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Abstract

In this paper, the Burgers’ equation is solved using mimetic differences.

1 Introduction

The viscous Burgers’ equation is a nonlinear PDE governing advective-diffusive flows. In two spatial dimen-
sions with u = u(x,y,t) and v = v(x,y,t), the system is [2]
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In this equation, the only parameter is v, which is the kinematic viscosity of the flow. The kinematic viscosity
can loosely be thought of as the "stickiness” of the fluid, or its internal resistance to flow; for example, honey
has a higher kinematic viscosity than water. The Reynolds number, which quantifies the ratio of a fluid’s
inertial forces to its viscous forces, is directly related to v via the relation Re = % The Reynolds number is
used in the analytic solution to the equation.

In this paper, the MOLE library [1] of mimetic differences is used to estimate the solution to the viscous
Burgers’ equation. The numerical results are compared to the analytic results to quantify the accuracy of
the mimetic method.

2 Methods
2.1 The Grid

For this system, we want to produce velocity fields as output. Specifically, we solve the sytem for u(x,y,t)
and v(z,y,t), which together form the complete velocity fields w = z . Typically, vector data would

be carried on the vector field discretization of the mimetic grid (points marked v and w in Figure 1, for
reference). However, because we don’t have scalar quantities in our system, we carry the velocity data on
the scalar grid points instead, which are marked f in Figure 1.

The problem leverages the analytic solution to supply initial and Dirichlet boundary conditions [2]:

1
- 4{1+exp ((_41"';1—3”)}%6)} (3)
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A 5 x 4 staggered grid for scalar f and vector (v,w) fields

Figure 1: The mimetic staggered grid (with consent from M.A. Dumett)
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3
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The domain is valid in 2D spatial Euclidean space. The problem domain spans x = [—5,5], y = [—5, 5].

2.2 The Scheme

For the temporal discretization, a simple forward difference is used:

Ou  ultl —at ov vt — ot
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For the spatial discretization, we leverage the mimetic operators in the Matlab version of the MOLE library.

To solve the first derivatives in our system, we use MOLE’s gradient operator as generated using the grad2D

function. The output of this function is a matrix G, which is composed of sub-operators for the partial

derivatives G, and G, such that G = (gz>
y

Because G calculates the gradient by differencing points on the grid, the result of G, is stored at intermediate
points between the values of u, which are labeled v, and wy in Figure 1. We shift our data back to our
desired nodes using the interpolation operator I¢. Similar to G, I is constructed from sub-operators, so
that I = (IS | I). This operator is created using interpGMat2D() in the MOLE library. The process of
computing the gradient and interpolating back loses some boundary data (fewer points are present on the v
and w grids than the f grid), so all boundary data is reapplied after these operations.

We use the 2D Laplace operator generated from MOLE using 1ap2D() to handle the RHS of the system.

When we compute u‘*!, the only data available is at the previous time step, along with the updated boundary
conditions. When we compute v**!, though, we have newer u data available from the u!*! calculation, so
we use the new u!T! data to find v**!.

In total, our equations in discrete form are (forward Euler in time and implicit nonlinearities)
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We solve the system for the next time step using the MATLAB \ operator.
u'tt = (Th\S)u’ (5)

vt = (Tp\S)o' (6)

3 Results

All simulations used to generate figures ran for 3 simulated seconds, used m = 40 and n = 40, and applied
second-order mimetic operators.

The primary test case is defined by the analytic solution to the viscous Burgers’ equation presented in [2],
which was previously stated in equations (3) and (4). The analytic solution is used to obtain the initial and
boundary conditions for the mimetic method. The start and end states of the analytic solution, which define

our target solution, are provided in Figure 2 below. The results of the mimetic method are provided in Figure
3.

Analytic Burgers' Equation, u Analytic Burgers' Equation, u

Figure 2: Evolution of the exact solution

Because the differences between the mimetic and analytic results are subtle, an error plot of the difference
between the analytic and mimetic end states is provided in Figure 4.

A resolution study was conducted to determine how the mimetic solution converged to the exact solution as
the grid was refined. Error data is collected in Table 1. A log plot of the L? data along with a line of best
fit can be seen in Figure 5.

Az | Lo Error | Max Error | Wall Time (s)

2 7.251e-3 | 2.195e-2 3
1 2.575e-3 | 1.334e-2 )
0.5 | 6.36le-4 | 4.305e-3 11
0.25 | 1.796e-4 | 1.298e-3 67

Table 1: Simulation data for several grid refinements
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Figure 3: Evolution of the mimetic solution

Error in numerical solution, u
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Figure 4: Error in the mimetic solution at ¢t = 3

An extra case was also run using the Witch of Agnesi curve. A simple Witch curve in two dimensions is
defined by

1
24 y2+1
For this simulation, Dirichlet boundaries were enforced using the operator returned by robinBC2D(). The

boundary values of the initial distribution were used throughout the solution. The initial and end states are
shown in Figure 6.

4 Discussion

From the convergence history, we see that we are getting nearly second-order accuracy from our method,
which is what we expect based on the order of our mimetic operators. Additionally, from Figure 4 we see
that the majority of our error is accrued near the boundary. The order of accuracy of the mimetic solution
could be improved by using higher-order operators, of course. More accurate time-stepping schemes, such

as Runge-Kutta, could also be used in place of the simple forward Euler used in this case to improve the
solution accuracy.
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Figure 5: Log plot of the L2 error as the grid is refined
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Figure 6: Witch of Agnesi simulation results

The Witch of Agnesi solution is provided to demonstrate a classic viscous Burgers’ behavior, the ”nonlinear
diffusive hump”. As the simulation progresses, the initial condition both spreads out and ”bunches up” as
the faster advection catches up to the slower flow upstream. Even though there is not an analytic solution
with which to compare the result, the presence of well-documented behavior is additional evidence that the
method is working.

5 Conclusion

Overall, the mimetic operators did a good job of approximating the solution to the viscous Burgers’ equation.
The maximum error after 3 simulated seconds was 1.298 x 103 for the finest grid refinement, and the L2-
norm of the combined u and v errors was 1.796 x 10~%. The simulation took approximately 67 seconds of
wall time to complete. Second-order convergence was expected based on the construction of the matrices,
and the solution exhibited 1.8-order convergence as the grid was refined.

Ultimately, the mimetic operators proved to be a useful and accurate tool for the approximation of the viscous
Burgers’ equation.
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