
Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2023

MOLE: Mimetic Operators Library Enhanced

The Open-Source Library for Solving Partial Differential
Equations using Mimetic Methods

Johnny Corbino and Jose Castillo

October 10, 2023

Publication Number: CSRCR2023-07

*Computational Science Research Center, 5500 Campanile Drive, San Diego, CA 92182

MOLE: Mimetic Operators Library Enhanced
The Open-Source Library for Solving Partial Differential Equations Using

Mimetic Methods

Johnny Corbino* and Jose Castillo*

October 10, 2023

Abstract

MOLE is a high-quality (C++ & MATLAB/Octave) library that implements
high-order mimetic methods to solve 1D, 2D, and 3D partial differential
equations. It provides discrete analogs of the most common vector calculus
operators: Gradient, Divergence, Curl, and Laplacian. These operators
(matrices) act on staggered grids (uniform, non-uniform, and curvilinear) and
satisfy local and global conservation laws. Mathematics are based on the
work of [Corbino and Castillo 2020]. However, the user may find useful
previous publications, such as [Castillo and Grone 2003], in which similar
operators were derived using a matrix analysis approach.

https://doi.org/10.1016/j.cam.2019.06.042
https://doi.org/10.1137/S0895479801398025

1 Introduction

Physical phenomena are typically modelled as a set of differential equations
subject to conservation laws. Numerical methods used to solve these
equations are of vital importance in the paradigm of computational science.
In this work, we talk about MOLE, an open-source library that implements
mimetic discretization methods (MDM) to intuitively solve partial
differential equations (PDE).

Mimetic operators are derived by constructing discrete analogs of the
continuum differential operators ∇,∇ ∙,∇ ×, and ∇2. Since most continuum
models are described in terms of these operators, the MDM approach has
recently gained a lot of space in the context of numerical PDEs.

Qualities of a mimetic operator:

• It is a discrete analog of the continuum operator
• It satisfies essential identities from vector calculus
• It satisfies global and local conservation laws
• It provides uniform order of accuracy
• It is easy to use (and reusable)

In 2003, Castillo and Grone came up with a matrix analysis approach to
construct high-order approximations of divergence and gradient operators
[1]. However, in their approach, the 4th-order operators have three free-
parameters. The mimetic operators implemented in MOLE are based on the
work of [Corbino and Castillo 2020] which are a substantial improvement
over the operators introduced in [1]. These new operators have no free-
parameters, have optimal bandwidth, are more accurate, and in the worst
case they deliver the same accuracy as the ones from 2003.

https://doi.org/10.1016/j.cam.2019.06.042

(1)

2

2
f

x
∂
∂

1 1
2

2j j jf f f
x

+ −− +

∆

2 2

2 2
f f

x x
∂ ∂

=
∂ ∂

DG𝑓𝑓

vs

There are many applications of MDM in solving continuum problems,
including in the geosciences (porous media) [2], [3]; fluid dynamics (Navier-
Stokes) [4] [5]; image processing [6]; general relativity [7]; and
electromagnetism [8].

2 On the Mathematics

MDM not only provide uniform order of accuracy (all the way to the
boundary), but they also satisfy fundamental identities from vector calculus,

In addition, the discrete version of Gauss’ extended divergence theorem is
also satisfied:

the deduction of (1) can be found on https://www.crcpress.com/Mimetic-
Discretization-Methods/Castillo-Miranda/p/book/9781466513433

When using MDM we are not discretizing the equations (as it is done with
standard finite-difference methods (FDM)), but instead we construct a
discrete analog to the differential operator,

https://www.crcpress.com/Mimetic-Discretization-Methods/Castillo-Miranda/p/book/9781466513433
https://www.crcpress.com/Mimetic-Discretization-Methods/Castillo-Miranda/p/book/9781466513433

3 Installing the Library

Once you download the library from:

https://github.com/csrc-sdsu/mole

you need to add the path to it on your MATLAB/Octave script,

addpath(‘path_to_mole’)

after this, you will be able to call any of the 29 functions provided by MOLE
to construct mimetic operators.

4 Getting the Operators

Functions syntax is consistent throughout the library. In addition, you can
see a brief explanation of each function by typing the following command:

help ‘function_name’

for instance,

or,

https://github.com/csrc-sdsu/mole

All functions in MOLE return a sparse matrix representation of the
requested operator.

To obtain a 2nd-order 1D mimetic Laplacian we can type:

div(k, m, dx)*grad(k, m, dx);

or

lap(k, m, dx);

where ‘k’ is the desired order of accuracy (in this case 2), ‘m’ is the number
of cells, and ‘dx’ is the step size.

spy(lap(2, 5, 1));

yields:

a 7x7 sparse matrix with 15 nonzero elements.

5 Staggered Grids

Mimetic operators are defined over staggered grids.

2D

1D

3D

 Scalar quantities. | Vector quantities.

and finally ,

There are several ways to generate uniform structured staggered grids (in
MATLAB). What is important is to remember that we need to store the
coordinates for two different quantities.

suppose,

west = 0; east = 1; m = 10; dx = (east-west)/m;

xgridSca = [west west+dx/2 : dx : east-dx/2 east];

This grid holds the coordinates of all scalar quantities (cell centers +
boundaries). Vector quantities coordinates are just:

xgridVec = west : dx : east;

The previous commands create a couple of one-dimensional arrays with the
coordinates of each field (scalar and vectorial). Now we need a couple of
arrays to hold the actual values of these fields.

NOTE: Depending on the problem, you may need or not to explicitly create
such arrays. It is often a good practice to preallocate the memory for better
performance:

scalarField = zeros(numel(xgridSca), 1);

and,

vectorField = zeros(numel(xgridVec), 1);

6 Using the Operators

Inside the “examples_MATLAB” folder you will find several MATLAB
scripts that use MOLE to solve well known partial differential equations.

Definition of variables and initialization
(initial and boundary conditions).

Grid generation and obtainment of
Mimetic Operators.

Apply operators.
Solve system of equations (if applicable).

Time integration (if applicable).
Update fields.

Plot or process results.
Check for conservation of energy,

mass, etc. (optional).

Our selection includes steady-state and time-dependent problems:

• Burger’s eq.
• Richards’ eq. (highly nonlinear, mixed form)
• Wave eq. (with symplectic schemes)
• Heat eq. (explicitly and implicitly)
• Etc.

Each script in the “examples_MATLAB” folder is adequately commented.
You may notice that all programs have the same taxonomy:

7 Code Snippet

% Solves the 1D Poisson's equation with Robin boundary
conditions

clc; close all

addpath('../mole_MATLAB')

west = 0; % Domain's limits

east = 1;

k = 6; % Operator's order of accuracy

m = 2*k+1; % Minimum number of cells to attain the
desired accuracy

dx = (east-west)/m; % Step size

% 1D Staggered grid

xgrid = [west west+dx/2 : dx : east-dx/2 east];

% RHS

RHS = exp(xgrid)’;

RHS(1) = 0; % West BC

RHS(end) = 2*exp(1); % East BC

 Result

% Get 1D 6th-order mimetic laplacian operator from MOLE

L = lap(k, m, dx);

% Impose Robin BC on laplacian operator

a = 1; % The ‘a’ coefficient in Robin BC

b = 1; % The ‘b’ coefficient in Robin BC

L = L + robinBC(k, m, dx, a, b); % robinBC also
provided by MOLE

U = L\RHS; % Solve a linear system of equations

plot(xgrid, U, 'o-')

title('Poisson''s equation with Robin BC')

xlabel('x')

ylabel('u(x)')

% End of elliptic1D.m

As you can see, the previous script followed the structure outlined on page
16. It is easy to solve 1D, 2D and 3D problems using MOLE!!!

Remember: MOLE is also available in C++.

8 Non-uniform Operators

MOLE is also equipped with mimetic operators that act on structured non-
uniform staggered grids. Depending on the problem, it is sometimes useful
to have more spatial resolution on specific locations of the physical domain.
To obtain non-uniform mimetic operators from MOLE, the user must type:

divNonUniform(k, grid);

or

gradNonUniform(k, grid);

for higher dimensions,

div2DNonUniform(k, grid), div3DNonUniform(k, grid),
grad2DNonUniform(k, grid), and

grad3DNonUniform(k, grid);

where ‘grid’ is the array that contains the coordinates of each cell center or
each edge (depending on the operator being computed).

MOLE computes these non-uniform operators by multiplying the
corresponding inverted Jacobian matrix to the corresponding uniform
operator. For more information on non-uniform operators, please see [9].

9 Compact Operators

Compact representation of higher-order mimetic operators (order 4th and
up) is also implemented in MOLE. It consists on the factorization of higher-
order divergence and gradient operators in the following way,

let D2 and G2 denote the 2nd-order divergence and gradient operators. Let Rk
and Lk be the right and left factor matrices of the kth-order divergence and
gradient operators, respectively.

Thus, a kth-order mimetic Laplacian operator can be represented as:

𝐿𝐿�𝑘𝑘 = 𝐷𝐷2𝑅𝑅𝑘𝑘𝐿𝐿𝑘𝑘𝐺𝐺2

where 𝑅𝑅𝑘𝑘𝐿𝐿𝑘𝑘 is known as the “star*” operator. This operator is the tensor
that contains all the material properties.

For more information on compact operators, look at the folder named
“compact_operators” and [10].

References

[1] A Matrix Analysis Approach to Higher-Order Approximations for
Divergence and Gradients Satisfying a Global Conservation Law. SIAM
journal on matrix analysis and applications. 2003.

[2] J. Aarnes, S. Krogstad, and K-A Lie. Multiscale mixed/mimetic methods
on corner-point grids. Computational Geoscience. 2008.

[3] J.M. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite-
difference methods for diffusion equations. Computational Geoscience.
2002.
[4] A. Abba and L. Bonaventura. A mimetic finite-difference method for
large eddy simulation of incompressible flow. Technical Report. Politecnico
di Milano, Milano, Italy, August 2010.
[5] E. Barbosa and O. Daube. A finite-difference method for 3D
incompressible flows in cylindrical coordinates. Computational Fluids. 2005.

[6] E. Haber and J. Modersitzki. A multilevel method for image registration.
SIAM journal on scientific computing. 2006.

[7] C. Di Bartolo, R. Gambini, and J. Pullin. Consistent and mimetic
discretizations in general relativity. Journal of mathematical physics. 2005.

[8] J.M. Hyman and M. Shashkov. Mimetic discretizations for Maxwell's
equations and equations of magnetic diffusion. Fourth International

Conference on Mathematical and Numerical Aspects of Wave Propagation,
Golden, Colorado. SIAM. 1998.

[9] Mimetic schemes on non-uniform structured meshes. E. D. Batista and
Jose E. Castillo. Electronic transactions on numerical analysis. Vol. 34. 2009.

[10] High order compact mimetic differences and discrete energy decay in
2D wave motions. Jose E. Castillo and Guillermo F. Miranda. Spectral and
high order methods for partial differential equations. ICOSAHOM. 2017.

	CSRCR2017-01
	CSRC Report on MOLE

