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Abstract

In this study, we simulate a model for the whorl formation in marine algae, focusing specifically on the
influence of external calcium concentrations. At the heart of our investigation is the application of the
mimetic operators. Mimetic Operators Library Enhanced library, a sophisticated numerical tool designed
for solving partial differential equations with high accuracy and efficiency.

1 Introduction

Marine algae, like Acetabularia acetabulum, are single-celled organisms that can grow quite large and have
complex shapes.

These algae are able to regenerate, or grow back parts that are removed. If the top ”umbrella” is taken
off, the algae can completely regrow it thanks to a special part in its base, called the nucleus, where all its
genetic information is stored. Even if a piece from its stalk is cut, it can grow a new top again.

Figure 1: Algae Structure and it’s body parts (taken from Wikipedia)

This study focuses on reproducing with the Corbino-Castillo mimetic operators [2] via the utilization of
the Mimetic Operators Library Enhanced (MOLE) library [1], a particular aspect of the algae’s growth: the
formation of ring-like structures along its stalk, influenced by the amount of calcium in the water [4].

2 Related Work

The marine alga Acetabularia acetabulum is a good example for understanding how morphogenesis occurs
when a single-cell organism develops. Differential equation models that exclude genetics and intracellular
signaling have been proposed. The pattern development is caused by the system’s Turing instability (see
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[4]), applies Murray’s model, which is a purely chemical model and reaction-diffusion equation involving two
reactants.

The effect of calcium concentration on the start of the whorl pattern requires a minimal amount of calcium
concentration [3]. In addition, whorls will stop developing once the external calcium concentrations reach
certain upper bound. These facts can be clearly seen in the proposed model. More specifically, it is possible
to obtain a specific interval of calcium concentration for the whorl pattern to occur, were several transitions
type can occur though in the case of thin stem wall only continuous type and catastrophic type can happen
[5]. Different interesting dynamical behavior are described by the theory given in [5] and found numerically
by [3].

Our purpose is to be able to replicate numerically all findings in [3] but utilizing mimetic differences and
the MOLE library developed at San Diego State University [1].

3 Model Equation

This is a model proposed by Murray [4], but also numerically investigated by [3], which is an adaptation of
a simple two-species Turing mechanism. The equations are:

∂A

∂t
= DA ∆A+ k1 − k2A+ k3A

2B,

∂B

∂t
= DB ∆B + k4 − k3A

2B,

where ki, i = 1, 2, 3, 4, DA, DB > 0 and A and B are functions of r, θ, and t with the annulus domain defined
by

Ri ≤ r ≤ R0, 0 ≤ θ ≤ 2π, Ri = 1, R0 = 1.5.

A and B define the density of two substances inside the annular growth region at the top mature Acetabularia.

Figure 2: This is our model domain defined by R and θ in the blue color region

Here the assumption is that a reaction 2A + B
k3−−→ 3A took place.

Basically, B is calcium, and A could be a molecule that is increased in the calcium presence but are
constantly transformed to other substances at a rate of k2. And they are generated by constant rate k1, k4,
respectively, for A and B.

The model is non-dimensionalized via

u = A

(
k3
k2

)1/2

, v = B

(
k3
k2

)1/2

, t∗ =
DAt

R2
i

, x∗ =
x

Ri
, d =

DB

DA
, a =

k1
k2

(
k3
k2

)1/2

, λ =
k4
k2

(
k3
k2

)1/2

, R2 =
R2

i k2
DA

.

and becomes (where all stars are omitted to facilitate the formulas manipulation),

∂u

∂t
= Du∆A+R2(a− u− u2v) in Ω,

∂v

∂t
= dD v∆B +R2(λ− u2v) in Ω,

ur = vr = 0, on ∂Ω,
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with

∆u =
∂2u

∂r2
+ r−1 ∂u

∂r
+ r−2 ∂

2u

∂θ2

After substituting the Laplacian in polar coordinates, the partial differential equation (PDE) system is given
by,

ut = R2(a− u+ vu2) +
∂2u

∂r2
+ r−1 ∂u

∂r
+ r−2 ∂

2u

∂θ2

vt = R2(b− vu2) + d
∂2v

∂r2
+ r−1 ∂v

∂r
+ r−2 ∂

2v

∂θ2

4 Solving the PDE

The MOLE library directly approximates the Cartesian Laplacian operator with single command but in our
case, we have to slice the Laplacian in both r and θ because the second-order derivatives with respect to r and
θ appear separately in polar coordinates and also because of the presence of r−2, r−1 terms being multiplied.
Since the matrix representation of the mimetic Laplacian operator is defined as the product of the matrix
representations of both the divergence and the gradient operators, we need to exhibit the latter.

4.1 Divergence

The mimetic divergence is given by

D · F = ∇ · F

D · F = ∇ · F =
∂Fr

∂r
+

∂Fθ

∂θ

D · F =

 | |
Dr Dθ

| |

[
— Fr —
— Fθ —

]

4.2 Gradient

The mimetic gradient is given by

G = ∇F (r, θ) =
∂F

∂r
î+

∂F

∂θ
ĵ

G =

[
— Gr —
— Gθ —

]
4.3 Laplacian

L = DG

L = ∇2 = ∇ · ∇

L = ∇2 =
∂2

∂r2
+

∂2

∂θ2

4.4 Initial Conditions

The initial conditions are given in terms of Bessel functions:

u0 = a+ b+ ϵ(J1(r)Y
′

1 (1)− J
′

1(δ)Y1(δ)) cos θ,

v0 =
b

(a+ b)2
+ ϵ(J1(r)Y

′

1 (1)− J
′

1(δ)Y1(δ)) cos θ,

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(x
2

)2m+α

,

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
.
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4.5 Mimetic discrete boundary and boundary conditions

The mimetic discrete analog of the spatial derivatives of

ut = R2(a− u+ vu2) +
∂2u

∂r2
+ r−1 ∂u

∂r
+ r−2 ∂

2u

∂θ2

vt = R2(b− vu2) + d

(
∂2v

∂r2
+ r−1 ∂v

∂r
+ r−2 ∂

2v

∂θ2

)
utilizing the mentioned discrete analogs as well as convenient interpolation operators together with the time-
derivative discretization for ut produce

ut = R2(diag(a)− u+ vu2) +DrGru+ r−1IGGru+ r−2DθGθu
unew − uold

dt
= R2(diag(a)− unew + diag(vold)diag(uold)unew)

+ DrGrunew + diag(r−1)IGGrunew + diag(r−2)DθGθunew

unew − uold = dtR2diag(a) + dt(−R2I +R2diag(vold)diag(uold)

+ DrGr + diag(r−1)IGGr + diag(r−2)DθGθ)unew

Let
X = −R2I +R2diag(vold)diag(uold) +DrGr + diag(r−1)IGGr + diag(r−2)DθGθ

unew − uold = dtR2diag(a) + dtXunew

(I − dtX)unew = dtR2diag(a) + uold

(I − dtX +BC)unew = dtR2diag(a) + uold

where BC stands for boundary conditions.
Similarly for vt,

vt = R2(b− vu2) + d(DrGrv + r−1IGGrv + r−2DθGθv)
vnew − vold

dt
= R2(diag(b)− diag(u2

new))vnew + d (DrGrvnew + diag(r−1)IGGrvnew + diag(r−2)DθGθvnew)

vnew − vold = dtR2diag(b) + dt(−R2diag(u2
new) + d(DrGr + diag(r−1)IGGr + diag(r−2)DθGθ))vnew

Let
Y = −R2diag(u2

new) + d(DrGr + diag(r−1)IGGr + diag(r−2)DθGθ)

vnew − vold = dtR2diag(b) + dt Y vnew

(I − dtY )vnew = dtR2diag(b) + vold

(I − dtY +BC)vnew = dtR2diag(b) + vold

We are using the Neumann boundary conditions.
We apply the MATLAB inverse matrix command in the above functions. We are using interpolation

because directly applying gradient will make the calculations at faces instead of centers but we need it to
centers so one can apply the divergence later.

After factorising and applying boundary conditions, the code is ran a time loop from 0 to 2 with a time
step of 1e-3.

5 Results

The first two panels of the figure on top, exhibit a snapshot of the evolution of concentrations of chemical
species A and B (non-dimensionalized) in Cartesian coordinates. The last panel displays a plot in polar
coordinates of them.

On the other hand, Figures 4
In addition, Figure 5 depicts, utilizing MATLAB command surf, the growing of the whorl hair.
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(a) Cartesian plot of U (b) Cartesian plot of V (c) Polar plot using surf

Figure 4: The different variables at time 2.

Figure 5: Polar plot using surf, yellow color regions depicts that whorl hair growth when reacted with outside
calcium concentration

6 Conclusion

In this project a system of chemical reaction-diffusion equations is solved using the MOLE library. Analyzed
the two reactants dynamic transitions with respect to the whorl formation of marine algae when it is caused
by outside calcium concentration on its thin annulus.
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We share our MATLAB code to facilitate the readers to reproduce our findings.

7 Code

1 c l c
2 c l o s e a l l
3 c l e a r
4

5 addpath ( ’ . . /mole MATLAB ’ )
6

7 %% Spa t i a l d i s c r e t i z a t i o n
8 k = 2 ; % Order o f accuracy ( s p a t i a l )
9 m = 30 ; % Number o f c e l l s in r d i r e c t i o n

10 n = 30 ; % Number o f c e l l s in theta d i r e c t i o n
11 r1 = 1 ;
12 de l t a = 1 . 5 ;
13 r2 = de l t a ;
14 theta1 = 0 ;
15 theta2 = 2∗ pi ;
16 dr = ( r2−r1 ) /m; % Step l ength in r d i r e c t i o n
17 dtheta = ( theta2−theta1 ) /n ; % Step l ength in theta d i r e c t i o n
18

19 %% 2D Staggered g r id
20 r g r i d = [ r1 r1+dr /2 : dr : r2−dr /2 r2 ] ;
21 t h e t a g r i d = [ theta1 theta1+dtheta /2 : dtheta : theta2−dtheta /2 theta2 ] ;
22

23 [ r p t s , t h e t a p t s ] = meshgrid ( r g r i d , t h e t a g r i d ) ;
24 x = r p t s .∗ cos ( th e t a p t s ) ;
25 y = the t a p t s .∗ s i n ( th e t a p t s ) ;
26

27 [ x1 , y1 ] = po l 2 ca r t ( r p t s , t h e t a p t s ) ;
28

29 %% Parameters
30 a = 0 . 1 ;
31 b = 0 . 9 ;
32 d = 9 ;
33 R = 3 . 4 5 ;
34 ep s i l o n = 1e−2;
35

36 %% Simulat ion time
37 t end = 0 . 5 ;
38 dt = 0 . 0 1 ;
39

40 %% Bess e l f un c t i on s c a l c u l a t i o n
41 Jn = b e s s e l j (1 , r g r i d ) ;
42 Yn = b e s s e l j (2 , r g r i d ) ;
43 J1 = b e s s e l j (1 , r p t s ) ;
44 Y1 = Yn( end ) ;
45 DJn = d i f f ( Jn ) / dr ;
46 DYn = d i f f (Yn) / dr ;
47 DJ delta = DJn( end ) ;
48 DY1 = DYn(1) ;
49

50
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51 %% IC
52 U0 = a + b + ep s i l o n ∗ ( ( J1∗DY1)−(DJ delta ∗DY1) ) .∗ cos ( t h e t a g r i d ) ;
53 V0 = (b/( a+b) ˆ2) + ep s i l o n ∗ ( ( J1∗DY1)−(DJ delta ∗DY1) ) .∗ cos ( t h e t a g r i d ) ;
54

55 U old = U0 ( : ) ;
56 V old = V0 ( : ) ;
57

58 %% Equation d i s c r e t i z a t i o n
59 D = div2D (k , m, dr , n , dtheta ) ;
60 G = grad2D (k , m, dr , n , dtheta ) ;
61

62 Dr = D( : , 1 : n∗(m+1) ) ;
63 D theta = D( : , n∗(m+1)+1:end ) ;
64

65 Gr = G(1 : n∗(m+1) , : ) ;
66 G theta = G(n∗(m+1)+1: end , : ) ;
67

68 r p t s = r p t s ( : ) ;
69 t h e t a p t s = the t a p t s ( : ) ;
70

71 IG = interpolFacesToCentersG2D (k , m, n) ; % interpGMat2D (k , m, n) ;
72 I Gr = IG ( 1 : s i z e (G, 2 ) , 1 : n∗(m+1) ) ; % IG ( : , 1 : n∗(m+1) ) ;
73

74 %% BC
75 BC term eq = robinBC2D(k , m, dr , n , dtheta , 0 , 1) ;
76

77 %% Time loop
78 f o r t = 0 : dt : t end
79 X = Rˆ2 ∗ diag ( V old ) ∗ diag ( U old ) . . .
80 + (Dr ∗ Gr) + ( diag ( 1 . / r p t s ) ∗ I Gr ∗ Gr) . . .
81 + ( diag ( 1 . / r p t s . ˆ 2 ) ∗ D theta ∗ G theta ) . . .
82 − Rˆ2∗ diag ( l ength ( U old ) ) ;
83 X = eye ( l ength ( U old ) , l ength ( U old ) ) − dt∗X + BC term eq ;
84 U new = X\ ( ( dt∗Rˆ2∗a∗ ones ( l ength ( U old ) ,1 ) )+U old ) ;
85

86 Y = (d∗(Dr∗Gr + diag ( 1 . / r p t s ) ∗ I Gr ∗ Gr) . . .
87 + ( diag ( 1 . / r p t s . ˆ 2 ) ∗ D theta ∗ G theta ) ) . . .
88 − Rˆ2∗ diag (U new) ∗ diag ( U old ) ;
89 Y = eye ( l ength ( V old ) , l ength ( V old ) ) − dt ∗ Y + BC term eq ;
90 V new = Y\( dt∗Rˆ2∗b∗ ones ( l ength ( V old ) ,1 )+V old ) ;
91

92 U old = U new ;
93 V old = V new ;
94

95 subplot ( 2 , 2 , 1 ) ;
96 s u r f ( x1 , y1 , reshape (U new , m+2, n+2) ) ;
97

98 subplot ( 2 , 2 , 2 ) ;
99 s u r f ( x1 , y1 , reshape (V new , m+2, n+2) ) ;

100

101 subplot ( 2 , 2 , 3 ) ;
102 s u r f (x , y , reshape (U new , m+2, n+2) ) ;
103 subplot ( 2 , 2 , 4 ) ;
104 s u r f (x , y , reshape (V new , m+2, n+2) ) ;
105
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106 x l ab e l ( ’ x ’ )
107 y l ab e l ( ’ y ’ )
108 z l a b e l ( ’ z ’ )
109

110 co l o rba r
111 drawnow
112

113 pause ( 0 . 1 ) ;
114 end
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