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Abstract 

MOLE is a high-quality (C++ & MATLAB/Octave) library that implements 
high-order mimetic methods to solve 1D, 2D, and 3D partial differential 
equations. It provides discrete analogs of the most common vector calculus 
operators: Gradient, Divergence, Curl, and Laplacian. These operators 
(matrices) act on staggered grids (uniform, non-uniform, and curvilinear) and 
satisfy local and global conservation laws. Mathematics are based on the 
work of [Corbino and Castillo 2020]. However, the user may find useful 
previous publications, such as [Castillo and Grone 2003], in which similar 
operators were derived using a matrix analysis approach. 

https://doi.org/10.1016/j.cam.2019.06.042
https://doi.org/10.1137/S0895479801398025


1 Introduction 

Physical phenomena are typically modelled as a set of differential equations 
subject to conservation laws. Numerical methods used to solve these 
equations are of vital importance in the paradigm of computational science. 
In this work, we talk about MOLE, an open-source library that implements 
mimetic discretization methods (MDM) to intuitively solve partial 
differential equations (PDE). 

Mimetic operators are derived by constructing discrete analogs of the 
continuum differential operators ∇,∇ ∙,∇ ×, and ∇2. Since most continuum 
models are described in terms of these operators, the MDM approach has 
recently gained a lot of space in the context of numerical PDEs.  

Qualities of a mimetic operator: 

• It is a discrete analog of the continuum operator
• It satisfies essential identities from vector calculus
• It satisfies global and local conservation laws
• It provides uniform order of accuracy
• It is easy to use (and reusable)

In 2003, Castillo and Grone came up with a matrix analysis approach to 
construct high-order approximations of divergence and gradient operators 
[1]. However, in their approach, the 4th-order operators have three free-
parameters. The mimetic operators implemented in MOLE are based on the 
work of [Corbino and Castillo 2020] which are a substantial improvement 
over the operators introduced in [1]. These new operators have no free-
parameters, have optimal bandwidth, are more accurate, and in the worst 
case they deliver the same accuracy as the ones from 2003. 

https://doi.org/10.1016/j.cam.2019.06.042
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There are many applications of MDM in solving continuum problems, 
including in the geosciences (porous media) [2], [3]; fluid dynamics (Navier-
Stokes) [4] [5]; image processing [6]; general relativity [7]; and 
electromagnetism [8]. 

 

2 On the Mathematics 

MDM not only provide uniform order of accuracy (all the way to the 
boundary), but they also satisfy fundamental identities from vector calculus, 

 

 

 

 

 

 

 

In addition, the discrete version of Gauss’ extended divergence theorem is 
also satisfied: 

 

 

the deduction of (1) can be found on https://www.crcpress.com/Mimetic-
Discretization-Methods/Castillo-Miranda/p/book/9781466513433  

When using MDM we are not discretizing the equations (as it is done with 
standard finite-difference methods (FDM)), but instead we construct a 
discrete analog to the differential operator, 

 

  
 

https://www.crcpress.com/Mimetic-Discretization-Methods/Castillo-Miranda/p/book/9781466513433
https://www.crcpress.com/Mimetic-Discretization-Methods/Castillo-Miranda/p/book/9781466513433


  

3 Installing the Library 

Once you download the library from: 

https://github.com/csrc-sdsu/mole 

you need to add the path to it on your MATLAB/Octave script, 

addpath(‘path_to_mole’) 

after this, you will be able to call any of the 29 functions provided by MOLE 
to construct mimetic operators. 

 

4 Getting the Operators 

Functions syntax is consistent throughout the library. In addition, you can 
see a brief explanation of each function by typing the following command: 

help ‘function_name’ 

for instance, 

 

or, 

 

 

 

 

 

https://github.com/csrc-sdsu/mole


  

All functions in MOLE return a sparse matrix representation of the 
requested operator. 

To obtain a 2nd-order 1D mimetic Laplacian we can type: 

div(k, m, dx)*grad(k, m, dx); 

or 

lap(k, m, dx); 

where ‘k’ is the desired order of accuracy (in this case 2), ‘m’ is the number 
of cells, and ‘dx’ is the step size. 

spy(lap(2, 5, 1)); 

yields: 

 

 

 

 

 

 

 

 

 

a 7x7 sparse matrix with 15 nonzero elements. 

 

5 Staggered Grids 

Mimetic operators are defined over staggered grids. 
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and finally    , 

 

 

 

 

 

 

 

 



  

There are several ways to generate uniform structured staggered grids (in 
MATLAB). What is important is to remember that we need to store the 
coordinates for two different quantities. 

suppose, 

west = 0; east = 1; m = 10; dx = (east-west)/m; 

xgridSca = [west west+dx/2 : dx : east-dx/2 east]; 

 

This grid holds the coordinates of all scalar quantities (cell centers + 
boundaries). Vector quantities coordinates are just: 

xgridVec = west : dx : east; 
 

The previous commands create a couple of one-dimensional arrays with the 
coordinates of each field (scalar and vectorial). Now we need a couple of 
arrays to hold the actual values of these fields. 

NOTE: Depending on the problem, you may need or not to explicitly create 
such arrays. It is often a good practice to preallocate the memory for better 
performance: 

scalarField = zeros(numel(xgridSca), 1); 

and,  

vectorField = zeros(numel(xgridVec), 1); 

 

6 Using the Operators 

Inside the “examples_MATLAB” folder you will find several MATLAB 
scripts that use MOLE to solve well known partial differential equations. 

 

 



  

Definition of variables and initialization  
(initial and boundary conditions). 

Grid generation and obtainment of  
Mimetic Operators. 

Apply operators. 
Solve system of equations (if applicable). 

Time integration (if applicable). 
Update fields. 

Plot or process results. 
Check for conservation of energy,  

mass, etc. (optional). 

Our selection includes steady-state and time-dependent problems: 

• Burger’s eq. 
• Richards’ eq. (highly nonlinear, mixed form) 
• Wave eq. (with symplectic schemes) 
• Heat eq. (explicitly and implicitly) 
• Etc. 

Each script in the “examples_MATLAB” folder is adequately commented. 
You may notice that all programs have the same taxonomy: 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

7 Code Snippet 

% Solves the 1D Poisson's equation with Robin boundary 
conditions 

clc; close all 

addpath('../mole_MATLAB') 

  

west = 0;  % Domain's limits 

east = 1; 

  

k = 6;     % Operator's order of accuracy 

m = 2*k+1; % Minimum number of cells to attain the 
desired accuracy 

dx = (east-west)/m;  % Step size 

 

% 1D Staggered grid 

xgrid = [west west+dx/2 : dx : east-dx/2 east]; 

  

% RHS 

RHS = exp(xgrid)’; 

RHS(1) = 0;           % West BC 

RHS(end) = 2*exp(1);  % East BC 

 

 



  Result 

% Get 1D 6th-order mimetic laplacian operator from MOLE 

L = lap(k, m, dx); 

  

% Impose Robin BC on laplacian operator 

a = 1;  % The ‘a’ coefficient in Robin BC 

b = 1;  % The ‘b’ coefficient in Robin BC 

L = L + robinBC(k, m, dx, a, b);  % robinBC also 
provided by MOLE 

 

U = L\RHS;  % Solve a linear system of equations 

plot(xgrid, U, 'o-') 

title('Poisson''s equation with Robin BC') 

xlabel('x') 

ylabel('u(x)') 

% End of elliptic1D.m 

 

 

 

 

 

 

 

 



  

As you can see, the previous script followed the structure outlined on page 
16. It is easy to solve 1D, 2D and 3D problems using MOLE!!!  

Remember: MOLE is also available in C++. 

 

8 Non-uniform Operators 

MOLE is also equipped with mimetic operators that act on structured non-
uniform staggered grids. Depending on the problem, it is sometimes useful 
to have more spatial resolution on specific locations of the physical domain. 
To obtain non-uniform mimetic operators from MOLE, the user must type: 

divNonUniform(k, grid); 

or 

gradNonUniform(k, grid); 

for higher dimensions, 

div2DNonUniform(k, grid), div3DNonUniform(k, grid), 
grad2DNonUniform(k, grid), and  

grad3DNonUniform(k, grid); 

where ‘grid’ is the array that contains the coordinates of each cell center or 
each edge (depending on the operator being computed). 

MOLE computes these non-uniform operators by multiplying the 
corresponding inverted Jacobian matrix to the corresponding uniform 
operator. For more information on non-uniform operators, please see [9]. 



  

 
 

9 Compact Operators 

Compact representation of higher-order mimetic operators (order 4th and 
up) is also implemented in MOLE. It consists on the factorization of higher-
order divergence and gradient operators in the following way, 

let D2 and G2 denote the 2nd-order divergence and gradient operators. Let Rk 
and Lk be the right and left factor matrices of the kth-order divergence and 
gradient operators, respectively. 



  

Thus, a kth-order mimetic Laplacian operator can be represented as: 

𝐿𝐿�𝑘𝑘 = 𝐷𝐷2𝑅𝑅𝑘𝑘𝐿𝐿𝑘𝑘𝐺𝐺2 

where 𝑅𝑅𝑘𝑘𝐿𝐿𝑘𝑘 is known as the “star*” operator. This operator is the tensor 
that contains all the material properties.  

For more information on compact operators, look at the folder named 
“compact_operators” and [10]. 
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