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Abstract

The Perona-Malik diffusion is a non-linear anisotropic process. The equation is used
to smooth or blur images. The advantage compared to a linear diffusion is that the
equation does not smooth or blur the image around areas that have a high likelihood
of being edges. This paper solves the Perona-Malik diffusion equation with mimetic
differences. The mimetic method can be utilized for image processing driven by PDEs.
Furthermore, the output of the algorithm illustrates that the edges are significantly
sharper, and the other areas are more blurred or smoothed.

1 Introduction

This report is about solving the Perona-Malik diffusion equation with the Corbino-Castillo
[1] mimetic differences in 2D. The Perona-Malik diffusion is a non-linear anisotropic process
that was presented in 1987 by Perona and Malik [2]. In principle, the equation smooths or
blurs the image, except around image areas that are likely to have edges. In contrast to
a linear diffusion, which smooths the entire image in the same way (such as the Gaussian
diffusion), the widespread areas should be smoothed while the edges remain sharp. For that
reason, the equation is used to denoise or blur images in a smart way.

The mimetic discretization method uses a staggered grid, which is defined at the beginning
of the code with the MOLE library [3]. The mimetic analogs for the differential operators for
the gradient and the Laplacian are defined on a staggered grid. Instead of using the finite
difference method by manually creating matrices or loops, the mimetic method creates them
by just defining the grid and mimetic operators. As a result, the calculation of the PDE is
clear and straightforward. The grid is exactly related to the number of pixels in the image.
From there, it follows that the pixels and the grid are matching, and the values from the pixel
centers are used for the calculations. Overall, the mimetic method simplifies the calculation
and makes it clearer.
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This work distinguishes from [4] because of the following:

1. The original image is not smoothed by a Gaussian kernel. The Gaussian kernel param-
eter in Bazan et al., changes at each time step.

2. Even though the anisotropy function g is equivalent, the parameter K is fixed and it
does not change at each time step as in Bazan et al.

3. This work can be more easily generalized to higher-order of accuracy.
4. This work utilizes image processing MATLAB toolbox APIs for cropping, padding, etc.

5. This work does not attempt to solve the Perona-Malik equation with finite-differences
or finite elements.

2 Equation with BC and IC

This section describes the equation, initial condition and the boundary conditions.

2.1 Perona Malik Equation

Perona Malik Equation [2]:

Iy = V- (c(x,y,)VI) (1)
Diffusion coefficient: 1
C(||VI||)=W (2)
1+ (51
where:
I = TImage 512x512px [double]
I, = Partial derivative with respect to time of the image content [double]
¢ = Diffusion coefficient [double]
K = Constant, controls sensitivity to edges [integer]
V = Gradient

V. = Divergence

2.2 Initial Condition

Any image with a minimum size of 512x512px can be used as the input image for the Perona-
Malik algorithm. The algorithm converts the image to a black-and-white image and crops it
to a size of 512x512px. As an example image, the colored Tom image (in Figure 1) is used.
After converting it to black and white, the image is available in its initial condition as an
8-bit gray scale image with values from 0 to 255, with black as 0, and white as 255.
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Figure 1: Tom, black and white image, initial condition, 512x512px

2.3 Boundary Condition

Neumann boundaries are being used for that project. Neumann boundaries request no change
at the boundaries, as shown in equation (3). For that reason, the image domain is extended
with pixels around the whole image. The added pixel values are set to the same values as
the outermost edge of the image. That results in a smooth blurring around the image. The
image has then a size of 514x514px.

or
on
where € denotes picture domain 512x512px [2].

0 in 9Q x (0,+00), (3)

3 Diffusion coefficient

The diffusion coeflicient of the Perona-Malik equation is shown in equation (2). As a function
of the coefficient, the likelihood of blurring the edges is reduced. Hence, the coefficient is
a function of the image information, which is determined by the image gradient. This is
implemented in MATLAB with the mimetic method by calculating the 2D gradient of the
actual image for each iteration.

Constant K = 7, which controls the sensitivity to edges, is used. This value is found empir-
ically. The next paragraph explains the determination of the parameter K more detailed.

In the first attempt of solving the equation with the mimetic method, the grid was set the
values from paper [2]. The values were set to [a,b] x[c,d] = [0,1]x[0,1]. That results in a small
values for dz and dy. For that reason, K = 7000 was found to obtain right image outputs.

m= 512; % Number of cells along the x—-axis
n =m; % Number of cells along the y—axis
a = 0; % West
b = 1; % East
¢ = 0; % South
d = 1; % North
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Listing 1: Matlab code part (grid based on 0,1)

The expected values range from 5 to 25 based on [5]. In this example, K = 15 is used. After
completing the code and performing several test runs, the result emphasizes the difference is
the definition of the grid, i.e. the another project has [a,b]x[c,d] = [0,512]x[0,512] as a grid.
As a result, dx and dy equals to 1. Therefore, K can be much smaller for this grid and it is
set to 7.

4 Image processing

First, the code initializes the image as an uint8 image (8-bit grayscale image). Then, it
casts the image values to double and sets the initial and boundary conditions. Afterwards,
the algorithm iterates through the main loop with the mimetic operators, and at the end,
it converts the image back into an uint8 image. These steps are described in detail in the
following subsections.

4.1 8-bit Image Value Handling

The initial image is an 8-bit black and white image, which has unsigned integer (uint8) values
from 0 to 255. The mimetic method does not support values of type integer. For that reason,
the image has to be converted from uint8 to double. This is accomplished by casting the uint8
to double and then adding 1.The conversion from double to uint8 is the opposite procedure.
This follows from the offset in the colormap of MATLAB (to work with the image data, the
2D image was converted into a vector with the reshape command of MATLAB).

4.2 Iterations

The main loop of the algorithm calculates the new image (loi4) (see equation (4)). For
clarification the equation has the same symbols for the Operators as the Code. First, the
loop creates a vector from the image data (I) and calculates the image gradient. Then, it
adapts the diffusion coefficient and multiplies the diffusion coefficient (C) with the image
gradient (GI). Afterwards, the algorithm takes the divergence (D) and multiplies it by dt.

Iorar = Io +dt - (D(C - (GI))) (4)
For 2D linear problems, the Neumann stability factor is
dt
—— < 0.5.
dz? + dy? —

Because of the non-linearity of equation 2, the Neumann stability factor is determined em-
pirically, which leads to dt = 0.1. Last, the respective value is added to the actual image.
The number of iterations has to be adjusted and depends on the case.
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5 Code

The following Matlab code was utilized for solving the Perona-Malik equation.
1 % Perona Malik Equation with mimetic method (by Thomas Keller)
; WISTISTSTISITTITITIITITTITISIITIS o
4

% Read image
WITISTTISTITSTIISTTISSTTISTTISTTITTIS T

6 RGB = imread (’tom2.jpg’);

8 % crop image to 512x512px

9 RGB = imcrop (RGB,[0 0 512 512]);

10

11 % BC Neumann

12 RGB = padarray (RGB,[1 1],255, both’);
13 IRGB2(1,:) = RGB(2,:);

14 RGB(end ,:) = RGB(end —1,:);
15 RGB(:,1) = RGB(:,2);
16 RGB(:,end) = RGB(:,end—1);

18 % add nois to image

19 RGB = imnoise (RGB, ’gaussian ) ;

20

21 % Read and display an RGB image, and then convert it to grayscale
22 I = rgb2gray (RGB) ;

23

24 % convert integer values to double

25 IX = double(I)+1;

26

27 WSTISSSTSSTSTTSSIISSSSSSTSTISSTTISSS o

28 % Mimetic difference parameters

29 TSI STSTIIITTTTTTTTTTTSSTSIITSo

30 k = 2; % Order of accuracy

31 m= 512; % Number of cells along the x—axis
32 n =m; % Number of cells along the y—axis
33 a = 0; % West

34 b = 512; % East

35 c = 0; % South

36 d = 512; % North

37 dx = (b—a) /m;

38 dy = (d—c)/n;

39

40 SIS STSIIITTTTTTTTTTSTSSTSISISI TS0

41

42 % 2D Staggered grid

43 xgrid = [a a+dx/2 : dx : b—dx/2 b];

44 ygrid = [¢ cHdy/2 : dy : d—dy/2 d];

45

46 % 2D Mimetic divergence operator

47 D = div2D (k, m, dx, n, dy);

49 % 2D Mimetic gradient operator
0 G = grad2D(k, m, dx, n, dy);



% alpha
3 alpha = 1;

0

[S N

% Check Neumann stability criterion
dt = dx"2/(10%alpha); % alpha = 1

~N O

% Initial condition (IC)

o

S AN SRR < B, B S <)

9 12 = IX; % IC image

60

61 TS SSSISSTTIIITTTTTTT TSI SIS o
62 % Iteration —Loop

63 WSTISTISTT TSI TSI ITSIISTISITISTIS S0

64

65 for t =1 : 30

66

67 % create vector with image data
68 I2 = reshape(I2, [], 1);
69

70 % gradient of the image
71 13 = Gx12;

72

73 % Diffusion coefficient
74 % C caluclation

75 k =7;

76 C=1./(14+(13./k)."2);

77

78 % Operation

79 L1l = C.x13;

80 L =12 + dtx(D«L1);

81

82 % reshape vector to image
83 I2=reshape (L, 514, 514);
84

85 end

86

87 % convert image back to uint8
88 I2=uint8 ((I12—-1));

89

90 SIS STSIIITTTTTTTTTITSSTSIII TS0
91 % Output image

92 WIS TSTTISTISISSSSTSTTTSISISSS o
93 figure

94 subplot (1,2,1)

95 imshow (1)

96 title (’Original Image’)

97

08 subplot (1,2,2)

99 imshow (12)

100 title (’Perona Malik Image’)
101

Listing 2: Matlab code



6 Verification

6.1 Original Image

Alternatively, the Perona Malik diffusion can be applied to an original image (Figure 2).
The output proves that the edges become significantly sharper and the other areas are more

blurred.

Original Image
|-¢ -.. L I.I -..-'_:'E_

Figure 2: Tom black and white image: unmodified initial image and output image of MAT-
LAB code, 50 iterations, K =7

6.2 Noisy Image

A measure of the denoise quality is the mean square error (MSE) and the peak signal-to-noise
ratio (PSNR). The two graphs (Figures 3 and 4) show that about 90 iterations should result
in the best image quality.

The result of the Perona Malik diffusion for a noisy input image is portrayed in the right image
in Figures 5, 6, 7. The number of iterations varies from 50 to 90 to 140. The comparison
to the original image highlights that the edges are sharper and the whole image is denoised.
It is good to see that the 90 iterations that were evaluated in Figures 3 and 4 result in the
subjectively best output. As expected, the right image in Figure 5 is still noisy, and the one
in Figure 7 has lost many details. The number of iterations required to denoise images is
significantly greater than for blurring unmodified images (Figure 1).
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Figure 3: MSE for Tom black and white image, 300 iterations, K =7
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Figure 4: PSNR for tom black and white image, 300 iterations, K =7



Original Image

Figure 5: Tom black and white image: noisy initial image (noise with variance of 0.01) and
output image of MATLAB code, 50 iterations, K = 7.

Original Image

Figure 6: Tom black and white image: noisy initial image (noise with variance of 0.01) and
output image of MATLAB code, 90 iterations, K = 7.



Original Image

Figure 7: Tom black and white image: noisy initial image (noise with variance of 0.01) and
output image of MATLAB code, 140 iterations, K = 7.
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