetic methods involves transforming continuous problems into discrete
formulations. Equation (8) represents the core equation governing the behavior of the system. In this
equation, ut denotes the temporal derivative of the field variable u, which represents the evolving state of
the system. The term ∇u refers to the gradient of u, capturing its spatial variations.

Equation 7 illustrates the multidimensional nature of the problem, where u depends on multiple spatial
directions denoted by x and y. The terms uxx, uxy, uyx, and uyy represent the second partial derivatives of
u with respect to these spatial directions.

The final expression in (8) represents the temporal evolution of u under the influence of the shock filter.
Here, F denotes a function that modulates the effect of the spatial derivatives on the temporal evolution of
the system. This equation serves as the cornerstone of the numerical scheme, guiding the evolution of the
system over time.

In this case, the initial condition u signifies the image itself. This indicates that the discretization of u
is determined by the values within the matrix corresponding to the image, while ensuring a uniform grid.
Consequently, we denote this discretization as U .

To illustrate the derivation of the Corbino-Castillo mimetic scheme [2], an example is provided for the
term u2

xuxx.

u2
xuxx

By replacing the respective operators G and D, it is discretized into:

GxU
2DxGxU
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Where Gx and Dx are the 2D gradient and divergence operators in the horizontal direction.

If→c
x GxU

2DxGxU

In this final step, the respective interpolator is included to map back to the domain of the centers of the
staggered mesh, specifically in the horizontal direction. This is necessary as the output of the operator Gx

results in the faces of the staggered mesh oriented in the horizontal direction.

T1 = diag(If→c
x GxU

2)DxGxU (11)

Matlab diagonal function is applied to maintain the correct sizes for performing the multiplications.

Following the same structure, the mimetic scheme is derived for each of the terms. For 2uxuyuxy:

2[If→c
x GxUIf→c

y GyUDxI
c→f
x If→c

y GyU ]

T2 = 2[diag(If→c
x GxU)diag(If→c

y GyU)DxI
c→f
x If→c

y GyU ] (12)

For u2
yuyy:

If→c
y GyU

2DyGyU

T3 = diag(If→c
y GyU

2)DyGyU (13)

And finally, the norm of the gradient, |∇u|, is determined by:

Norm =

√
If→c
y GyU2 + If→c

x GxU2

We have the discrete version of the shock filter summarized as:

−Norm · F (T1 + T2 + T3) (14)

and the method to calculate the next step and update the image by applying the filter is through the
equation:

Un+1 = Un + dt ∗Norm · F (T1 + T2 + T3) (15)

Where dt is related to the discretization of time and is determined based on the Neumann stability.

dt

dx2 + dy2
≤ 0.5 (16)

For the experiments conducted in this work, dt was set to 0.1
We utilize the Mimetic Operators Library Enhanced (MOLE) [3] library to construct the discrete analogs

of the spatial differential operators according to the Corbino-Castillo mimetic differences approach [2].
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Algorithm Mimetic Differences for the Shock Filter

1: Load Mole path;
2: RGB← Load Image;
3: Image Resize;
4: Add padding and boundary condition;
5: RGB← Add noise;
6: UX← convert to double(RGB);
7: Create 2D Staggered grid;
8: D← div2D(k,m, dx, n, dy);
9: G← grad2D(k,m, dx, n, dy);

10: dt← dx2/(10× α);
11: Icf← interpolCentersToFacesD2D(k,m, n);
12: Ifc← interpolFacesToCentersG2D(k,m, n);
13: U2← UX;
14: for t← 1 to Tmax do
15: create vector with image data;
16: Calculate the norm of U2;
17: term1← (ux)2Uxx;
18: term2← 2uxuyUxy;
19: term3← (uy)2Uyy;
20: F← sign(term1 + term2 + term3);
21: L← U2 + dt× (norm× F );
22: U2← reshape(L, 514, 514);
23: end for
24: U2← uint8((U2− 1));
25: Display results;

5 Results

In this section, we present the results of applying a filtering technique to an image contaminated with
Gaussian noise. The filtering process aims to enhance the image quality by reducing noise and improving
visual clarity. The effectiveness of the filter is evaluated using two key metrics: the Structural Similarity
Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). By analyzing the changes in these metrics before
and after filtering, we assess the performance of the filter and its impact on image quality improvement.
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5.1 Filtering an Image

Figure 3: Result after 30 iterations of Shock Filter

The filter was applied to an image using 30 iterations. The original image was corrupted with Gaussian
noise, and the objective of the filter was to enhance the image quality, see Figure 3. According to the
results obtained from Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), the filter
demonstrated improvements in both metrics. Initially, the SSIM value of the noisy image was measured at
0.27, but after applying the filter, it increased to 0.49. Similarly, the PSNR of the noisy image was 20.04,
and it rose to 23.94 after filtration. These results underscore the effectiveness of the filter in enhancing image
quality, showcasing its ability to mitigate noise and enhance visual clarity.

Figure 4: SSIM behavior over iterations
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Figure 5: PSNR behavior over iterations

It also included a graph illustrating the variation of SSIM , see Figure 4 and PSNR , see Figure 5 values
with each iteration. These graphs provide a visual representation of how the image quality metrics evolve
throughout the filtering process, offering insights into the effectiveness and convergence behavior of the
applied filter.

In the appendix, we include the MATLAB source code.
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Appendix

1 % Mimetic D i f f e r e n c e s f o r the Shock F i l t e r
2 % Juan S . Ca r r i l l o , COMP670, Pro j e c t
3 c l c ; c l e a r ; c l o s e a l l
4

5 % mole
6 addpath ( ’mole−master /mole MATLAB ’ )
7

8 % Read lena image
9 RGB = imread ( ’ cameraman . t i f ’ ) ;

10

11 RGB = imre s i z e (RGB, [ 5 1 2 512 ] ) ;
12 %RGB = rgb2gray (RGB) ;
13

14 % BC Neumann ( add be f o r e no i s e )
15 RGB = padarray (RGB, [ 1 1 ] , 255 , ’ both ’ ) ;
16 RGB( 1 , : ) = RGB( 2 , : ) ;
17 RGB( end , : ) = RGB( end −1 , : ) ;
18 RGB( : , 1 ) = RGB( : , 2 ) ;
19 RGB( : , end ) = RGB( : , end−1) ;
20

21 %Image to compare
22 o r i g = RGB;
23

24 %add no i s e to image
25 RGB = imnoise (RGB, ’ gauss ian ’ ) ;
26

27

28 %U = rgb2gray (RGB) ;
29 U = RGB;
30

31 % convert i n t e g e r va lue s to double
32 UX = double (U) ;
33

34

35 % Def ine mimetic ope ra to r s
36 k = 2 ; % Order o f accuracy
37 m = 512 ; % Number o f c e l l s a long the x−ax i s
38 n = m; % Number o f c e l l s a long the y−ax i s
39 a = 0 ; % West
40 b = 512 ; % East
41 c = 0 ; % South
42 d = 512 ; % North
43 dx = (b−a ) /m;
44 dy = (d−c ) /n ;
45

46 % 2D Staggered g r id
47 xgr id = [ a a+dx/2 : dx : b−dx/2 b ] ;
48 ygr id = [ c c+dy/2 : dy : d−dy/2 d ] ;
49

50 % 2D Mimetic d ive rgence operator
51 D = div2D (k , m, dx , n , dy ) ; % D from MOLE
52 D1=D( : , 1 : end /2) ; %Dx
53 D2=D( : , ( end /2)+1:end ) ; %Dy
54

55 % 2D Mimetic g rad i en t operator
56 G = grad2D (k , m, dx , n , dy ) ; %G from MOLE
57 G1=G(1 : end /2 , : ) ; %Gx
58 G2=G(( end /2)+1:end , : ) ; %Gy
59

60 % alpha
61 alpha = 1 ;
62

63 % Check neumann s t a b i l i t y
64 % Neumann s t a b i l i t y c r i t e r i o n
65 dt = dxˆ2/(10∗ alpha ) ; % alpha = 1



66

67

68 %get i n t e r p o l a t o r s
69 I c f = interpolCentersToFacesD2D (k , m, n) ; %D
70 I f c = interpolFacesToCentersG2D (k , m, n) ; %G
71

72 I c f x = I c f ( 1 : (m+1)∗(n) , 1 : (m+2)∗(n+2) ) ;
73 I c f y = I c f ( (m+1)∗(n) +1:(m+1)∗(n) ∗2 , (m+2)∗(n+2)+1:(m+2)∗(n+2)∗2 ) ;
74 I f c x = I f c ( 1 : (m+2)∗(n+2) , 1 : (m+1)∗(n) ) ;
75 I f c y = I f c ( (m+2)∗(n+2)+1:(m+2)∗(n+2)∗2 , (m+1)∗(n) +1:(m+1)∗(n) ∗2 ) ;
76

77 % I n i t i a l Condit ion
78 U2 = UX; % I n i t i a l c ond i t i on image
79 %%%%%%%%%%%
80 % i t e r a t i o n −Loop
81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
82 f o r t = 1 : 50
83 % crea t e vec to r with image data
84 U2 = reshape (U2 , [ ] , 1) ;
85

86 ux = I f c x ∗G1∗U2 ;
87 uy = I f c y ∗G2∗U2 ;
88

89 %norm of U
90 norm = sq r t ( ux .ˆ2 + uy .ˆ2 ) ;
91

92 %term1
93 % (ux ) ˆ2 Uxx
94 term1 = ( spd iags ( double ( ux . ˆ 2 ) , 0 , l ength (ux ) , l ength (ux ) ) ) ∗ D1∗G1∗U2 ;
95

96 %term2
97 %2ux uy uxy
98 term2 = 2∗ spd iags (ux , 0 , l ength (ux ) , l ength (ux ) ) ∗ spd iags ( double ( uy ) , 0 , l ength (uy ) ,

l ength (uy ) ) ∗ D1∗ I c f x ∗ I f c y ∗G2∗U2 ;
99

100 %term3
101 %(uy ) ˆ2 Uyy
102 term3 = ( spd iags (uy . ˆ2 , 0 , l ength (uy ) , l ength (uy ) ) ) ∗ D2∗G2∗U2 ;
103

104 F = s ign ( term1 + term2 + term3 ) ;
105

106 % Operation ( updating the image )
107 L = U2 + dt ∗(norm .∗F) ;
108

109 % reshape vec to r to image
110 U2=reshape (L , 514 , 514) ;
111

112 end
113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114

115 % convert image back to u int8
116 U2=uint8 ( (U2−1) ) ;
117

118 % Output
119 f i g u r e
120 subplot ( 1 , 2 , 1 )
121 imshow (U)
122 t i t l e ( ’ Or i g i na l Image ’ )
123 subplot ( 1 , 2 , 2 )
124 imshow (U2)
125 t i t l e ( ’ Shock F i l t e r Image ’ )
126

127 ssim (U, o r i g )
128 ssim (U2 , o r i g )
129

130 psnr (U, o r i g )
131 psnr (U2 , o r i g )
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