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Abstract

In this paper, it is demonstrated theoretically that high-order mimetic discrete
analogs (for the spatial derivatives) of the three-dimensional advection equation con-
serves energy, if an energy preserving time discretization scheme is utilized. In ad-
dition, it is proposed a mimetic scheme that uses the fourth-order Corbino-Castillo
mimetic discrete analog of the advection equation together with the sixth-order fil-
tered leapfrog method LF-MMK time discretization scheme [9] that conserves total
energy. It is proved that this algorithm converges numerically. The LF-MMK scheme
is an ordinary differential equation method that introduces three additional stage vari-
ables to the discrete mimetic space variable, for which there is no dynamical system.
Before the converge proof is given, an ordinary differential system is found for all four
variables.

1 Introduction

In [5], it is demonstrated that one-dimensional (1D) second-order mimetic discrete analog of
the 1D advection equation conserves energy. That is a property that any mimetic difference
method holds provided that the method satisfies a discrete analog of the integration by
parts formula [1, 2, 3].

This work not only generalizes to the three-dimensional (3D) advection equation the energy
conservation of mimetic discrete analogs of the one-dimensional (1D) advection equation in
[5] but also proposes a uses a fourth-order mimetic scheme in space and and a sixth-order
filtered leapfrog method for simulating the 3D advection equation, for which a convergence
proof is given.

*This work was partially supported by SDSU
fComputational Science Research Center at the San Diego State University (mdumett@sdsu.edu).
fComputational Science Research Center at the San Diego State University (jeastillo@sdsu.edu).



In particular, the stability part of the convergence argument relies on the properties of
the eigenvalues of the divergence and gradient mimetic operators (for which the Corbino-
Castillo operators [3] are utilized but it can be demonstrated that similar properties hold
for the Castillo-Grone method [1, 2]), when combined with the corresponding high-order
mimetic interpolation operators.

The time-discretization part of the designed algorithm is a method-of-lines type scheme for
the mimetic analog of the 3D advection equation of the spatial derivatives, that utilizes four-
stage discrete vector variables (one that contains the spatial variations from the mimetic
analog) and the other three from the time discretization method itself.

Consistency and stability discussions require an ordinary differential equation (ODE) for
each of the four discrete vector variables involved in the time-discretization scheme. Only
one ODE is available (for the discrete vector variable that comes from the mimetic discrete
analog part of the spatial derivatives of the equation). This document proposes a way
of deriving such ODEs for each of the other three discrete vector variables. Once this is
established, the consistency (order of accuracy) and stability properties of the mimetic
scheme are determined.

In Section 2, the 3D advection equation in R? is introduced.

Section 3 begins with the 3D advection equation on [~1,1]® with boundary conditions.
Then the mimetic integral form of the equations is obtained and the staggered grid utilized
is presented. Then, the discrete energy and some mimetic operator are evoked. The section
finished with a proof that high-order mimetic difference discrete analog of the 3D advection
equation has the property of energy conservation.

Section 4 demonstrates the convergence of a high-order mimetic scheme for the 3D advec-
tion equation. Section 4 initially focuses on the mimetic analog of the flux part of the 3D
advection equation. Then, it introduces the sixth-order filtered leapfrog scheme LF-MMK,
a method-of-lines type [9] and hooks it up with the mimetic analog of the 3D advection flux.
Furthermore, in this section, an appropriate ODE system is found for all the four-stage
variables of the LF-MMK scheme before starting the convergence study of the mimetic
scheme proposed. The stability part of the proof relies on the eigenvalues of the mimetic
divergence and gradient operators when clumped together with their respective high-order
mimetic interpolation operators [6] (see Appendix A).

The tensor nature of the high-order 3D mimetic operators (which are defined by Kronecker
products) causes that the numerical simulation of the 1D advection equation in Section 5,
are enough for demonstrating that the high-order mimetic scheme works. Time evolution
and energy conservation plots are also shown in Section 5.

In Section 6, some conclusions are drawn.



2 The 3D advection equation

Consider the following 3D advection partial differential equation (without boundary con-
ditions) on V = R3, with known constant velocity v = (v1, v2,v3)¢, for the unknown scalar
field u = u(zx, y, 2),

u(x,y,2,t) + V- (ud) = 0, xeV, t>0, (1)
U(ZL’, yazao) = uO(:E»yv Z)v (fU,Z/» Z) ev, (2)

where ug is a smooth enough function. It is well-known that (1)-(2) is a well-posed PDE.
The initial data propagates following the constant velocity vector v [7, p.18].

3 Energy conservation of mimetic differences

In this section, it is proven that, for the advection equation with smooth initial and bound-
ary data, a high-order mimetic difference scheme, when combined with a leapfrog method
and a sixth-order time filter, conserves energy.

3.1 The 3D advection PDE with boundary conditions

Consider the following 3D advection partial differential equation (or, linear transport equa-
tion) on V = [—1, 1]3, with known constant velocity v = (v, v2, v3)?, for the unknown scalar
field u = u(x, y, 2),

eV, t>0,

) (3)
)€ {—1} x (=1,1) x (=1,1), t >0, (4)
,2) € (=1,1) x {=1} x (=1,1), £ >0, (5)
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where g1, g2, g3, ug, are smooth enough functions, such there is enough differentiability
among their values on the common boundaries.

3.1.1 The integral problem

By multiplying (3) by u and integrating over the spatial domain, one obtains

/uuth—F/uV-(uU)dV:O, (8)
\%4 \%4

with dV the Cartesian volume element.



The first and second terms in (8) verify

1 du? 1d 9
/uV-(ﬁ’-u)dV = 1/V~(u217)dv,
Jv 2 )y

and hence, after a time integration from 0 to 7', (8) becomes
T
/ (w?(z,y, 2, T) — u*(z,y, 2,0)) dx +/ / V - (u*0) dV dt = 0. (9)
1% 0o Jv

3.2 The mimetic discrete analog of the integral problem

Before establishing the energy conservation of the mimetic discrete analog of the integral
equation, some mimetic preliminaries are given.

3.2.1 The staggered grid

Let m,n, o are the number of cells along the x—, y—, z—axes, respectively. On the axes-
uniform staggered grid S = .5, X S, x S,, where

Sp:{—lzso,s%,--~ »Sp 15 Sp1 =1},

with Sj_1 = -1+ (- %)hp, hy, = %,j = 1,---,p, define U(s;,sj,s;,t), the mimetic
numerical approximation of u(z;,y;, 2,t), at time coordinate ¢ and space coordinates s; =
Tiy S5 = Yj,51 = 2.

In addition, define U(t) = U(Sy,, Sn, So, t), the numerical approximation on grid S at time
t, and the discrete element volume h = h,,hy,h,. Notice that U(0) = uy.

For the approximation of the vector field, it is convenient to define the grid
N = (Sp X Ny, X No) U (N, X Sy, X No) U (N, X Ny, X S,),
the middle edges of the voxels with centers at S9, x SY x SO, where
Ng=A{ri,--+,rg-1},

with r; = =1+ j hq, hg = %, j=1,---,¢—1,and S) = Sy \ {s0, sp41}-

In mimetic differences, approximation U of scalar field u are defined on .S, X S;, X S,, while
approximation V of vector fields v are defined on N, X N,, X N,.



3.2.2 The discrete energy term

Since there are no divergence or gradient operators in the volume integral fv u? dV at time
t, it is approximated by

h (vecr (U (1)) veer (U (1)),
vecy, is the vectorization operator of the three-dimensional tensor U (t), that maps the dis-
crete U (t)-cube onto a vector of length d = (m+2)(n+2)(0+2), following the lexicographic
ordering.

Observe that for the scalar field, fv u?(x,y, z,t) dV is called the energy at time ¢, and one
can define the discrete energy Ey of U(t) at time ¢ by

Ey(t) = h(vecr,(U(t))) vecr, (U(t)).

3.2.3 Some mimetic operators in 3D

The 3D of order k, k = 2,4,6,8, divergence interpolation operator that maps S onto N
is
1Fo Il e Ip
. . .
T = Iy ©If @1 L
IY @IFoIL
with T ’f)r, r = x,y, z, the 1D interpolation operator on the r-axis [4], and

0
1

1
0

the extension of the identity matrix by adding two extra rows of zeros (one at the top and
one at the bottom). Notice that the 7% € R®*¢ where

b= (m+1)no+m(n+ 1)o+mn(o+ 1),
is the cardinality of mimetic discrete vector fields in 3D, and
c=(m+2)(n+2)(o+2)
is the cardinality of mimetic discrete scalar fields in 3D.
The weight matrix for the d-dimensional divergence operator is

. Topo @ Inpa @ QF o .
Q - Io+2 ® Qn+2 ® Im+2 3
Q§+2 & In+2 ® Im+2



where Q'; is the p x p weight matrix for the 1D divergence operator, and I, the p x p
identity matrix.

The three-dimensional divergence operator of order k is
Dy,.=|I,®l, @Dt I,@DFx1,, Diel,®I, ] :
with D, r = z,y, z, the 1D divergence operator of order k on the r-axis [3].

3.3 Energy conservation of the mimetic discrete analog

In addition, since in mimetic differences of any order k, the discrete scalar field U is defined
on S, needs to be interpolated, by an interpolation operator of order &, to N, to be able
to approximate fv 1V - (u?¥) dV, without loosing accuracy.

Hence, the mimetic approximation of order k for [;, 1V-(u*@) dV/, (see [6]) is given by
<D];yz(VID(U2)) >Qk - VeCL(VIk (UQ)) Qk(D]:zyz) VeCL(]l)v (10)

where the time dependence has been omitted to simplify the notation, 1 is the constant one
discrete scalar field on S, and V is the discrete version of constant vector field ¥ [6].

In addition, in 1D one has [6]

hQD™1 = (-1,0,---,0,1)T. (11)

A direct computation of Q¥(D 27yz) gives

T
I @ It @ Qf, ., Dk

T A,
Q*Dl. = | ITwQk,,DE « I,
kD I 0 1T

and by using the properties Kronecker product and the vectorization operator, one gets

[ (T2 IT® Q%HD';T)VeCL(]l)

Qk(D];yz)TVeCL(]l) = (II® Qn+2DkT % IT)vecr (1)

| (QF o DET @ IT @ [T)vecy (1)

[ veer( Am+2D )"l m+2 (n+2)( 0+2)( 0 ® I)

= (I ® Qk QDk @ IT)vecr (1) ,
( +2DkT 9 IT @ Ih)vecy (1)




since (BT ® A)vecr,(X) = vec,(AX BT), with 1, is a p x ¢ matrix of ones.
From (11)

R 17
0O --- 0
T . . .
l:n+2D§ ]1m+2,(n+2)(o+2) = : : : (13)
0O --- 0
o1 (m+1) X (n+2)(0+2)

= [=1,0,--,0, 17 1 [L - g2y 0r2)-

N

By (13),if M = | %+2D§Tﬂm+27(n+2)(0+2)](fo ® I,,), one obtains

-1 .- -1
0 0
Mo o= | i (1o @ I)
0 --- 0
L Lol d (m+1)x (n+2)(042)
R
0 0
= = [_170 0, 1]2;1[1 71]710
0 0
11 1 (mt1)mo

(14)
and hence | ';I+2D’:§T]lm+2y(n+2)(o+2)](fo (X)fn) is the boundary information of faces {—1} x
N, x N, (with negative sign) and {1} x N,, x N, (with positive sign).
Since A® B = P(B® A)P,, for some permutation matrices P, and P,, then the remaining
rows other than the first of (12) become
~ T ~ 2) , & ~ T
(I3 2 Qb oDl ® Ihyveep(1) = PPN @ I © Qf.,Df ) PPvee (1),
(15)
(QboDE @Il & ihveer (1) = PO & [T @ Qb DE ) PPvecy (1),

for some matrices Pl(z)7 P,SZ), ]3l(3), P,S3), respectively.

Identities (15) can also be established by induction. For 1D, (11) holds. If one assumes, it
is valid for 1D and tries to proof the identity for 2D, then formulas (12)-(14) establish the



existence of PZ(Q), PT(Q) in (15). Similarly, from the 2D identity, one can derive the existence

of Pl(3),Pr(3) of (15).

As vecr, (1) is a vector of only ones, then Rgp)vecL(]l) = vecr,(1), p =2, 3. Hence,

- T _ - T L
(17 © Qh oDy @ Ifveer (1) = PPvecr(Qh 2DE Lyio miyorz) (In ® 1),
(16)
T _ ap s T L
(@2 DY @ Iy @ Iy )veer (1) = Pl(s)VeCL(Ql;HD? Loto,(m+2)(n+2) (In © Im)),
respectively.

Similar arguments to those of (12)-(16) demonstrate that

T

Qr oDl Lo mi2)orey = (1.0, 0,151+ mi2) 012
T

Qlof—&—QD,I; ]lo+2,(m+2)(n+2) = [_17 0,---,0, 1]Z+1 [1» Tt 1](m+2)(n+2)7

and hence, the second row of (12) is the boundary information of faces N,, x {—1} x N,
(with negative sign) and N,,{1} x N, (with positive sign), and the third row of (12) is the
boundary information of faces N, x N,, x {—1} (with negative sign) and N,,, x N,, x {1}
(with positive sign), respectively.

Therefore, (10) becomes

T T T
h[v1(veer (T8 U) T vy (veer (T8 U?)T, vs(veer, (T8 U?)T ]Q’“nyz
h (vi(vecy, (IIE)TUQ))T, 1)2(VeCL(IkDTU2))T, vg(vecy, (IIB UNT]
L1000, Wall Uinryor) Lo g@f )
Pl(g) [_17 0,---,0, 1]54—1[17 T 1](m+2)(o+2)(A { )
]Dl [_1707"' 0, 1]3—5—1[17"' 71](m+2)(n+2)( ® 1 )
T A A
h[vl (VeCL(Ilk) UQ))T[_L 0,---,0, 1]%+1[17 B 1](n+2)(o+2)(I0 @ In)
T ~ ~
va(veer (Zf U2) PP [=1,0,-, 0,101+ Uims2yor2) (i 1)

T 3 A A
vs(veer (Zh U2)T P =1,0,-, 0,051 mi2ymsz) (In © In)]

vecr, (1)

n—1o0—1 m—1o0—1
h UIZZ 1 ’I"],Tl, UZ(—l,Tj,Tl, +U2 Z Z rlvlvrlv UQ(T%_l?Tl?t))
] 11=1 =1 [=1
m—1n—1
U3 Z Z(Uz(ri,rj, 1,t) — U*(ri,rj,—1,t))
i=1 j=1



Therefore, the mimetic discrete analog of (9) is given by

n—1o—1 m—1o0—1 m—1n—1
Ed(T) +h |vp Z Z Uz(l,’l’j,?’l, t) + v9 Z Z UZ(TZ‘, 1,7, t) + v3 Z Z UQ(TZ‘, rj, 1, t)
j=11=1 i=1 [=1 i=1 j=1
n—1o0—1 m—1o0—1 m—1n—1
Ed(O) + h U1 ZZg%(T‘j,T‘l,t) + V2 Z Zg%(ri,rl,t) + V3 Z Zg%(ri,rj,t) y
j=11=1 i=1 [=1 i=1 j=1

i.e., the energy at 1" plus the energy lost at the right boundary matches the initial energy
plus the energy gained at the left boundary.

4 Convergence of the mimetic numerical scheme

In this section, it is proven that the high-order mimetic discrete analog of the 3D advection
equaion flux, when combined with a corresponding high-order time discretization, converges
numerically to its classical solution.

To establish convergence of the mimetic numerical scheme, on V = [-1,1]* and ¢ € [0,T]
with 7" = qAt, one need to show (see [8]) that

lim HU(iZ‘, Yjs 21, ts) - U(LI,‘Z, Yj, 215 tS)H = 07

m,n,0,q— o0

where

o1 2 1Y 2 1\ 2 sT

However, since the high-order time-discretization LF-MMK utilized for the numerical
scheme requires information from several previous time sttage steps, the convergence prove
is more involved, since u will be only one component among the other stage variables.

4.1 Mimetic analog of the 3D advection flux term

Equations (1) can be written as
up = —V - (u?). (17)

Ify = (V4, Va2, V3) is the discrete version of the vector field ¢, with Vi, V5, V3 discrete
versions (defined on N) of vy, v9,v3, and U is the discrete version (defined on S) of the
scalar field u, then the discrete analog of the right-hand-side of (17) is

~DEF,.(VoI}U) = Fp(U) = KpU, (18)

9



where o is the component-wise product (or Hadamard product), Fp is a discrete linear
function of U, and

diag(V1)
Kp=-|D}, diag(V2) I}
diag(V3)

Since ¥ is constant and V - (u¥) = viuy + vouy + v3u, = ¥ - Vu, another possible discrete
analog of the right-hand-side of (17) is

~IE(Vo Gk U) = Fg(U) = KaU. (19)
where
diag(Vl)
Kg =1L diag(Vz) Gh. |
diag(V3)

F¢ is a discrete linear function of U, and I’é is the 3D gradient interpolation operator of
order k = 2,4,6,8 that maps N onto S [6].

By construction, both Kp and K¢ are approximations of k-th order of accuracy of —V - (u?)
for constant vector field .

4.2 The sixth-order filtered leapfrog scheme

The goal here is to introduce the sixth-order filtered leapfrog scheme LF-MMK [9, p. 2553]
and to couple it with the mimetic discretization of the right-hand-sides (18) or (19) of
equation (17).

Following [9], consider the ordinary differential equation (ODE)

I _
ot

where F' : R? — RY, for some d € ZT.

The formulation of the fifth-order LE-MMK scheme is

¢S+l _ E

E(y), (20)

s

= 2At (), (21)

where

— s—4 — s

O =T (T =50 109 T - 109 et — ). (22)

Here, 1° is the approximation to the solution at the time sA¢, and ¢ ° is the solution
after applying a sixth-order implicit time filter using a real constant vg, 0 < 75 < 1, that
determines the filter strength.

10



This linearly implicit scheme is simple enough to be written explicitly [9, p. 2553]. For, if
e = (1 + 1176) 7%, this scheme can be written as

T = m@ T = 2eAt P, (23)
’L/J5+l — 76(’2 o1 + 2(1 + 10’76)At F(W)), (24)
D7 = @ 5% 109 " 4+ Byt (25)

The time-filtered leapfrog six time levels scheme (21)-(22) requires only four variables to
be stored, since (23)-(25) can be seen as an iterative algorithm that overwrites

B by (@R g0, . (26)

—5—3

(¥

In [9, p.2553], it is shown that the amplitude factor of this scheme, when w At — 0, is
3'76 1 + 6’}/6 6
Ay=1—— ——— (wAt
P T (3 age WA

and that the phase error of this scheme is (under the same conditions) is
1
Ry=1+¢ (w At)%

4.3 The numerical scheme

If one substitutes the linear right-hand-side Fp(U) or Fg(U) into (23)-(25), one obtains
the following a high-order mimetic scheme for the 3D advection equation

T = @ = 29 ALKYY), (27)
= T 4 2(1 4 1046) At Kb, (28)
07 = @ T =59 T 109 T 45t (29)

where K = Kp or K = Kg, if one uses (18) or (19), respectively.
The iterative process (26) corresponding to (27)-(29) is given by

R VAT (30)
where R e ey ~
U= (T )T e R,
and
0 I 0 0
M- 0 0 Yol —2967c At K (31)
"/61 —5")/6.[ 15’}/6761 I— 10')/676(1 + 12’}/6)AtK ’
0 0 Yol —2%6(1 + 1096)At K

where 1* = U(s At) € R? is the actual numerical solution of ODE (20) at time s At, and
I = 154 is the identity matrix with d rows and d columns.

11



4.3.1 The extended ODE system

System (31) is in terms of ¥ which contains other variables besides the discrete version of
. To deal with local truncation errors and global errors for ¥ one needs to extend (20)
from the discrete version of ¢ to W.

The algorithm defined by (23)-(25) converges for certain values of v and for small At [9].
If At is small enough then (27)-(28) can be approximated by

—s—1 ~s5—1

(0 R et

~s—1
Pt~ 76?/)8

since matrices K are bounded (see Appendix A). Hence, since ) lx ¢*T1 then
V7 R+ 1yt R (1 1) = (7)o,

—s-3 _—s-2 —s-1
because for large s, one has ¥~ "~ " "~ ¢, and 5T ~ 5.

Therefore, ~
(E S_Qva 8_17 V*, 'Z/}S+l) Trs—roo (q/)’ 2 (76)_1 ¥ 1/})

It follow that the iterative scheme (27)-(29) can be utilized to find a numerical approxima-
tion of the 4d constant linear ODE system for U = (1,4, (75) "t ¢, )T

K

| Y| )
K

which has an explicit formula in terms of the eigenvalues and eigenvectors of K (Jordan
decomposition).

The Lax-Ritchmyer equivalence theorem [10] implies that one just needs to prove consis-
tency and stability of the scheme (30). Following [8] one can attain both.

For, suppose (32) has a solution ¥, it holds

lIl(:'Uh 3/]7 Zls t8+l) - M\Il(:rhyj? Zl7t8) + At’r;j’h

where the local truncation error At 7‘5 il is the difference between the exact solution ¥ and

the numerical solution ¥ evaluated at (i, Y5, 21, ts)-

Defining the local error

efjl = \Ij(xiayﬁzlats-‘rl) - M(I\j(xiayjazlats)v

12



one gets e?jl = U(wy,y5,2,0) — \f’(xl Yj,21,0) as the error on the initial conditions.

Therefore,
l = M¢é it AtT
and
s—1
Z]l MEZ]l + At Z]\[S 9 1 zyl
g=0

Considering the global error, one gets

€[ ho €]l + 5 At onax {| M i 17911003

where

1/p
[ AW lln.p
IAllnp = sup Jo g = (A 3w )
1] ?p

S
Wit

The scheme is consistent if

i 4 M€ llnp —0
m,n,o,q{ maxo<g<s—1{[|7|np}

The scheme is stable if
[ M2 ||pp < C

for a sufficiently small At.

4.3.2 Consistency

If one uses initial data for U that is close to (w0, uo, ()~ uo, uo) and mimetic operators of
order four (for the spatial derivatives) and the leapfrog method and sixth-order time filter
LF-MMK, then ||7]/s, = O(h*, At?). For, [1, 2, 3] demonstrate that the order of accuracy
of the mimetic scheme is four. Appendix B, exhibits a numerical example that shows that

the sixth-order filtered leapfrog scheme LF-MMK is order two accurate.

Hence, (33) holds. So the scheme is consistent.

4.3.3 Stability
It is enough to find an upper bound for | M| .

Recall that if A is a matrix with m rows, n columns then
[Allmax < lA]l2 < vV/mn || Al max

13



where || A|lmax is the max-norm given by

| Allmax = 1§z’§171711?iX§an ‘aij‘-

The max-norm of M is

0 I 0 0
Ml = || O 0 7ol T ALK
fax vl =576l 157676l I — 107676(1 + 12v6) At K
0 0 Yol —296(1 + 10v) At K

max

max{ My, 274(1 + 10v6) At || K||max, || — 10767¢(1 + 12v6) At K||max }
max{ Mo, 2At || K ||max, 1 + 10767¢(1 + 12796) At || K || max }

where
My = max{1, 5v6, ¥g, 157676 }-

For the simulations one has vg ~ 0.1. Hence My =1 and

| M ||max < max{l,2A¢t|| K ||max}- (34)

From Appendix A,
Kp = [vdiag{0, L, 0} ® diag{0, I,,0} © DI},
vy diag{0, I, 0} ® D11  diag{0, In, 0},
03 DO 1Y @ diag{0, I, 0} © diag{0, I, 0}].
To simplify, assume m = n = o = max{m,n, o}.
Since DIp does not has zero eigenvalues (see Appendix A), it is non-singular and

[KDllmax < max {|v1], [val, [v3]} [[DIp||lmax
< |[(v1, v, v3)|[1 max |N(DIp)| < 2||(v1,v2,v3)|1-

The last inequality holds because the spectral radius p(DIp) < 2 (see Appendix A).
Therefore, (34) implies

| M ||max < max{1,4 At||(v1,va,v3)]1} <1+ aAt, (35)
for a = 4 ||(v1,v2,v3)].
Inequality (35) is a sufficient condition for stability (see [8]), since

1M [lmax < 1M [[Frax < (1 4+ @ Af)* < eo80 = e,
A similar upper bound can be found for || K¢||max-

14



4.3.4 Convergence

Under consistency and stability it follows that the global error holds
s < g
1€y < C(t) | max {79, ).

where ts = s At, which implies convergence.

Equivalence of discrete norms in R% implies that for the mimetic numerical scheme one
obtains

€102 < L€ s < Ly M s, max {177} < LaLa e | max {7z},

for fixed d and some L1, L. Therefore the mimetic scheme is convergent.

5 Advection example

Consider the following advection equation taken from [9, p. 2546].

ot or 0 (36)

U = 10ms~! in a periodic domain, ¢g(z) = cos(#~) exp(—fl—;), where d = 4km and

[ = 25km. (36) is numerically integrated within the domain —8 < = < 8km using a
grid spacing of Az = 100m and three choices of time steps At such hat the corresponding
to Courant numbers p = EL—A; are 0.2,0.4 and 0.6. Spatial derivatives are approximated
by fourth-order Corbino-Castillo mimetic method, and the total number of time steps is
chosen so that the initial perturbation is transported one revolution around the domain.

The fifth-order filtered leapfrog (LF-MMK) uses v = 0.1.

In addition, the fifth-order LF-MMK needs initial data to be able to start. This initial data
is obtained by performing a half-step forward Euler followed by three leapfrog steps.

In Figure 1 one can see the evolution and the level of accuracy of the numerical solution
of the fifth-order LF-MMK time scheme together with the fourth-order Corbino-Castillo
mimetic difference at 400s, 800s, 1200s, 1600s, respectively.

In addition, the total energy of the solution of the advection equation utilizng the fifth-order
LF-MMK time scheme together with the fourth-order Corbino-Castillo mimetic difference
at each time step is exhibited in Figure 2. Observe it is almost constant. Only the first
steps (which are obtained via a forward Euler and a leapfrog schemes) have a little different
total energy.
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Figure 1: The numerical solution of the 3D advection equation utilizing the fifth-order
LF-MMK scheme. The initial condition is displayed on the right lower panel. Some plots
of the numerical solution are shown on the left upper (400 s), right upper (800 s), left lower
(1200 s), and right lower (1600 s) panels.

6 Conclusions

This paper demonstrates that high-order mimetic discrete analogs of the 3D advection
equation conserve theoretically total energy.

In addition, a numerical mimetic scheme of fourth-order in space and the sixth-order filtered
leapfrog scheme LF-MMK scheme from [9]) is proposed and a proof of its convergence is
given.

Moreover, numerical evidence of conservation of total energy and and numerical conver-
gence are provided.

We plan to explore for higher-order of time discrtization schemes to approximate the so-
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Energy using LF-MMK order 5 and 4th-order Mimetic
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Figure 2: Total energy at each time step of the solution of the advection equation.

lution of the ODE system that develops once a high-order mimetic analog is utilized for
discretizing the flux part of the advection equation.

7 Appendix A: Eigenvalues of the mimetic operators

The one-dimensional divergence D®) mimetic operators of order k, k = 2,4,6,8, are rep-
resented by non-square matrices, and hence they do not have spectra.

Nevertheless, the divergence, like its continuous analog, applies onto vector fields (whose
mimetic data is on the cell edges or staggered grid N) and returns the values of the partial
derivatives on the cell interiors S.

However, sometimes the data is on S and to apply the divergence, an interpolation Il()k)
of the data to N is needed before applying the divergence. In [4, p. 1], an exact form to

17



compute these interpolations operators without the inversion of a Vandermonde matrix is
presented.

Therefore, one way of determining the stability of the divergence can be to study the
spectra of one-dimensional operator D(k)ll()k), k=2,4,6,8.
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Figure 3: Maximum real part of D
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the top left, top right, bottom left, bottom right panels, respectively.

eigenvalues in absolute value for k = 2,4, 6,8, on

Figure 3 shows that the maximum real part, in absolute value, of the eigenvalues of the
Corbino-Castillo operators D) [ (k)

s for k= 2,4,6,8, are less than 1, for any number of
interior cells.

Even though it is not shown, numerically one finds that Corbino-Castillo mimetic operators
D(k)Igf) eigenvalues for k = 2,4, 6, 8 are not zero.

Figure 4 shows that the maximum module of the eigenvalues of the Corbino-Castillo oper-
ators D(k)Igf), for k = 2,4,6,8, are less than 2, for any number of interior cells.

18



Norm of Di x (k=2) Norm of Di X (k=4)
1 g > = < & % % 1.41 T T T T T
o
0.98 i 5@1 o o o o s} [} o o
14 &
096 4 °©
o
094 R
139 Lo
€ €
S92 g s
@ o
= =
g oot B RS
s §
> 2
] ]
% 0.88 R %
= =
137
086 g
0.84 R
1.36
082 R
o
08 . . . . . . . . . 135 . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Interior Cells Number of Interior Cells
Norm of Di X (k=6) il Norm of Di X (k=8)
1.63 T T T T T 1.77 T T T T T T T T
o o o o o o o o
¥
o
o o o o o o o o 1.76 -
162 o9 B o
o
o o
5 1751
161 1
E E
2 2
b o 1741 ©
E] 3
2 ° E!
3 5
S S
5 3173
x %
] k3
= =
159 I
172
158 R
1710
157 @ . . . . . . . . . 7 . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Interior Cells Number of Interior Cells
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right, bottom left, bottom right panels, respectively.

In the two-dimensional case (with m cells in the z-axis and n cells in the y-axis),

operator sz)Ig) is given by

AT (k)
Bk rp k k) o 7 I @1y
b1y = [L,oDP, DF ©I,] zg? o I

= [diag{0,,,0} ® DWIY) DEIL) @ diag{0, In, 0}].

top

the

It is known that for Kronecker products, the eigenvalues Aagp of A ® B are obtained by

the formula Ay = AaAp, where Ao are the eigenvalues of C.

Therefore, the eigenvalues of diag{0, ,,,0} ® D;k)lgz) are given by all possible products
of the eigenvalues of diag{0, I,,,0} (which are two zeros and n ones) and the eigenvalues

of ng)lgz, whose maximum real part in absolute value, according to Figure 3, is strictly
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bounded above by 1. Hence, the real part of the eigenvalues of diag{0, I,,,0} ® ng) Igz), in

absolute value, have 1 as an upper bound.
A similar argument can be applied for the second component of Dé’;)zg“), ie., Dl(,k)fg? ®

diag{0, I,,, 0}. The real part of its eigenvalues, in absolute value, are also bounded above
by 1. Similarly, the norm of its eigenvalues are also bounded above by 2.

An inductive argument demonstrates that the same can be said of the real part of the

eigenvalues, in absolute value, of each of the matrix components of the d-dimensional
(k) (k)

operator Dy, Iy’.

y &

A similar process is applicable to the d-dimensional gradient operator.

8 Appendix B: Order of accuracy of the sixth-order filtered
leapfrog scheme

The LF-MMK method is utilized to solve the following ODE

(1) =¢(),  $0)=1,  te(0,10).

The sixth-order filtered leapfrog scheme uses 1/8-th step of a forward Euler step, followed
by three 1/4-th steps to initialize the time discretization scheme.

One can notice in Figure 5 that the order of accuracy of the sixth-order filtered leapfrog
scheme LF-MMK is a little above two for the ODE ¥’ = .

References

[1] J.E. Castillo and R.D. Grone, A matrix analysis approach to higher-order approxi-
mations for divergence and gradients satisfying a global conservation law, STAM J.
Matrix Anal. Appl., Vol. 25, No. 1, pp. 128-142, 2003.

[2] J.E. Castillo and G.F. Miranda, Mimetic Discretization Method, CRC Press, Boca
Raton, Florida, 2013.

[3] J. Corbino, and J.E. Castillo, High-order mimetic finite-difference operators satisfying
the extended Gauss divergence theorem, J. Comput. Appl. Math., v. 364, 2020, 112326.

[4] M. Dumett, and J.E. Castillo, Gradient and Divergence Corbino-Castillo Interpolation
Operators, CSRC Report, 6-Dec-2022.

[5] M. Dumett, and J.E. Castillo, Energy conservation of second-order mimetic difference
schemes for the 1D advection equation, CSRC Report, 7-Dec-2022.

20



25 T T T T T T T T T

0.5 -

Figure 5: Accuracy order of the sixth-order filtered leapfrog scheme LF-MMK for ¥' = .

[6] Dumett M.A., and Castillo, J.E., Mimetic analogs of vector calculus identities, San
Diego State University, Computational Science Research Center report, CSRCR2023-
01, 6-Jul-2023.

[7] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19,
American Mathematical Society, Providence, 1998.

[8] J.S. Hesthaven, Numerical methods for conservation laws, SIAM Computational Sci-
ence and Engineering, Philadelphia, Pennsylvania, 2018.

[9] M. Moustaoui, A. Mahalov, and E.J. Kostelich, A Numerical Method Based on
Leapfrog and a Fourth-Order Implicit Time Filter, Mon. Wea. Rev., American Mete-
orological Society, 2014, Vol. 142, pp. 2545-2560.

[10] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Second
Edition, STAM, Philadelphia, Pennsylvania, 2004.

21





