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Abstract

In this paper, the Poisson-Boltzmann equation is solved utilizing mimetic differences and the Mimetic
Operator Enhanced Library (MOLE). Several molecules (H2O, HCl, SO3, HCN) are investigated.

1 Introduction

The nonlinear Poisson-Boltzmann equation (PBE) is a fundamental equation that is widely used to describe
the distribution of electronic potential u(r) in a fluid. PBE is derived from the classical Poisson equation
from electrostatics and the Boltzmann distribution from statistical mechanics. The Poisson equation relates
the electrostatic potential to charge distribution in a region, and the Boltzmann distribution describes how
charged particles distribute in a system that is influenced by an electric potential [2]. The goal of this project
is to utilize the MOLE library [1] to numerically estimate the solution of a nonlinear Poisson-Boltzmann
equation in 2D using mimetic differences.

2 PDE Description

2.1 2D nonlinear Poisson-Boltzmann Equation

The combination of Poisson equation and Boltzmann distribution allows PBE to model how ionic molecule
influences the electrostatic potential in a solvent, crucial for predicting the behavior of ions around charged
molecules. There are two regions, Ωm contains particular ions of the molecule (charges are fixed) and Ωs

contains solvent with dielectric constants (charges are mobile under Boltzmann distribution). The molecular
region Ωm is particularly defined as a circle with a radius of 1 and the solvent region Ωs as a square with
length of 4. The total charge density in the molecule is the summation of all Nm point charges qi = ziec
located at the specific positions ri, represented by the Dirac delta function δ(r) in space (Figure 1).

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =

(
4πe2c
kBT

) Nm∑
i=1

ziδ(r − ri) in Ω ⊂ R2, (1)

where
ε(r) is dimensionless dielectric constant function
κ̄(r) is modified Debye-Huckle parameter (modified to be dielectric independent)
ec is the charge of electron constant
kB is Boltzmann’s constant
T is absolute temperature
zi are fractions of unit charge
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2.2 Domain and Boundary Conditions

Domain:

Ωs = [−2, 2]× [−2, 2]

Ωm = {(x, y); x2 + y2 ≤ 1}

Neumann boundary conditions: ∂u
∂n = 0 on ∂Ω.

Neumann boundary condition specifies that the normal derivative of the potential at the boundary is set
to zero. There is no net electric field crossing the boundary. This condition is appropriate for a system of
fixed amount of charge as it assumes the electric potential at the boundary does not contribute or interact
with the external environment.

Figure 1: Molecule-solvent system

2.3 Parameter values

ε(r) =

{
ϵm = 2 if r ∈ Ωm,

ϵs = 80 if r ∈ Ωs.

κ̄(r) =

{
κ̄m = 0 if r ∈ Ωm,

κ̄s =
√
ϵsκ if r ∈ Ωs.

ec = 4.8032424× 10−10 esu

kB = 1.3806620× 10−16 erg/K

T = 298 K

κ = 8.486902807× Å−2 Is
ϵs

Is = typical ionic strength of 0.1 molar
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2.4 Molecule and Partial Charges

The molecule in Ωm is chosen to be water which serves as initial conditions. The chemical formula for water
is H2O, which means this molecule has 3 atoms: 2 of hydrogen (H) and 1 oxygen (O) atom. The molecular
geometry of water is bent. Since the purpose of this project is to solve nonlinear Poisson-Boltzmann equation
in two dimensions, the molecule inside the molecular region Ωm needs to be a planar molecule. IQmol, a
free open source molecular editor and visualization package, is used to symmetrize water to become a planar
molecule. The two dimensional positions of three atoms are also collected from IQmol shown in Figure 2.
In addition, Q-Chem, an ab initio quantum chemistry program, is employed to calculate the electrostatic
potential net atomic charges of water molecule (Figure 3). These atomic charges are fractions of unit charge
zi of (1). Figure 4 illustrates the problem needed to solve for this project. The electrostatic potential of
water molecule located inside the molecular region Ωm within a solvent environment Ωs containing mobile
ions is determined by solving PBE numerically with mimetic differences.

$molecule

0 1

H -0.0000000 0.4958050 0.7493682

O -0.0000000 -0.0156100 0.0000000

H 0.0000000 0.4958050 -0.7493682

$end

Figure 2: Water molecule’s coordinates from IQmol

Merz-Kollman ESP Net Atomic Charges

Atom Charge (a.u.)

----------------------------------------

1 H 0.408857

2 O -0.817715

3 H 0.408857

----------------------------------------

Sum of atomic charges = 0.000000

Figure 3: Atomic charges of water molecule in 2D from Q-Chem output file

3



Figure 4: Water molecule-solvent system

3 Mimetic Differences of PBE

For the Poisson-Bolztmann equation

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =

(
4πe2c
kBT

) Nm∑
i=1

ziδ(r − ri)

the mimetic analog is being constructed step by step. For, U stands for the discrete version of u, already
converted to a vector to be able to perform the products with the matrix representation of the mimetic
analogs.

After proceeding with the following steps one can attain the discrete analog of equation (1)

1. Replace differential operators:

−D(ε(r) · (GU)) + κ̄2(r) sinh(U) =

(
4πe2c
kBT

)
ziδ(r − ri)

2. Match output domains:

−D(ε · (GU)) + κ̄2 sinh(U) = ρ where ρ =

(
4πe2c
kBT

)
ziδ

3. Element-wise products:
−D(diag(ε) · (GU)) + diag(κ̄2) sinh(U) = ρ

The Poisson-Boltzmann equation in mimetic differences becomes:

−D(E · (GU)) +K sinh(U) = ρ (2)

The Dirac delta function on the right-hand-side (RHS) of (1) is not a function, but rather a distribution.
The idea of this function is all the values are zero except at a specific given point. In this case, there is a
value at each atom located on the staggered grid. In order to satisfy the RHS, radial basis function (RBF)
is employed for spatial data interpolation as it computes the similarity of two points.
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A Gaussian RBF is typically expressed as

f(r) = e
−
(

∥r−r0∥
σ

)2

where ∥r − r0∥ is the Euclidean distant between point r and the center r0, and σ is standard deviation
of the Gaussian, and can be tuned accordingly.

The divergence (D) and gradient (G) can be generated using div2D function and grad2D function
from the MATLAB version of the MOLE library. The output of these two functions are a matrix D =(
Dx

Dy

)
and a matrix G =

(
Gx

Gy

)
. The constant functions E and K are created using two functions

PartitionOfUnity2Dvector and PartitionOfUnity2Dscalar, respectively. Partition of unity function
creates a matrix that contains a value ϵs = 80 in most entries. This value will decrease slightly as
it gets closer to the molecular region Ωm. The entries inside the circle are around 2. The output of

PartitionOfUnity2Dvector is a matrix ε =

(
εh
εv

)
and PartitionOfUnity2Dscalar is a (m+2) by (n+2)

matrix κ̄.
In mimetic difference equation, −D(E · (GU)) is a linear part and K sinh(U) is a nonlinear part. Using

the first term in the series expansion sinh(x) = x+ x3

3! +
x5

5! + · · · as an approximation of sinh(U), equation
2 becomes

(−D(EG) +K) ∗ U = ρ

A ∗ U = ρ

⇒ U = A\ρ

Applying Newton’s method to solve for U the system of nonlinear equations

f(U) = −D(E(GU)) +K sinh(U)− ρ = 0,

with an initial guess U from previous step.

Algorithm Mimetic operator pseudocode

1: k = order of accuracy
2: m = number of grid cells in x-axis
3: dx = step size for x
4: n = number of grid cells in y-axis
5: dy = step size for y
6: [X,Y ] = 2D Staggered grid
7: x, y = known x,y-position of H2O
8: zi = partial charges of H2O
9: δ(r) = Radial basis function (Gaussian RBF)

10: ρ = RHS
11: [εh, εv] = PartitionOfUnity2Dvector()
12: E = diag(εh, εv)
13: κ̄2 = PartitionOfUnity2Dscalar()
14: K = diag(κ̄2)
15: D = div2D()
16: G = grad2D()
17: A = −D(EG) +K + robinBC2D()
18: Uinitial = A \ ρ
19: f(U) = −D(E(GU)) +Ksinh(U)− ρ = Newton’s method using Uinitial

20: U = reshape(U,m+ 2, n+ 2)
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4 Results

4.1 Water Molecule

The known points for each atom of water generated from IQmol (Figure 2) and electrostatic potential net
atomic charges generated from Q-Chem (Figure 3) are the initial conditions for the Poisson-Boltzmann
algorithm. Most articles about solving nonlinear (1) have shown their roofs rather than their numerical
solution plots. It is difficult to know what the solution plot of planar water molecule should look like. [2]
only shows one solution figure but with a much larger superoxide dismutase (SOD) molecule. Figure 5 (left
panel) is the solution plot of planar water molecule obtained initially. However, a significant amount of
electrostatic potential is only observed at the position of Hydrogen atom, but not at the position of Oxygen
atom. This becomes evident that this numerical solution is not correct.

The position along x-axis and y-axis of each atom, as provided by IQmol is observed to not coincide with
the grid points. Upon adjusting these positions to align with the grid points, a distinct peak corresponding
to the Oxygen atom becomes evident shown in Figure 5 (right panel). The observation of two positive single
peaks at both Hydrogen atom locations and a negative single peak at the location of the Oxygen atom is
consistent with the understanding of their respective charge distribution. The Hydrogen atoms have partial
positive charges while the Oxygen atom has a negative partial charge.

Figure 5: Distribution of electrostatic potential around pre-shifted water molecule (left) and shifted water
molecule (right)

4.2 Other Molecules

As testing the Poisson-Boltzmann algorithm with different initial conditions, three different molecules: HCl,
SO3, HCN are used. Due to the distance between two atoms in these molecules greater than 1, the solvent
region is expanded to length of 8 and the radius of molecular region is increased to 2. All atoms of these
molecules are shifted to be on the grid points. The correlation between the sign of the partial charge on an
atom and the corresponding peak has shown in the solution plots below. A negative peak aligns with the
position of an atom carrying a negative partial charge, and a positive peak aligns with the position of an
atom carrying a positive partial charge.
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Figure 6: Distribution of electrostatic potential around HCl

Figure 7: Distribution of electrostatic potential around SO3
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Figure 8: Distribution of electrostatic potential around HCN
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Appendix

This is input file of a planar water molecule (the positions of each atom are shifted to be on the grid points)

$molecule

0 1

H 0.5000000 0.7400000 0.0000000

O 0.0200000 0.0200000 0.0000000

H 0.5000000 -0.7400000 0.0000000

$end

$rem

BASIS = 6-31g(D)

ESP_CHARGES = TRUE

GUI = 2

METHOD = B3LYP

SCF_CONVERGENCE = 8

$end

After submitting input file of water molecule to Q-Chem, Merz-Kollman electrostatic potential net atomic
charges is obtained as the following

Merz-Kollman ESP Net Atomic Charges

Atom Charge (a.u.)

----------------------------------------

1 H 0.426725

2 O -0.846350

3 H 0.419625

----------------------------------------

Sum of atomic charges = 0.000000

The numerical solution of the Poisson-Boltzmann for a planar water molecule shown in Figure 5 (right)
was obtained from the MATLAB code below

1 %Solv ing 2D Poisson−Boltmann Equation with mimetic ope ra to r s
2 %PBE in Mimetic d i f f e r e n c e s −D( ep s i l o n (GU) ) + ( kappa ) ˆ2 s inh (U) = rho
3 addpath ’ /Users / lunahuynh/SDSU−23−24/COMP670/mole/mole MATLAB ’
4

5 %Parameters
6 k=2; %order o f accuracy
7 m=100; %number o f c e l l s in x−ax i s
8 n=m; %number o f c e l l s in y−ax i s
9 a=−2; %west

10 b=2; %eas t
11 c=−2; %south
12 d=2; %north
13 dx=(b−a ) /m;
14 dy=(d−c ) /n ;
15

16 I =0.1 ; %i n i t i a l c ond i t i on f o r i o n i c s t r ength
17 C=7046.528885; %c o e f f i c i e n t on the RHS o f PBE
18

19 %D i e l e c t r i c constant func t i on ep s i l o n
20 e p s i l o n s = 80 ;
21 eps i lon m = 2 ;
22

23 %Debye−Huckle constant func t i on kappa



24 kappa s = sq r t ( I ∗8 .486902807) ;
25 kappa m = 0 ;
26

27 %2D staggered g r id
28 xgr id = [ a a+dx/2 : dx : b−dx/2 b ] ;
29 ygr id = [ c c+dy/2 : dy : d−dy/2 d ] ;
30 [X, Y] = meshgrid ( xgrid , ygr id ) ;
31

32 %I n i t i a l l o c a t i o n o f each atom in water H20 ( l o ca t ed on the g r i d s )
33 %z i i s Merz−Kollman ESP net atomic charges obta ined from Q−Chem
34 x H1 = 0 .5000000 ;
35 y H1 = 0 .7400000 ;
36 z i H1 = 0 .426725 ;
37

38 x O = 0.0200000 ;
39 y O = 0.0200000 ;
40 zi O = −0.846350;
41

42 x H2 = 0 .5000000 ;
43 y H2 = −0.7400000;
44 z i H2 = 0 .419625 ;
45

46 x = [ x H1 , x O , x H2 ] ;
47 y = [ y H1 , y O , y H2 ] ;
48 z = [ zi H1 , zi O , z i H2 ] ;
49

50 %RBF In t e r p o l a t i o n ( Gaussian RBF)
51 sigma = 0 . 0015 ; %parameter o f the spread o f the func t i on
52 rb f = @( r ) exp(−( r /( sigma ) ) . ˆ 2 ) ; %r i s a d i s t ance between 2 po in t s
53

54 %RBF matrix ( d i s t ance matrix )
55 R = ze ro s ( l ength (x ) , l ength (x ) ) ;
56 f o r i = 1 : l ength (x )
57 f o r j = 1 : l ength (x )
58 %fo r each pa i r o f data points , c a l c u l a t e the Eucl idean d i s t anc e and apply rb f func t i on
59 R( i , j ) = rb f ( s q r t ( ( x ( i ) − x ( j ) ) ˆ2 + (y ( i ) − y ( j ) ) ˆ2) ) ;
60 end
61 end
62

63 %Solve l i n e a r system to f i nd the weights f o r RBF i n t e r p o l a t i o n
64 weights = R \ z ’ ;
65

66 %In t e r p o l a t e at new po in t s
67 Z = ze ro s ( s i z e (X) ) ;
68 f o r i = 1 : numel (X)
69 f o r j = 1 : l ength (x )
70 Z( i ) = (Z( i ) + weights ( j ) ∗ rb f ( s q r t ( (X( i ) − x ( j ) ) ˆ2 + (Y( i ) − y ( j ) ) ˆ2) ) ) ;
71 end
72 end
73

74 %RHS
75 rho = C.∗Z ;
76 rho = reshape ( rho , [ ] , 1 ) ;
77

78 %Use Part i t ionOfUnity2DVectorFie lds f o r constant func t i on ep s i l o n
79 [ eps i l onh , ep s i l onv ] = Part i t ionOfUnity2Dvector (4 , 1 , e p s i l o n s , eps i lon m ,m) ;
80 ep s i l onh = reshape ( eps i l onh , [ ] , 1 ) ;
81 ep s i l onv = reshape ( eps i l onv , [ ] , 1 ) ;
82 ep s i l on hv = [ ep s i l onh ; ep s i l onv ] ;
83 Eps i lon = diag ( ep s i l on hv ) ;
84

85 %Use Part i t i onOfUni ty2DSca la rF ie lds f o r constant func t i on kappa
86 kappa = ( Part i t ionOfUni ty2Dsca lar (4 , 1 , kappa s , kappa m ,m) . ˆ 2 ) ; %kappaˆ2
87 kappa = reshape ( kappa , [ ] , 1 ) ;
88 Kappa = diag ( kappa ) ;
89

90 %Using the f i r s t term in the s e r i e s expansion s inh (x ) = x+xˆ3/3!+x ˆ5/ 5 !+ . . .
91 %as an approximation o f s inh (x ) . Therefore , mimetic d i f f e r e n c e s would become



92 % −D(E (GU) ) + K U = rho
93 % (−D(EG) + K) ∗ U = rho
94 %Let A = (−D(EG) + K)
95 % A ∗ U = rho
96

97 %2D Mimetic g rad i en t operator
98 G = grad2D (k ,m, dx , n , dy ) ;
99

100 %2D Mimetic d ive rgence operator
101 D = div2D (k ,m, dx , n , dy ) ;
102

103 %Neumann BC
104 BC = robinBC2D(k , m, dx , n , dy , 0 , 1) ;
105 A = −D∗( Eps i lon ∗G) + Kappa + BC;
106

107 % Solve f o r i n i t i a l Ui
108 Ui = A \ rho ;
109 Ui = reshape (Ui , m+2, n+2) ;
110 f i g u r e (1 )
111 s u r f (X, Y, Ui ) ;
112 x l ab e l ( ’ x ’ ) ;
113 y l ab e l ( ’ y ’ ) ;
114 z l a b e l ( ’ u { i }( r ) ’ ) ;
115

116 %Use Newton ’ s Method to approximate a system o f equat ions
117 %f (U) = −D(E(GU) ) + K sinh (U) − rho
118 f = @(U) −D∗( Eps i lon ∗(G∗U) ) + Kappa∗ s inh (U) − rho ;
119

120 Ui = reshape (Ui , [ ] , 1 ) ;
121 U = Ui ;
122 maxIter = 100 ;
123 t o l e r an c e = 1e−15; %can be changed acco rd ing ly
124 i t e r = 0 ;
125

126 %Jacobian matrix i s 1 s t p a r t i a l d e r i v a t i v e s o f f with r e sp e c t to U
127 J l i n e a r = −D∗( Eps i lon ∗G) ;
128 J non l i n ea r = diag (Kappa ∗ cosh (U) ) ;
129 J = J l i n e a r + J non l i n ea r ;
130 converge = f a l s e ;
131 whi le i t e r < maxIter
132 F = f (U) ;
133 U new = U − J\F;
134 deltaU = U new − U;
135 i f a l l ( abs ( deltaU ) < t o l e r an c e ) %check f o r convergence
136 converge = true ;
137 break ;
138 end
139 U = U new ;
140 i t e r = i t e r + 1 ;
141 end
142

143 i f converge
144 di sp ( [ ’ Converged a f t e r ’ , num2str ( i t e r ) , ’ i t e r a t i o n s . ’ ] ) ;
145 e l s e
146 di sp ( ’Did not converge . ’ ) ;
147 end
148

149 U = reshape (U, m+2, n+2) ;
150 f i g u r e (2 )
151 s u r f (X,Y,U) ;
152 x l ab e l ( ’ x ’ ) ;
153 y l ab e l ( ’ y ’ ) ;
154 z l a b e l ( ’u ( r ) ’ ) ;



The input files of HCl molecule, SO3 molecule, and HCN molecule are shown respectively below. Notice
that all molecules are symmetrized and the atoms are shifted to be on the grid points

$molecule

0 1

Cl -1.080000 1.4000000 0.0000000

H 0.3600000 1.3200000 0.0000000

$end

$rem

BASIS = 6-31g(D)

ESP_CHARGES = TRUE

GUI = 2

METHOD = B3LYP

SCF_CONVERGENCE = 8

$end

$molecule

0 1

S 0.0000000 0.0000000 -0.0000000

O 0.7678653 -1.3299818 0.0000000

O 0.7678653 1.3299818 -0.0000000

O -1.5357307 0.0000000 -0.0000000

$end

$rem

BASIS = 6-31g(D)

ESP_CHARGES = TRUE

GUI = 2

METHOD = B3LYP

SCF_CONVERGENCE = 8

$end

$molecule

0 1

C 0.0000000 -0.1005373 0.7324253

N 0.0000000 0.0206644 -0.7135753

H 0.0000000 0.9108826 1.1882759

$end

$rem

BASIS = 6-31g(D)

ESP_CHARGES = TRUE

GUI = 2

METHOD = B3LYP

SCF_CONVERGENCE = 8

$end



The Merz-Kollman electrostatic potential net atomic charges of HCl,SO3, and HCN molecule are listed
in order below

Merz-Kollman ESP Net Atomic Charges

Atom Charge (a.u.)

----------------------------------------

1 Cl -0.247169

2 H 0.247169

----------------------------------------

Sum of atomic charges = 0.000000

Merz-Kollman ESP Net Atomic Charges

Atom Charge (a.u.)

----------------------------------------

1 S 1.031620

2 O -0.342988

3 O -0.344316

4 O -0.344316

----------------------------------------

Sum of atomic charges = 0.000000

Merz-Kollman ESP Net Atomic Charges

Atom Charge (a.u.)

----------------------------------------

1 C -0.109953

2 N -0.146483

3 H 0.256436

----------------------------------------

Sum of atomic charges = 0.000000
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