

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2024

Solving 2D Black-Scholes with Mimetic
Differences

Zachary Humphries and Miguel A. Dumett

March 8, 2024

Publication Number: CSRCR2024-01

Solving 2D Black-Scholes with Mimetic Differences

Zachary Humphries ∗and Miguel A. Dumett †‡

March 8, 2024

Abstract

The Black-Scholes equation is a mathematical model from which one can obtain
a theoretical estimate of the price of European-style options. In this paper, mimetic
differences are utilized to numerically solve the 2D version of it.

1 Introduction

Mimetic differences [2], a method for numerically solving PDEs via matrix representations of
differential operators of vector calculus, provide a more user-friendly experience for construct-
ing numerical schemes for PDEs. Instead of needing to create custom functions that return
matrices for the specific differential equation, the MOLE library [3] uses mimetic operators
to create matrices for common differential operators: gradient, divergence, and Laplacian.
By inputting the dimensions of the scheme and the desired order of accuracy into one of
the mimetic MOLE functions, the user receives a matrix for the difference operations. Not
having to construct the matrices by hand greatly reduced the time invested in obtaining the
corresponding numerical estimates.

However, there are a few shortcomings of mimetic operators. Mimetic differences require
a general understanding of the linear transformations represented and how each operation
affects the movement of points on the grid. Although the MOLE library functions provide
flexibility for the orders of accuracy, interpolation is often needed to return nodal points
back to their original position. One of the unexpected difficulties while trying to construct a
discrete analog of a second-order mixed derivative operator was that it required interpolations
in both the X and Y directions. The MOLE library does come with its own interpolation
functions, which eases the difficulty with interpolation. Once the user overcomes the initial
learning curve, mimetic operators add a powerful and flexible tool for programmers to obtain
numerical solutions of PDE models.

∗Computational Science Master Program at San Diego State University (zhumphries0117@sdsu.edu).
†Jose E. Castillo:Editor
‡Computational Science Research Center at San Diego State University (mdumett@sdsu.edu).

1

2 Background

The Black-Scholes Model [1] is a partial differential equation (PDE) developed by Fisher
Black and Myron Scholes to evaluate the underlying price of European options. An option is
an agreement where someone can reserve to buy (call) or sell (put) a stock at specific time.
Unlike American options, European options can only be exercised at the maturity date.

The motivation to deal with this PDE was the experience the author had with the equation
while working as a pricing analyst in the natural gas industry, but never really understood the
equation. The Risk Management team that worked alongside the Pricing team would mitigate
risk (hedge) by buying call options on future consumption of natural gas by customers, whose
contracts were needed to price.

The research paper Examination of Impact from Different Boundary Conditions on the 2D
Black-Scholes Model: Evaluating Pricing of European Call Options by Tomas Sundvall and
David Tr̊ang[1] is utilized to obtain the parameter values, boundary and initial condition for
our investigation.

3 Black-Scholes PDE

The Black-Scholes PDE is given by:

Ft = −rxFx − ryFy −
1

2
x2σ2

(1,1)Fxx −
1

2
y2σ2

(2,2)Fyy − xyσ2
(1,2)Fxy + rF (1)

The payoff function at the maturity time is:

F (T, x, y) = Φ(x, y) =

(
x+ y

2
−K

)+

(2)

The parameters in the equation are:

• r : Risk-free Investment (often US bonds)

• σ : Volitility Correlation Matrix

σ =

(
σxx σyx

σxy σyy

)
, σyx = σx), σxx = σyy

• T : Final Maturity Time

• K : Strike Price (Call Option Premium)

2

3.1 Parameters

As used in the paper by Sundvall and Tr̊ang the project, I will be using the parameters:

• r = 0.1

• σ(1,1) = 0.3

• σ(1,2) = 0.05

Being undefined in the paper, I will also be using the parameters:

• T = 1

• K = 1

3.2 Initial Conditions

Since the value of the option is discounted to the present, the initial condition is the payoff
function:

F (T, x, y) = Φ(x, y) =

(
x+ y

2
−K

)+

(3)

3.3 Dirichlet Boundary Conditions

By the nature of options having a minimum value of zero (lower domain) but no maximum
price, the boundary conditions are divided into close-field and far-field boundary conditions.

In Figure 1, close-field (as diamonds) and far-field (as stars) boundary conditions are exhib-
ited. The triangular points where the close-field boundary conditions and meet the far-field
boundary conditions can be either of the two, however, in this project, they are defined as
far-field boundary conditions. The close-field and far-field boundary conditions will be up-
dated with each time step.

3.4 Close-Field Boundary Conditions

Since y = 0 on the x-axis and x = 0 on the y-axis, the x and y axes Black-Scholes equation
reduces to:

Ft = −rxFx − 1
2
x2σ2

(1,1)Fxx + rF , y = 0

Ft = −ryFy − 1
2
y2σ2

(2,2)Fyy + rF , x = 0
(4)

The value at the origin F (t, 0, 0) = 0.

3

Figure 1: Close-field (as diamonds) and far-field (as stars) boundary conditions.

3.5 Far-Field Boundary Conditions

Extrapolating the 1D case of the limit as the payoff function goes to infinity into 2D, the
paper [1] defined the far-field boundary conditions as:

F (t, xmax, y) =
xmax+y

2
−Ke−r(T−t)

F (t, x, ymax) =
x+ymax

2
−Ke−r(T−t)

(5)

The paper [1] recommends, as a ”rule of thumb”, to limit the upper domain by setting the
xmax and ymax to 4K to 6K times the number of spatial dimensions (two in this case). I have
chosen to use 10K as the upper limit for both x and y.

4

4 Implementation using the MOLE Library

This section will cover the creation of Ft through the use of mimetic difference functions in
the MOLE Library.

4.1 Mimetic Difference Functions: G, D, IFC, and ICF

The grad2D function in the MOLE library returns a matrix that takes the gradient of a
vectorized 2D mesh.

The resulting matrix from grad2D is:

G =

[
Gx

Gy

]
The application of G to a scalar field of nodal (center) points results in a vector field of
discrete edge (face) points. The graph below 2 displays an example of the center points
(grey) that become face points (red) with the use of G.

Figure 2: Center Points (Grey) and Face Points (Red)

5

In order to have the face points to return back to the center points for further use, the
interpolation function, interpolFacesToCentersG2D, is implemented.

The resulting matrix from interpolFacesToCentersG2D is:

IFC =

[
IFC
x

IFC
y

]
IFCG results in a gradient operation on each center point interpolated back to that point.
Thus,

IFCG =

[
IFC
x

IFC
y

] [
Gx

Gy

]
=

[
∂
∂x
∂
∂y

]
Similar to the grad2D function, the div2D function in the MOLE library returns a matrix
that takes the divergence of a vectorized 2D mesh.

The resulting matrix from div2D is:

D =
[
Dx Dy

]
The application of D to a vector field of discrete edge (face) points results in a scalar field
of nodal (center) points. However, since the relevant point lay on the center points, the
face points must be interpolated to the center points using the function interpolCentersTo-
FacesD2D.

The resulting matrix from interpolCentersToFacesD2D is:

ICF =

[
ICF
x

ICF
y

]
DICF results in a interpolation of center points to face points, which then allow for a diver-
gence operation that then return the face points to center points. Thus,

DICF =
[
Dx Dy

] [ICF
x

ICF
y

]
=

[
∂
∂x

∂
∂y

]
4.2 Discretization of Ft

The Black-Scholes PDE can be rewritten as

Ft = LF

where

L = −rx
∂

∂x
− ry

∂

∂y
− 1

2
x2σ2

(1,1)

∂2

∂x2
− 1

2
y2σ2

(2,2)

∂2

∂y2
− xyσ2

(1,2)

∂2

∂x∂y
+ rI

Since ∂2

∂x∂y
= ∂2

∂y∂x
and σ(1,2) = σ(2,1),

6

L = −r(x
∂

∂x
+y

∂

∂y
)−1

2
(x2σ2

(1,1)

∂2

∂x2
+xyσ2

(1,2)

∂2

∂x∂y
+yxσ2

(2,1)

∂2

∂y∂x
+y2σ2

(2,2)

∂2

∂x2
+xyσ2

(1,2)

∂2

∂x∂y
)+rI

with xdiag = diag(x), ydiag = diag(y), and I =

[
I

I

]
, further combining and simplifying

produces

L = −r

[
xdiag

ydiag

] [
∂
∂x

∂
∂y

]
− 1

2

[
x ∂
∂x

y ∂
∂y

] [σ2
(1,2)I σ2

(1,2)I

σ2
(2,1)I σ2

(2,2)I

] [
x ∂
∂x

y ∂
∂y

]
+ rI

L = −r

[
xdiag

ydiag

] [
∂
∂x

∂
∂y

]
− 1

2

[
∂
∂x

∂
∂y

] [xdiag

ydiag

] [
σ2
(1,2)I σ2

(1,2)I

σ2
(2,1)I σ2

(2,2)I

] [
xdiag

ydiag

] [
∂
∂x
∂
∂y

]
+ rI

substituting IFCG =

[
∂
∂x
∂
∂y

]
and DICF =

[
∂
∂x

∂
∂y

]

L = −r

[
xdiag

ydiag

]
IFCG− 1

2
DICF

[
xdiag

ydiag

] [
σ2
(1,2)I σ2

(1,2)I

σ2
(2,1)I σ2

(2,2)I

] [
xdiag

ydiag

]
IFCG+ rI (6)

4.3 MATLAB Implementation

Section 4 is implemented in the following code.

1 %% operator matrix
2 sma l l I = speye ((m+2)∗(m+2) , (n+2)∗(n+2)) ;
3 I = speye ((m+2)∗(m+2)+(n+2)∗(n+2) , (m+2)∗(m+2)+(n+2)∗(n+2)) ;
4

5 XI = spd iags (Xvec , 0 , (m+2)∗(m+2) , (m+2)∗(m+2)) ;
6 YI = spd iags (Yvec , 0 , (n+2)∗(n+2) , (n+2)∗(n+2)) ;
7

8 XYI = spd iags ([Xvec ; Yvec] , 0 , (m+2)∗(m+2)+(n+2)∗(n+2) , (m+2)∗(m+2)+(n+2)∗(n+2)) ;
9

10 XY = [XI , YI] ;
11

12 O = [omega (1 , 1) ∗ sma l l I , omega (1 , 2) ∗ sma l l I ; omega (2 , 1) ∗ sma l l I , omega (2 , 2) ∗
sma l l I] ; % MD

13

14 %% Set t ing Up Gradient and Divergence Mat r i c i e s
15 G = grad2D (k , m, dx , n , dy) ;
16 D = div2D (k , m, dx , n , dy) ;
17

18 %% Set t ing Up In t e r p o l a t i o n Matr ices
19

20 IFC = interpolFacesToCentersG2D (k , m, n) ;
21 ICF = interpolCentersToFacesD2D (k , m, n) ;
22

23 %% Combine f o r Black−Scho l e s Matrix
24 A = −(r ∗XY∗IFC∗G) − 0 . 5∗ (D∗ICF∗XYI∗O∗XYI∗IFC∗G) + r ∗ sma l l I ;

Implementation of Ft

7

4.4 Close-Field Boundary Condition

As described earlier, 3.4, the close-field boundary conditions operate where x = 0 and y = 0,
thus simplifying each equation into a one-dimensional version of the Black-Scholes Model for
each asset respectively.

Similar to the previous section, we can rewrite each 1D boundary condition as...

Ft = LxF , y = 0

Ft = LyF , x = 0

where

Lx = −rx ∂
∂x

− 1
2
x2σ2

(1,1)
∂2

∂x2 + r

Ly = −ry ∂
∂y

− 1
2
y2σ2

(2,2)
∂2

∂y2
+ r

To find Lx and Ly, we much implement the following MOLE Library functions:

1. grad : Applies a gradient operation to a 1D scalar array of nodal (center) points which
results in a 1D vector array of discrete edge points.

2. interpolFacesToCentersG1D : Interpolates the result of grad back to the 1D scalar array
of nodal (center) points

3. lap: Applies a laplacian operation to a 1D scalar array of nodal (center) points which
results in a 1D scalar array of nodal (center) points. No interpolation is needed.

With

1. the 1D gradients grad = Gx = Gy,

2. the 1D interpolations interpolFacesToCentersG1D = IFC
x = IFC

y , and

3. the 1D Laplacians lap = ∇2
x = ∇2

y,

IFCG = ∂
∂x

= ∂
∂y

∇2 = ∂2

∂x2 = ∂2

∂y2

and with the diagonal matrices xdiag = diag(x) and ydiag = diag(y)

Lx = −rxdiagI
FC
x Gx − 1

2
x2
diagσ

2
(1,1)∇2

x + rI

Ly = −rydiagI
FC
y Gy − 1

2
y2diagσ

2
(2,2)∇2

y + rI

8

4.5 Far-Field Boundary Condition

The far-field boundary conditions are of Dirichlet type and can be implemented directly on
the mesh grid.

5 Discretization of Time

As the value of the option is discounted in time back to the present, we must note that time
starts at t = T and ends at t = 0. This discounting means that the index n represents
T − n∆t, thus n+ 1 is a step backwards in time from n.

We use the implicit Backward Differentiation Formula of second-order (BDF2), with A the
mimetic difference discrete analog of operator L. One can think of the implicit BDF2 used
as the Forward Differentiation Formula of second-order but with ∆t being negative due to
discounting. The BDF2 results in the following discretization of Ft:

AFn+1 + b =
Fn − Fn+1

∆t
− 1

2

Fn+1 − 2Fn + Fn−1

∆t

where b is the Dirichlet far-boundary condition. However, we will ignore b as the boundary
condition can just be imposed and saved onto the resulting Fn+1.

∆tAFn+1 = Fn − Fn+1 − 1
2
Fn+1 + Fn − 1

2
Fn−1

3
2
Fn+1 +∆tAFn+1 = 2Fn − 1

2
Fn−1

Finally, leaving (
I +

2

3
∆tA

)
Fn+1 = −4

3
Fn +

1

3
Fn−1 (7)

which requires information from the previous two time step. To start the backward discrete
evolution, we utilize the BDF1 method as suggested in [1], which reads as

(I +∆tA)F1 = F0

9

6 Results

A plot of the initial condition [3] for the entire field is

and the plot of the result for the entire field is

10

As done in the reference paper, the following graphs displays the initial conditions and the
subsequent results of utilizing RBF2 for the discretization in time for the region of interest[
0 ≤ x ≤ 5K

3

]
and

[
0 ≤ y ≤ 5K

3

]

The graph shows the expected curve for the Black-Scholes model expanded into two dimen-
sions.

11

References

[1] Sundvall, T., and Tr̊ang, D., Examination of Impact from Different Boundary Conditions
on the 2D Black-Scholes Model: Evaluating Pricing of European Call Options, Uppsala
Universites, B.Sc. thesis, 2014.

[2] Corbino, J., and Castillo, J.E., High-order mimetic difference operators satisfying the ex-
tended Gauss divergence theorem, Journal of Computational and Applied Mathematics,
364 (2020).

[3] Corbino, J., and Castillo, J.E., MOLE: Mimetic Operators Library Enhanced: The
Open-Source Library for Solving Partial Differential Equations using Mimetic Methods,
2017. https://github.com/csrc-sdsu/mole.

12

https://github.com/csrc-sdsu/mole

	Introduction
	Background
	Black-Scholes PDE
	Parameters
	Initial Conditions
	Dirichlet Boundary Conditions
	Close-Field Boundary Conditions
	Far-Field Boundary Conditions

	Implementation using the MOLE Library
	Mimetic Difference Functions: G, D, IFC, and ICF
	Discretization of Ft
	MATLAB Implementation
	Close-Field Boundary Condition
	Far-Field Boundary Condition

	Discretization of Time
	Results

