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Abstract

This paper explores the application of mimetic methods in image in-
painting. It utilizes the MOLE library to develop advanced inpainting
algorithms. This research investigates the integration of MOLE operators
in two distinct methods: basic diffusion-based inpainting and Charbonnier
diffusivity-based inpainting.

1 Introduction

In the field of image processing, inpainting techniques hold immense impor-
tance for restoring missing or corrupted parts of images. This paper explores
the application of MOLE (Mimetic Operators Library Enhanced) [1] in image
inpainting.

MOLE, known for its robust mathematical frameworks, is utilized to de-
velop advanced inpainting algorithms. This research investigates the integration
of MOLE operators in two distinct methods: basic diffusion-based inpainting
and Charbonnier diffusivity-based inpainting. Both methods are enhanced by
MOLE operators, showcasing their potential in reconstructing sparsified images.

Although the study acknowledges the broader applications of MOLE-enhanced
inpainting methods, our primary focus remains on enhancing common inpaint-
ing algorithms using MOLE operators. While our exploration is not exhaustive,
the implemented algorithms offer a promising foundation for further research
and practical implementations specifically in inpainting sparsified images.

Restoring damaged or incomplete digital images due to corruption or miss-
ing data is a fundamental challenge in modern image processing. The technique
of inpainting has emerged as a valuable tool in addressing this challenge, en-
abling the reconstruction of flawed images for various applications. This research
delves into the exploration and integration of MOLE operators into inpainting
techniques. MOLE, a powerful mathematical library focused on solving partial
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differential equations, holds promise for refining inpainting algorithms. By in-
corporating MOLE operators, our objective is to enhance inpainting not only
for restoring corrupt images but also for optimizing image compression. This
optimization is crucial for efficient data storage and transmission, particularly
in contexts where bandwidth and storage resources are limited.

Our study centers on one of the main aspects of inpainting: reconstructing
sparsified images using enhanced diffusion techniques. We explore the integra-
tion of MOLE operators into basic diffusion-based inpainting and Charbonnier
diffusivity-based inpainting methods.

2 Methodology

In our inpainting approach, we leverage the principles of heat diffusion, encap-
sulated in the partial differential equation governing the spread of heat in a
given domain. Analogous to the behavior of heat diffusing across a surface, we
model the sparsified image as a grid of pixels. Each remaining pixel acts as a
set of heaters, each emitting a constant heat whose intensities correspond to
the pixel’s value.[3]. The empty or missing pixels are akin to unlit areas, repre-
senting regions where the heat, or in our case, image information, needs to be
propagated or ”filled in” over a series of time intervals.

2.1 Governing Equations

Let the original, unsparsified image be f , whose domain will be defined as Ω,
and let u be the inpainted image. The image domain can be partitioned known
and unknown pixel values, where ΩK represents retained data post sparsification
and Ω\ΩK represents the removed pixel data. Using the standard heat diffusion
equation with reflective boundary conditions, our homogenous inpainting PDE
can be defined as:

∇u = 0 on Ω\ΩK (1)

u = f on Ωk (2)

∂u = 0 on ∂Ω (3)

Whose steady-state solution can be given by:

c(x)(u− f)− (1− c(x))Lu = 0, on Ω (4)

Where c(x) is our confidence function, this prevents diffusion from occurring
over the known pixel values in ΩK . It is given as:

c(x) =

{
1 if x ∈ Ωk,

0 otherwise.
(5)
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2.2 Charbonnier Diffusivity

When Charbonnier Diffusivity[2] is used in the inpainting algorithm, the process
is transformed from linear to nonlinear isotropic1 diffusion[4]. Redefining Lu,
using Charbonnier Diffusivity as a nonlinear diffusion rate, can be given as:

Lu := div g(|∇uσ|2)∇u (6)

Where g(x2) can be given as:

g(x2) =

[
1 +

x2

λ2

]− 1
2

(7)

Where λ is a parameter that controls the diffusion rate and uσ is a Gaussian-
smoothed image of the inpainted imaged.

2.3 Algorithm Process

Our approach to image inpainting involves integrating MOLE operators into
established algorithms. We begin by preprocessing the input image, converting
it to grayscale, and intentionally introducing sparsity to simulate real-world
scenarios resembling compressed images. In this context, sparsity represents the
deliberate reduction of random image data, emulating the principles of image
compression techniques.

The algorithm and its outcomes are illustrated below:

Algorithm 1 Removes a percentage of pixels from an input image

Input: image, percent
Output: sparse

[h,w] = size(image)
key = rand(h,w) ▷ Create random matrix for thresholding
key(key < percent) = −1
key(key ≥ percent) = 1
sparse = (key ⊙ image) - 1
sparse(sparse < 0) = 0 ▷ Set all negative pixels to 0

The algorithmic process unfolds in two primary stages: basic diffusion-
based inpainting and Charbonnier diffusivity-based inpainting, both enhanced
by mimetic operators implemented by the MOLE library.

In the basic diffusion method, the inpainted image undergoes iterative re-
finement, gradually filling in the missing or sparse regions at a constant diffusive
rate.

1Originally, the goal was to implement an anisotropic nonlinear inpainting algorithm, uti-
lizing a diffusion tensor computed using Charbonnier Diffusivity. Unfortunately, due to the
size of MOLE operators, certain computations within a memory constrained environment
proved to be too large.
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After each iteration, our original sparse domain ΩK , is superimposed on the
inpainted area, preventing diffusion over the known domain. MOLE-enhanced
Laplacian and gradient matrices play a pivotal role here, ensuring the diffusion
process is guided by mathematical precision.

The Charbonnier diffusivity method introduces dynamic adaptability, ad-
justing diffusivity coefficients non-linearly based on the image’s evolving char-
acteristics. This dynamic adjustment ensures a nuanced inpainting process,
where the image is iteratively updated, guided by MOLE-enhanced diffusivity
coefficients.

Below is a combination of both algorithms separated by a method flag as
well as the implementation of the Charbonnier-diffusivity equation:

Algorithm 2 Inpaint a sparsified image

Input: sparse, percent, iter, λ
Output: inpainted
dt = 0.1 ▷ Speed of Diffusion
[h,w] = size(sparse)
dx, dy = 1
L = lap2D(2,m, dx, n, dy) ▷ Discrete Laplacian MOLE Operator
g = grad2D(2,m, dx, n, dy) ▷ Discrete Gradient MOLE Operator
inpainted = sparse
if method == 0 then ▷ Constant Diffusivity

for i = 1 : iter do
inpainted += inpainted ∗ L ∗ dt
inpainted = superimpose(inpainted, sparse) ▷ Confidence Function

end for
end if
if method == 1 then ▷ Charbonnier Diffusivity

for i = 2 : iter do
inpainted += inpainted ∗ L ∗ dt
dt = charbonnier(g, inpainted, λ)
inpainted = superimpose(inpainted, sparse) ▷

end for
end if

Algorithm 3 Find the Charbonnier-diffusivity coefficient

Input: g, inpainted, λ
Output: dt

U = imgaussfilt(sparse)
dt = 1/sqrt(1+normest(g′gU))2/λ2
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3 Results

Our findings provide a promising foundation for the development of advanced
inpainting algorithms, emphasizing the pivotal role of MOLE operators. To
compare the results of both the basic diffusion-based inpainting and Charbon-
nier diffusivity-based inpainting, we will compare their Structural Similarity
Index, or SSIM. The SSIM is used to compare the similarity of an image to a
reference image. This metric index is bounded by [0, 1] where an SSIM of 1
indicates that the input image is identical to the reference image. The diffusion
rate for all inpainted images is 0.1.

3.1 Original Image

The image that we use will use for our inpainting results and metrics is shown
below:

Original Image
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3.2 50% Sparsification

Using 50 iterations with λ = 0.001:

Basic Inpainting Charbonnier Inpainting

Basic Inpainting Error Charbonnier Inpainting Error
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Charbonnier Diffusivity

Our SSIM for comparison is given:

Base Inpainting SSIM: 0.9494
Charbonnier SSIM: 0.9505

7



3.3 80% Sparsification

Using 100 iterations with λ = 0.001.
Basic Inpainting Charbonnier Inpainting

Basic Inpainting Error Charbonnier Inpainting Error
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Charbonnier Diffusivity

Our SSIM for comparison is given:

Base Inpainting SSIM: 0.8466
Charbonnier SSIM: 0.8614

3.4 95% Sparsification

Using two different amounts of iterations, with λ = 0.001.
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3.4.1 1000 Iterations

Basic Inpainting Charbonnier Inpainting

Basic Inpainting Error Charbonnier Inpainting Error
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Charbonnier Diffusivity

Our SSIM for comparison is given:

Base Inpainting SSIM: 0.7185
Charbonnier SSIM: 0.7129
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3.4.2 2000 Iterations

Basic Inpainting Charbonnier Inpainting

Basic Inpainting Error Charbonnier Inpainting Error
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Charbonnier Diffusivity

Our SSIM for comparison is given:

Base Inpainting SSIM: 0.7190
Charbonnier SSIM: 0.7183

3.5 Discussion of Results

As seen in the SSIM tables, Charbonnier Diffusion shows a higher SSIM value
for both 50% and 80% sparsifications, compared to basic inpainting diffusion
over the same number of iterations.

At a sparsification of 95%, we see that basic diffusion has a higher SSIM.
The only differing factors between all of our trials is the percent of sparsification
and the number of iterations.

As shown in the Charbonnier Diffusivity figures, our diffusivity coefficient is
reduced as the number of iterations increase. For trials with a higher percent
of sparsification, requiring more iterations, after a certain amount of iterations
we see our Charbonnier Diffusivity becomes less than the diffusivity coefficient
of our base inpainting method. This implies that after a certain number of
iterations, basic diffusion has a faster rate of inpainting, possibly leading to
better results.

There may exist a more optimal values for both the number of iterations
as well as our value, λ, which plays an integral role in the rate of change for
our diffusivity in Charbonnier Diffusivity methods. Overall, more trials utilizing
different parameters are required to definitively show the better of two methods,
but regardless both methods show promise in their enhancement using MOLE
operators.
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