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Abstract

In this paper we present a complete derivation of the three dimensions (3D) mimetic
difference divergence, gradient, inner product weights and interpolation operators, us-
ing as an example the Corbino-Castillo mimetic method. In addition, we demonstrate
in what sense these operators satisfy discrete analogs of 3D vector calculus identities.

1 Introduction

The main goal of this paper is to build mimetic difference discrete analogs of some
vector calculus identities. This effort requires, besides the high-order divergence, gradient
and Laplacian mimetic operators introduced in [1], [2], [5], the utilization of adequate
high-order 3D interpolation operators exhibited in [7], as well as some identities derived
from the mimetic discrete analog of the integration by parts (IBP) formula, and the 3D
generalizations of these identities. These materials can be found in several references in
the literature and most of it has not been previously published. This document shows a
new full derivation of the Corbino-Castillo mimetic operators, as an example of mimetic
differences, before constructing the discrete analogs in the integral sense. These vector
calculus identities discrete analogs are independent of the mimetic method used and are
valid provided a discrete analog of the IBP formula holds for the respective mimetic method.

In [5] Corbino-Castillo 1D, 2D, and 3D, mimetic divergence D, gradient G and Laplace
L operators were introduced. In the same way as in [2], but with smaller band-with, and
without free parameters, these operators are also defined on a staggered grid, meaning
that discrete versions of scalar and vector fields are defined in different places of the grid.
Similarly to the Castillo-Grone mimetic divergence, gradient and Laplace operators, they
are constructed with constant (high-order) accuracy over interior as well as boundary grid
points, and mimic the extended Gauss divergence theorem in 1D, or integration by parts,
by utilizing diagonal positive definite weighted inner products P and Q.

∗This work was supported by SDSU.
†Computational Science Research Center at the San Diego State University (mdumett@sdsu.edu).
‡Computational Science Research Center at the San Diego State University (jcastillo@sdsu.edu).
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Indeed, satisfying a discrete analog of the IBP formula is central in the formulation
of any of the existing mimetic difference methods. This property and their derived con-
sequences are essential for proving energy conservation of the mimetic schemes. Unfor-
tunately, the explicit requirement that mimetic operators should satisfy the IBP formula
imposes an integral condition that implicitly facilitates the demonstration of high-order
discrete analogs of the integral version of vector calculus identities instead of their differ-
ential form. This is exactly why initial versions of mimetic differences [4], [12], [9], [8],
could only guarantee second-order accuracy of the IBP formula and but not higher-order
and why [2] introduced matrices P and Q that induce inner products associated to the
gradient and divergence mimetic operators, respectively.

Without the inner product induced by matrices P and Q, it is still possible to demon-
strate discrete analogs of some of the vector calculus identities in their differential form
but these are limited to second-order only.

To give a clearer idea of the contributions of these paper, details of the Corbino-Castillo
mimetic differences already published follow.

Besides the introduction of matrices P and Q that guarantee a high-order discrete
analog of the IBP formula, since matrix representations of the mimetic divergence and
gradient operators hold the zero row sum property, discrete analog of the divergence of a
constant vector field and the gradient of a constant scalar field are satisfied [2], [5], [1].

In addition, the staggered grid nature of the grid trigger the need of 1D constant high-
order (at interior and boundary grid points) interpolations operators (from centers to faces
and from faces to centers). These operators were introduced on [7].

The extension to 2D and 3D of the mimetic analogs of the extended Gauss divergence
theorem requires the actual definition of high-dimensional versions not only of these con-
stant high-order interpolation operators but also of the diagonal positive definite weighted
inner products P and Q. The high-dimensional mimetic operators P and Q have been
presented in talks and internal documents at the SDSU CSRC but never formally written.
They are included in this document. They are created following ideas from [3].

The introduction of divergence and gradient mimetic operators on curvilinear coordi-
nates [6] also demands the utilization of high-dimensional interpolation operators for the
computation of the Jacobian and inverse Jacobian matrices [6].

The main contributions of this paper are:

1. Mimetic divergence and gradient operators are derived in a similar way as in [1], [2],
[5], but the actual computation of their matrix representation entries utilizes formulas
for the second row of the inverse of a Vandermonde matrix considered in [10].

2. Establishing the dependence on the number of cells of the weighted inner products
entries of P and Q is discussed.

3. Explicit derivations from the IBP formula of certain identities of matrices DTQ and
GTP are included. These properties are essential in the proof of energy conservation
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of mimetic schemes by utilizing the interpolation operators.

4. Proof of mimetic discrete analogs of various vector calculus identities in integral
form are given. In addition, discrete analogs of some vector calculus identities in
differential form are included and are valid only for mimetic operators of order two.

In Section 2, the mimetic staggered grid and some notation for the related different
grid subset points are presented.

In Section 3, formulas for computing directly the entries of the inverse of Vandermonde
matrices according to [10] are introduced. These expressions are utilized for the calcula-
tion of the entries of the mimetic divergence and gradient operators. A similar approach
is also explained when deriving mimetic interpolation operators (see Section 7). Calcu-
lating divergence and gradient operator entries via Taylor expansions was first suggested
in [11]. Originally, mimetic operators matrices were obtained by differentiating Lagrange
interpolation of scalar and vector fields (see, for example [4]).

In Section 4, the computation of divergence operators entries for accuracy orders
2, 4, 6, 8, is shown. This is the first time Corbino-Castillo operator of degree 8 entries
are displayed.

In Section 5, the computation of the gradient entries for accuracy orders 2, 4, 6, 8, is
exposed. This is the first time Corbino-Castillo operator of degree 8 entries are exhibited.

In Section 6, Laplace operators are exhibited.

In Section 7, interpolation operators are introduced. For the sake of completeness the
material is taken from [7]. One row sum properties of these operators are also included.

In Section 8, the mimetic quadrature weights P and Q are presented. This discussion
differs from [5] because of the realization that the entries of the corresponding matrix rep-
resentations of operators P and Q depend on the number of cells. However, the difference
between the P and Q entries in [5] and the one in the current document are very small
and the calculation of energy conservation (when these operators are actually used) is not
affected in practical terms.

In Section 9, the 1D mimetic boundary operators are presented and its extension to 3D
is shown for the first time.

In Section 10, the extension to 3D of the extended Gauss divergence theorem is shown.
This is the first time, this identity is displayed.

In Section 11, the demonstration of mimetic discrete analogs of some vector calculus
identities in the integral form are exposed. As mentioned before, it turns out that vector
calculus identities should be understood in the integral sense. This is because of the
explicitly enforced mimetic discrete analog of the 1D IBP formula. This formula is utilized
to introduce matrices P andQ and in this way to guarantee that a discrete analog of the IBP
formula holds up to high-order of accuracy. This implicitly facilitates the demonstration
of the integral version of vector calculus identities. However, it is possible to prove some
of the vector calculus in their differential form, for example the gradient of a product of
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scalar fields, but these impose additional constraints on the mimetic operators, limiting for
example the order of accuracy of some of the operators to two.

In section 12, conclusions and future work are described.

2 The staggered grid

In 1D, the number of cell centers and cell faces of a staggered grid is not the same.
The same occurs in 2D and 3D, especially when the number of cells in each of the axis is
different.

Since the divergence of a vector field is a scalar field, it is expected that mimetic
matrices that represent discrete analogs of the divergence operator, on a staggered grid,
are not square. Similarly, since the gradient of a scalar field is a vector field, it is also
expected that the mimetic matrices that represent discrete analogs, on a staggered grid, of
the gradient operator are not square.

As an example, consider in Figure 1, a two-dimensional uniformly staggered grid with
five cells along the x-axis and four cells along the y-axis is displayed.

Scalar fields are defined on black dot places. In addition, the first component of vector
fields are defined on the horizontal black segments while vector fields second components
are defined on the vertical red segments.

Observe that the input data of a mimetic divergence operator is located on the hori-
zontal and vertical black segments while its output is located at the black dots that are
not on the boundary, since it is not possible to compute the continuous divergence on the
boundary of a domain.

In addition, the input data for a mimetic gradient operator is located at the black dots
and its output is located at the horizontal black segments (for the first component of the
gradient) and at the vertical black segments (for the second component of the gradient).

To facilitate the definition of divergence and gradient operators on the d-dimensional
Cartesian grid

Πd
i=1[ai, bi] = [a1, b1]× · · · × [ad, bd],

define

1. mi the number of cells along the xi axes, with mesh size hi =
bi−ai
mi

, i = 1, · · · , d.

2. the xi-Grid:

Xi =

{
xij = ai +

jhi
2

, j = 0, 1, · · · , 2mi

}
, i = 1, · · · , d.

3. the xi-Nodes:

N i =
{
xij = ai + jhi, j = 0, 1, · · · ,mi

}
, i = 1, · · · , d.
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f0 f1 f2 f3 f4 f5 f6

f7 f8 f9 f10 f11 f12 f13

f14 f15 f16 f17 f18 f19 f20

f21 f22 f23 f24 f25 f26 f27

f28 f29 f30 f31 f32 f33 f34

f35 f36 f37 f38 f39 f40 f41

v0 v1 v2 v3 v4 v5

v6 v7 v8 v9 v10 v11

v12 v13 v14 v15 v16 v17

v18 v19 v20 v21 v22 v23

w0 w1 w2 w3 w4

w5 w6 w7 w8 w9

w10 w11 w12 w13 w14

w15 w16 w17 w18 w19

w20 w21 w22 w23 w24

Figure 1: A staggered grid with 5 horizontal cells and 4 vertical cells.

4. the xi-Centers:

Ci =

{
xij = ai +

(2j − 1)hi
2

, j = 1, · · · ,mi

}
, i = 1, · · · , d.

5. the xi-Centers and Boundary:

Si = Ci ∪ {−1, 1}, i = 1, · · · , d.

6. The grid: X = X1 × · · · ×Xd.

7. The centers and boundary: S = S1 × · · · × Sd.

8. The nodes: N = ∪d
i=1(N

1 × · · · ×N i−1 × Si ×N i+1 × · · · ×Nd).

In this way, the mimetic divergence D and gradient G operators are defined as linear
transformations as

D : N → S, G : S → N.
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3 Computing mimetic operators without inverting matrices

The construction of Corbino-Castillo mimetic operators is facilitated by inverting a
Vandermonde matrix. The construction of high-order divergence and gradient mimetic
operators require the inversion of Vandermonde matrices, which might have large condition
numbers. Software packages like MATLAB, even when utilizing format rat, introduce
numerical errors when computing high-order versions of these operators.

Fortunately, [10] introduces one algorithm that computes entries of the inverse of Van-
dermonde matrices without inverting them. The method is as follows.

Given p ∈ Z+ real numbers c1, · · · , cp, the associated Vandermonde matrix is given by

V = V(c1, · · · , cp) =


1 c1 c21 · · · cp−1

1

1 c2 c22 · · · cp−1
2

...
...

... · · ·
...

1 cp c2p · · · cp−1
p

 .

The vector c = (c1, · · · , cp) is called the generator of the Vandermonde matrix V.
The entry (i, j), 1 ≤ i, j ≤ p, of its inverse V−1 is given by:

(V−1)i,j =
(−1)i+jSp−i,j

Πp
l<q(cq−cl)

, l = j, or q = j,

Sq,j = Sq(c1, · · · , cj−1, cj+1, · · · , cp), 1 ≤ q ≤ p− 1, 1 ≤ j ≤ p,

Sq = Sq(c1, · · · , cp) =
∑p

1≤i1<···<iq≤p ci1 · · · ciq , 1 ≤ q ≤ p,

S0 = S0(c1, · · · , cp) = 1,

Sq = 0, q /∈ {0, 1, · · · , p}.

One can notice that in [10] there are several typos in the 4× 4 example given.1

To enforce a constant degree of accuracy for its divergence and gradient operators, the
derivation of the Corbino-Castillo mimetic coefficients (q1, · · · , qp), require the solution of
several Vandermonde systems (with the appropriate generators) of the form

[q1, · · · , qp] V(c1, · · · , cp) = [0, 1, 0, · · · , 0],
1In page 210, the second row of the inverse of the Vandermonde matrix should be[
−(c2c3 + c2c4 + c3c4)

(c4 − c1)(c3 − c1)(c2 − c1)
,

c1c3 + c1c4 + c3c4
(c4 − c2)(c3 − c2)(c2 − c1)

,
−(c1c2 + c1c4 + c2c4)

(c4 − c3)(c3 − c2)(c3 − c1)
,

c1c2 + c1c3 + c2c3
(c4 − c3)(c4 − c2)(c4 − c1)

]
,

instead of the one shown in that paper. There might be other typos in rows three and four since only rows
one and two were verified.

6



and hence

[q1, · · · , qp] = [0, 1, 0, · · · , 0] V−1(c1, · · · , cp) = V−1
2,: (c1, · · · , cp),

where V−1
2,: is the second row of the inverse of the Vandermonde matrix V.

4 The divergence operators

The Corbino-Castillo 1D divergence operators D are defined as

D : N1 → S1.

are are represented by matrices of order (N + 2)× (N + 1) with N the number of cells.

Divergence matrices first and last rows entries are zero because it is assumed that,
the spatial domain of the PDE for which the discrete analog of the continuous divergence
operator is restricted to a closed interval [a, b], and hence the divergence operator is not
defined on the interval boundaries.

However, if the spatial-temporal PDE domain strictly includes the interval [a, b] the
first and last rows of the discrete analog of the divergence operator are not zero. This
allows the possibility of defining expanded divergence operators (see the next subsections).
They do not appear in [5].

In addition, the divergence of a constant vector field should be zero. Since mimetic
operators for dimensions greater than one are generated via Kronecker products of the
corresponding 1D operators and other simple matrices, one just needs to impose the zero
row sum property in 1D, or equivalently,

N+1∑
j=1

Di,j = 0. (1)

Furthermore, assume one wants to compute a discrete analog of order of accuracy k (even)

of the 1D divergence at x1j = a1 +
(2j−1)h1

2 ∈ C1, for some j, 1 ≤ j ≤ m1. Assume that xj
(omitting all upper indices since it is the one-dimensional version of the staggered grid) is
an interior cell center, in the sense that all cell faces

ni = xj +
(2i+ 1)h

2
, i = −k

2
,−k

2
+ 1, · · · ,−1, 0, 1, · · · , k

2
− 2,

k

2
− 1,

are in N , or equivalently, all k
2 cell faces to the left and k

2 cells faces to the right of xj ∈ C,
are in N . For each of the cell faces ni (data that is part of the discrete version V of a
vector field v⃗, since the information is at the faces) of such interior cell center xj , one can
compute the discrete analog of the divergence at the (interior) cell center xj (output that
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is part of the discrete version DV of the divergence scalar field ∇· v⃗) by performing Taylor
expansions of the 1D vector field v⃗ (omitting the arrow since it is one-dimensional)

v(ni) =
k∑

l=0

1

l!
(ni−xj)

lv(l)(xj)+O(hk+1), i = −k

2
,−k

2
+1, · · · ,−1, 0, 1, · · · , k

2
−2,

k

2
−1.

If one collects all k identities v(ni) into a vector of length k one obtains



v(n− k
2
)

v(n− k
2
+1)

...
v(n k

2
−2)

v(n k
2
−1)


=



1 (−k+1)h
2

(
(−k+1)h

2

)2
· · ·

(
(−k+1)h

2

)k
1 (−k+3)h

2

(
(−k+3)h

2

)2
· · ·

(
(−k+3)h

2

)k
...

...
...

. . .
...

1 (k−3)h
2

(
(k−3)h

2

)2
· · ·

(
(k−3)h

2

)k
1 (k−1)h

2

(
(k−1)h

2

)2
· · ·

(
(k−1)h

2

)k




v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

+O(hk+1)

If one wants that these expansions produce a k-th accuracy order estimate of v
′
(xj) then

one needs to solve

V

(
(−k + 1)h

2
,
(−k + 3)h

2
, · · · , (k − 3)h

2
,
(k − 1)h

2

)
v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

 =


0
1
0
...
0

 (2)

where V
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
is a Vandermonde matrix with generator

c =
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
.

For the non-interior cell centers a similar approach applies. In the Corbino-Castillo op-
erators, each non-interior cell center xj is computed utilizing the values of discrete version
of v⃗ at the nearest boundary and the nearest k cell faces to the specified boundary. Solv-
ing (2), with an appropriate generator, provides the numerical scheme for the divergence
discrete analog at xj .

Observe that, because of the reflexivity of D with respect to the center of interval [a, b]
and the symmetry with respect to the boundary of the same interval, then

DN+3−i,N+2−j = −Di,j , 1 ≤ i ≤ N + 2, 1 ≤ j ≤ N + 1.

Hence, it is only needed to specify the first ⌈N2 ⌉+ 1 rows of D.
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For k = 2, the generator of the interior scheme is d2 = [−1
2 ,

1
2 ].

D(2) =
1

h


−1 1

. . .
. . .

−1 1

 .

For k = 4, the generator for the interior scheme of the divergence is d4 = [−3
2 ,−

1
2 ,

1
2 ,

3
2 ].

The generator associated to the divergence near the boundary is d41 = [−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ].

D(4) =
1

h


−11

12
17
24

3
8 − 5

24
1
24 0 · · ·

1
24 −9

8
9
8 − 1

24 0 · · ·

. . .
. . .

. . .
. . .

. . .


.

For k = 6, the generator for the interior scheme of the divergence is d6 = [−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ].

The generators associated to the interpolation near the boundary are d61 = [−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ],

and d62 = [−3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ].

D(6) =
1

h



−1627
1920

211
640

59
48 −235

192
91
128 − 443

1920
31
960 0 · · ·

31
960 −687

640
129
128

19
192 − 3

32
21
640 − 3

640 0 · · ·

− 3
640

25
384 −75

64
75
64 − 25

384
3

640 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .


.

For k = 8, the generator for the interior scheme of the divergence is d8 = [−7
2 ,−

5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ].

The generators associated to the divergence near the boundary are d81 = [−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ],
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and d82 = [−3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ], and d83 = [−5

2 ,−
3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ].

D(8) =
1

h



−1423
1792 − 491

7168
7753
3072 −18509

5120
3535
1024 −2279

1024
953
1024 −1637

7168
2689

107520 0 · · ·

2689
107520 −36527

35840
4259
5120

6497
15360 − 475

1024
1541
5120 − 639

5120
1087
35840 − 59

17920 0 · · ·

− 59
17920

1175
21504 −1165

1024
1135
1024

25
3072 − 251

5120
25

1024 − 45
7168

5
7168 0 · · ·

5
7168 − 49

5120
245
3072 −1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



.

4.1 The 2D and 3D divergence operators

For Cartesian grids [a1, b1]× [a2, b2] and [a1, b1]× [a2, b2]× [a3, b3] with m,n, o cells in
the x, y, z-axes, respectively, they are constructed by utilizing the Kronecker product ⊗.

The 2D divergence operators D
(k)
xy of k-th order are given by

D(k)
xy = [D

(k)
xy,1, D

(k)
xy,2] = [În ⊗D(k)

x , D(k)
y ⊗ Îm],

and the 3D divergence operators D
(k)
xyz of k-th order are given by

D(k)
xyz = [D

(k)
xyz,1, D

(k)
xyz,2 D

(k)
xyz,3] = [Îo ⊗ În ⊗D(k)

x , Îo ⊗D(k)
y ⊗ Îm, D(k)

z ⊗ În ⊗ Îm],

where D
(k)
p is the 1D divergence operator along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 ,

with Iq×q is the q × q identity matrix.

Notice that (1) implies

Dxyz1 = 0⃗.

5 The gradient operators

The Corbino-Castillo 1D gradient operators G are defined as linear transformations

G : S1 → N1,
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and are represented by matrices of order (N + 1)× (N + 2) with N the number of cells.
The gradient of a constant scalar field should be zero. Since mimetic operators for

dimensions greater than one are generated via Kronecker products of the corresponding 1D
operators and other simple matrices, one just needs to impose this zero row sum property
in 1D, or equivalently,

N+1∑
j=1

Gi,j = 0. (3)

Furthermore, assume one wants to compute a discrete analog of order of accuracy k (even)
of the 1D gradient at x1j = a1 + jh1

2 ∈ N1, for some j, 0 ≤ j ≤ m1. Assume that xj
(omitting all upper indices since it is the one-dimensional version of the staggered grid) is
an interior cell face, in the sense that all cell centers

ci = xj +
(2i+ 1)h

2
, i = −k

2
,−k

2
+ 1, · · · ,−1, 0, 1, · · · , k

2
− 2,

k

2
− 1,

are in C, or equivalently, all k
2 cell centers to the left and k

2 cells centers to the right of
xj ∈ N , are in C. For each of the cell center ci (data that is part of the discrete version F
of a scalar field f , since the information is at the centers) of such interior cell face xj one
can compute the discrete analog of the gradient at the (interior) cell face xj (output that
is part of the discrete version Gf of the gradient vector field ∇f) by performing Taylor
expansions of the 1D vector field f

f(ci) =

k∑
l=0

1

l!
(ci−xj)

lf (l)(xj)+O(hk+1), i = −k

2
,−k

2
+1, · · · ,−1, 0, 1, · · · , k

2
−2,

k

2
−1.

If one collects all k identities f(ci) into a vector of length k one obtains



f(c− k
2
)

f(c− k
2
+1)

...
f(c k

2
−2)

f(c k
2
−1)


=



1 (−k+1)h
2

(
(−k+1)h

2

)2
· · ·

(
(−k+1)h

2

)k
1 (−k+3)h

2

(
(−k+3)h

2

)2
· · ·

(
(−k+3)h

2

)k
...

...
...

. . .
...

1 (k−3)h
2

(
(k−3)h

2

)2
· · ·

(
(k−3)h

2

)k
1 (k−1)h

2

(
(k−1)h

2

)2
· · ·

(
(k−1)h

2

)k




f(xj)

f
′
(xj)
· · ·

f (k−1)(xj)

f (k)(xj)

+O(hk+1)

If one wants that these expansions produce a k-th accuracy order estimate of f
′
(xj) then

one needs to solve

V

(
(−k + 1)h

2
,
(−k + 3)h

2
, · · · , (k − 3)h

2
,
(k − 1)h

2

)
f(xj)

f
′
(xj)
· · ·

f (k−1)(xj)

f (k)(xj)

 =


0
1
0
...
0

 (4)
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where V
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
is a Vandermonde matrix with generator

c =
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
.

Because each interior cell face is surrounded by two cell centers and each interior cell
center is surrounded by two cell faces then systems (4) and (2) are exactly the same, and
hence the scheme for a discrete analog of the divergence at an interior cell center is the
same as the scheme for a discrete analog of the gradient at an interior cell face.

For the non-interior cell faces a similar approach applies. In the Corbino-Castillo op-
erators, each non-interior cell face xj is computed utilizing the values of discrete version
of scalar field f at the nearest boundary and the nearest k cell centers to the specified
boundary. Solving (4), with an appropriate generator, provides the numerical scheme for
the gradient discrete analog at xj .

Because of the reflexivity of G with respect to the center of interval [a, b], one has that

GN+2−i,N+3−j = −Gi,j , 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 2.

Hence, it is only needed to specify the first ⌈N+1
2 ⌉ rows of G.

For k = 2, the generator of the interior scheme is g2 = [−1
2 ,

1
2 ]. The generator associated

to the gradient near the boundary is g21 = [0, 12 ,
3
2 ].

G(2) =
1

h


−8

3 3 −1
3

−1 1
. . .

. . .

−1 1
1
3 −3 8

3


For k = 4, the generator for the interior scheme of the gradient is g4 = [−3

2 ,−
1
2 ,

1
2 ,

3
2 ].

The generator associated to the interpolation near the boundary is g41 = [0, 12 ,
3
2 ,

5
2 ,

7
2 ] and

g42 = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ].

G(4) =
1

h



−352
105

35
8 −35

24
21
40 − 5

56 0 · · ·

16
105 −31

24
29
24 − 3

40
1

168 0 · · ·

0 1
24 −9

8
9
8 − 1

24 0 · · ·
...

. . .
. . .

. . .
. . .

. . .


For k = 6, the generator for the interior scheme of the gradient is g6 = [−5

2 ,−
3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ].

The generators associated to the gradient near the boundary are g61 = [0, 12 ,
3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ],

12



and g62 = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ], and g63 = [−2,−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ].

G(6) =
1

h



−13016
3465

693
128 −385

128
693
320 −495

448
385
1152 − 63

1408 0 · · ·

496
3465 −811

640
449
384 − 29

960 − 11
448

13
1152 − 37

21120 0 · · ·

− 8
385

179
1920 −153

128
381
320 − 101

1344
1

128 − 3
7040 0 · · ·

− 3
640

25
384 −75

64
75
64 − 25

384
3

640 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .


.

For k = 8, the generator for the interior scheme of the gradient is g8 = [−7
2 ,−

5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ].

The generators associated to the gradient near the boundary are g81 = [0, 12 ,
3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ],

and g82 = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ], and g83 = [−2,−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ], and g84 =

[−3,−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ].

G(8) =
1

h



−182144
45045

6435
1024 −5055

1024
27027
5120 −32175

7168
25025
9216 −12285

11264
3465
13312 − 143

5120 0 · · ·

86048
675675 −131093

107520
49087
46080

10973
76800 − 4597

21504
4019
27648 − 10331

168960
2983

199680 − 2621
1612800 0 · · ·

− 3776
225225

8707
107520 −17947

15360
29319
25600 − 533

21504 − 263
9216

903
56320 − 283

66560
257

537600 0 · · ·

32
9009 − 543

35840
265
3072 −1233

1024
8625
7168 − 775

9216
639

56320 − 15
13312

1
21504 0 · · ·

5
7168 − 49

5120
245
3072 −1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



.

5.1 The 2D and 3D gradient operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, they are con-
structed by utilizing the Kronecker product ⊗.

The 2D gradient operators G
(k)
xy of k-th order are given by

G(k)
xy =

[
G

(k)
xy,1

G
(k)
xy,2

]
=

[
ÎTn ⊗G

(k)
x

G
(k)
y ⊗ ÎTm

]
and the 3D gradient operators G

(k)
xyz of k-th order are given by

G(k)
xyz =

 G
(k)
xyz,1

G
(k)
xyz,2

G
(k)
xyz,3

 =

 ÎTo ⊗ ÎTn ⊗G
(k)
x

ÎTo ⊗G
(k)
y ⊗ ÎTm

G
(k)
z ⊗ ÎTn ⊗ ÎTm


13



where G
(k)
p is the 1D gradient operator along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 ,

with Iq×q is the q × q identity matrix.
Notice that (3) implies

Gxyz1 = 0. (5)

6 The Laplace operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, the Castillo-
Corbino Laplace operators L are defined as products of the corresponding divergence and
gradient operators. Therefore,

L
(k)
x = D

(k)
x G

(k)
x ,

L
(k)
xy = D

(k)
xy G

(k)
xy ,

L
(k)
xyz = D

(k)
xyz G

(k)
xyz.

7 The interpolation operators

The staggered grid utilized in the Corbino-Castillo mimetic divergence and gradient
operators may sometimes cause that quantities that need to be added of multiplied are
defined on different places (centers or faces). For example, consider the nonlinear term
u∇u in the Navier-Stokes equation. Some of these quantities need to be interpolated to
make the operation in question feasible. These interpolation operators must have the same
order of accuracy as the mimetic operators involved.

In [10] an exact algorithm for the computation of the inverse of the Vandermonde matrix
is given. The first row of it is what is needed for finding interpolation operators (derivative
of zero order) of orders k = 2, 4, 6, 8 exactly. These interpolation operators guarantee that
the divergence and gradient interpolation operators will have data in the required places.

The derivation of the Corbino-Castillo interpolation operators for any dimensions can
be found in [7]. From [10], one can infer that if the generator of the Vandermonde matrix
is given by

c = [c1, · · · , cm],

then the first row of the inverse of the respective Vandermode matrix (which corresponds
to the row of interest for the interpolation operator) is given by[

p1
d1

, · · · , pm
dm

]
,

14



where

pi =
p

ci
, p =

m∏
i=1

ci, di =
∏
j ̸=i

(cj − ci).

7.1 The 1D divergence interpolation operators

The Corbino-Castillo 1D divergence interpolation operators ID are transformations

ID : S1 → N1,

represented by matrices of order (N + 1) × (N + 2) with N the number of cells. These
operators move the data from cell centers to faces before applying the divergence operator.

In addition, the divergence interpolation of a constant vector field should be the same
constant. Since mimetic operators for dimensions greater than one are generated via Kro-
necker products of the corresponding 1D operators and other simple matrices, one just
needs to impose the one row sum property in 1D, or equivalently,

N+2∑
j=1

(ID)i,j = 1. (6)

Furthermore, assume one wants to interpolate with order of accuracy k (even) at the cell
face x1j = a1 +

jh1

2 ∈ N1, for some j, 0 ≤ j ≤ m1. Assume that xj (omitting all upper
indices since it is the one-dimensional version of the staggered grid) is an interior cell face,
in the sense that all cell centers

ci = xj +
(2i+ 1)h

2
, i = −k

2
,−k

2
+ 1, · · · ,−1, 0, 1, · · · , k

2
− 2,

k

2
− 1,

are in C, or equivalently, all k
2 cell centers to the left and k

2 cells centers to the right of
xj ∈ N , are in C. For each of the cell center ci (data that is part of the discrete version V
of a vector field v⃗, since the information is at the centers) of such interior cell face xj one
can perform a Taylor expansions of the 1D vector field v⃗

v(ci) =

k∑
l=0

1

l!
(ci−xj)

lv(l)(xj)+O(hk+1), i = −k

2
,−k

2
+1, · · · ,−1, 0, 1, · · · , k

2
−2,

k

2
−1.

If one collects all k identities v(ci) into a vector of length k one obtains



v(c− k
2
)

v(c− k
2
+1)

...
v(c k

2
−2)

v(c k
2
−1)


=



1 (−k+1)h
2

(
(−k+1)h

2

)2
· · ·

(
(−k+1)h

2

)k
1 (−k+3)h

2

(
(−k+3)h

2

)2
· · ·

(
(−k+3)h

2

)k
...

...
...

. . .
...

1 (k−3)h
2

(
(k−3)h

2

)2
· · ·

(
(k−3)h

2

)k
1 (k−1)h

2

(
(k−1)h

2

)2
· · ·

(
(k−1)h

2

)k




v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

+O(hk+1)
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If one wants that these expansions produce a k-th accuracy order estimate of v(xj) then
one needs to solve

V

(
(−k + 1)h

2
,
(−k + 3)h

2
, · · · , (k − 3)h

2
,
(k − 1)h

2

)
v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

 =


1
0
...
...
0

 (7)

where V
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
is a Vandermonde matrix with generator

c =
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
.

Observe that the Vandermonde matrices of (4), (2), and (7) are exactly the same, but
the right hand side of (7) is different.

For the non-interior cell faces a similar approach applies. In the Corbino-Castillo op-
erators, each non-interior cell face xj is computed utilizing the values of discrete version
of vector field v⃗ at the nearest boundary and the nearest k cell centers to the specified
boundary. Solving (7), with an appropriate generator, provides the numerical scheme for
the divergence interpolation operator at xj .

Because of the reflexivity of ID with respect to the center of interval [a, b], one has that

(ID)N+2−i,N+3−j = (ID)i,j , 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 2.

Hence, it is only needed to specify the first ⌈N+1
2 ⌉ rows of ID.

For k = 2, the generator of the divergence interpolator I
(2)
D is d2 = [−1

2 ,
1
2 ] and

I
(2)
D =

1

2


2

1 1
. . .

. . .

1 1
2

 .

For k = 4, the generator for the interior scheme of the divergence interpolator I
(4)
D is

d4 = [−3
2 ,−

1
2 ,

1
2 ,

3
2 ]. The generator associated to the interpolation near the boundary is

d41 = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ]. Thus, the non-zero entries of I

(4)
D are given by

I
(4)
D =

1

112


112
−16 70 70 −14 2

−7 63 63 −7
. . .

. . .
. . .

. . .

 .
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For k = 6, the generator for the interior scheme of the divergence interpolator I
(6)
D is d6 =

[−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ]. The generators associated to the interpolation near the boundary are

d61 = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ], and d62 = [−2,−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ]. Thus, the non-zero entries

of I
(6)
D are given by

I
(6)
D =

1

8448


8448
−768 4158 6930 −2772 1188 −330 42
256 −924 4620 5544 −1320 308 −36

99 −825 4950 4950 −825 99
. . .

. . .
. . .

. . .
. . .

. . .

 .

For k = 8, the generator for the interior scheme of the divergence interpolator I
(8)
D is

g = [−7
2 ,−

5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ]. The generators associated to the interpolation near the

boundary are g = [−1,−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ], and g = [−2,−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ], and

g = [−3,−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ]. Thus, the non-zero entries of I

(8)
D are given by

I
(8)
D =



1

− 1
15

429
1024

1001
1024 −3003

5120
429
1024 − 715

3072
91

1024 − 21
1024

11
5120

1
65 − 33

512
231
512

2079
2560 −165

512
77
512 − 27

512
77

6656 − 3
2560

− 1
143

27
1024 − 105

1024
567
1024

675
1024 − 175

1024
567

11264 − 135
13312

1
1024

− 5
2048

49
2048 − 245

2048
1225
2048

1225
2048 − 245

2048
49

2048 − 5
2048

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


.

7.1.1 The 2D and 3D divergence interpolation operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, they are con-
structed by utilizing the Kronecker product ⊗.

The 2D divergence interpolation operators (ID)
(k)
xy of k-th order are given by

(ID)
(k)
xy =

[
(ID)

(k)
xy,1

(ID)
(k)
xy,2

]
=

[
ÎTn ⊗ (ID)

(k)
x

(ID)
(k)
y ⊗ ÎTm

]
,
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and the 3D divergence interpolation operators (ID)
(k)
xyz of k-th order are given by

(ID)
(k)
xyz =

 (ID)
(k)
xyz,1

(ID)
(k)
xyz,2

(ID)
(k)
xyz,3



=

 ÎTo ⊗ ÎTn ⊗ (ID)
(k)
x

ÎTo ⊗ (ID)
(k)
y ⊗ ÎTm

(ID)
(k)
z ⊗ ÎTn ⊗ ÎTm

 ,

where (ID)
(k)
p is the 1D divergence interpolation operator along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 ,

with Iq×q is the q × q identity matrix.
Notice that (6) implies

(ID)xyz1 = 1. (8)

7.2 The 1D gradient interpolation operators

The Corbino-Castillo 1D gradient interpolation operators IG are transformations

IG : N1 → S1,

that are represented by matrices of order (N + 2) × (N + 1) with N the number of cells.
The interpolation operator moves back the data from faces to centers after the gradient
operator has been applied.

In addition, the gradient interpolation of a constant scalar field should be the same
constant. Since mimetic operators for dimensions greater than one are generated via Kro-
necker products of the corresponding 1D operators and other simple matrices, one just
needs to impose the one row sum property in 1D, or equivalently,

N+1∑
j=1

(IG)i,j = 1. (9)

Furthermore, assume one wants to compute interpolate with order of accuracy k (even) at

the cell center x1j = a1 +
(2j−1)h1

2 ∈ C1, for some j, 1 ≤ j ≤ m1. Assume that xj (omitting
all upper indices since it is the one-dimensional version of the staggered grid) is an interior
cell center, in the sense that all cell faces

ni = xj +
(2i+ 1)h

2
, i = −k

2
,−k

2
+ 1, · · · ,−1, 0, 1, · · · , k

2
− 2,

k

2
− 1,
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are in N , or equivalently, all k
2 cell faces to the left and k

2 cells faces to the right of xj ∈ C,
are in N . For each of the cell face ni (data that is part of the discrete version f of a scalar
field f , since the information is at the faces) of such interior cell center xj one can perform
a Taylor expansions of the 1D vector field v⃗ (omitting the arrow since it is one-dimensional)

f(ni) =

k∑
l=0

1

l!
(ni−xj)

lf (l)(xj)+O(hk+1), i = −k

2
,−k

2
+1, · · · ,−1, 0, 1, · · · , k

2
−2,

k

2
−1.

If one collects all k identities f(ni) into a vector of length k one obtains



f(n− k
2
)

f(n− k
2
+1)

...
f(n k

2
−2)

f(n k
2
−1)


=



1 (−k+1)h
2

(
(−k+1)h

2

)2
· · ·

(
(−k+1)h

2

)k
1 (−k+3)h

2

(
(−k+3)h

2

)2
· · ·

(
(−k+3)h

2

)k
...

...
...

. . .
...

1 (k−3)h
2

(
(k−3)h

2

)2
· · ·

(
(k−3)h

2

)k
1 (k−1)h

2

(
(k−1)h

2

)2
· · ·

(
(k−1)h

2

)k




v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

+O(hk+1)

If one wants that these expansions produce a k-th accuracy order estimate of f(xj) then
one needs to solve

V

(
(−k + 1)h

2
,
(−k + 3)h

2
, · · · , (k − 3)h

2
,
(k − 1)h

2

)
v(xj)

v
′
(xj)
· · ·

v(k−1)(xj)

v(k)(xj)

 =


1
0
...
...
0

 (10)

where V
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
is a Vandermonde matrix with generator

c =
(
(−k+1)h

2 , (−k+3)h
2 , · · · , (k−3)h

2 , (k−1)h
2

)
.

Observe that the Vandermonde matrices of (4), (2), (7), and (10) are exactly the same,
and the right hand side of (7) and (10) are also the same.

For the non-interior cell centers a similar approach applies. In the Corbino-Castillo op-
erators, each non-interior cell center xj is computed utilizing the values of discrete version
of f at the nearest boundary and the nearest k cell faces to the specified boundary. Solv-
ing (10), with an appropriate generator, provides the numerical scheme for the gradient
interpolation operator at xj .

Because of the reflexivity of IG with respect to the center of interval [a, b], one has that

(IG)N+3−i,N+2−j = (IG)i,j , 1 ≤ i ≤ N + 2, 1 ≤ j ≤ N + 1.
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Hence, it is only needed to specify the first ⌈N2 ⌉+ 1 rows of IG.

For k = 2, the generator of the gradient interpolator I
(2)
G is g2 = [−1

2 ,
1
2 ] and

I
(2)
G =

1

2


2
1 1

. . .
. . .

1 1
2

 .

For k = 4, the generator for the interior scheme of the gradient interpolator I
(4)
G is g4 =

[−3
2 ,−

1
2 ,

1
2 ,

3
2 ]. The generator associated to the interpolation near the boundary is g41 =

[−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ]. Thus, the non-zero entries of I

(4)
G are given by

I
(4)
G =

1

128


128
35 140 −70 28 −5
−8 72 72 −8

. . .
. . .

. . .
. . .

 .

For k = 6, the generator for the interior scheme of the gradient interpolator I
(6)
G is g6 =

[−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ]. The generator associated to the interpolation near the boundary are

g61 = [−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ], and g62 = [−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ]. Thus, I

(6)
G is given by

I
(6)
G =

1

1024


1024
231 1386 −1155 924 −495 154 −21
−21 378 945 −420 189 −54 7
12 −100 600 600 −100 12

. . .
. . .

. . .
. . .

. . .
. . .

 .

For k = 8, the generator for the interior scheme of the gradient interpolator I
(8)
G is

g8 = [−7
2 ,−

5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ]. The generator associated to the interpolation near the

boundary are g81 = [−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ], and g82 = [−3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ], and
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g83 = [−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ]. Thus, the non-zero entries of I

(8)
G are given by

I
(8)
G =



1

6435
32768

6435
4096 −15015

8192
9009
4096 −32175

16384
5005
4096 −4095

8192
495
4096 − 429

32768

− 429
32768

1287
4096

9009
8192 −3003

4096
9009
16384 −1287

4096
1001
8192 − 117

4096
99

32768

99
32768 − 165

4096
3465
8192

3465
4096 − 5775

16384
693
4096 − 495

8192
55

4096 − 45
32768

− 5
2048

49
2048 − 245

2048
1225
2048

1225
2048 − 245

2048
49

2048 − 5
2048

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



.

7.2.1 The 2D and 3D gradient interpolation operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, they are con-
structed by utilizing the Kronecker product ⊗.

The 2D gradient interpolation operators (IG)
(k)
xy of k-th order are given by

(IG)
(k)
xy =

[
(IG)

(k)
xy,1

(IG)
(k)
xy,2

]
=

[
În ⊗ (IG)

(k)
x

(IG)
(k)
y ⊗ Îm

]
,

and the 3D gradient interpolation operators (IG)
(k)
xyz of k-th order are given by

(IG)
(k)
xyz =

 (IG)
(k)
xyz,1

(IG)
(k)
xy,2

(IG)
(k)
xyz,3



=

 Îo ⊗ În ⊗ (IG)
(k)
x

Îo ⊗ (IG)
(k)
y ⊗ Îm

(IG)
(k)
z ⊗ În ⊗ Îm

 ,

where (IG)
(k)
p is the 1D divergence interpolation operator along the p-axis, and

Îq =

 01×q

Iq×q

01×q

 ,

with Iq×q is the q × q identity matrix.
Notice that (9) implies

(IG)xyz1 = 1.
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8 The quadrature weight operators

The 1D quadrature weight operators are constructed to satisfy the extended Gauss
divergence theorem ∫

U
v⃗ · ∇f dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U

f v⃗ · n⃗ dS.

In 1D, for U = [a, b], this formula becomes the integration by parts formula (IBP)∫ b

a
v f

′
dx+

∫ b

a
f v

′
dx = f(b) v(b)− f(a) v(a).

If V is a discrete version of the 1D vector field v, with

V⃗ = (V0, V1, · · · , VN )T , Vj = v(xj), xj = a+ jh, j = 0, 1, · · · , N,

and F is a discrete version of the 1D scalar field f , with

F = (F0, F1, · · · , FN+1)
T ,

and

F0 = f(a), FN+1 = f(b), Fj = f(xj), xj = a+
(2j − 1)h

2
, j = 1, · · · , N,

then the Corbino-Castillo mimetic discrete analog of the IBP formula is given by

h ⟨GF, V ⟩P + h ⟨DV,F ⟩Q = FN+1VN − F0V0, (11)

where D and G are the divergence and gradient operators, and where Q and P are conve-
nient diagonal positive-definite square matrices called the quadrature weight operators for
the divergence and the gradient, respectively.

8.1 The 1D divergence quadrature weight operators

The Corbino-Castillo 1D divergence quadrature weight operators Q are square matrices
of order (N + 2)× (N + 2).

If in (11), one assumes the constant discrete scalar field F = 1 ∈ RN+2, then (3) implies

h ⟨DV,1⟩Q = VN − V0,

and, since ⟨DV,1⟩Q = ⟨QDV,1⟩ = ⟨V,DTQ1⟩ = V TDTQ1, then

hV TDTQ1 = V T (−1, 0, · · · , 0, 1)T ,
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or equivalently, if bN+1 = (−1, 0, · · · , 0, 1) ∈ RN+1 then

hDTQ1 = bTN+1. (12)

If q = (Q1,1, · · · , QN+2,N+2) = Q1 then system (12) can be rewritten as

h qD = bN+1,

which is a system of N + 1 equations with N + 2 unknowns. However, since the first and
last rows of D are zero, Q1,1 and QN+2,N+2 are not present in any of the N +1 equations,
and they can be arbitrarily set to

Q1,1 = 1 = QN+2,N+2.

Hence, (12) reduces to a system of N + 1 equations and N unknowns.
Observe that symmetry of D with respect to the center of interval [a, b] imposes

QN+3−i,N+3−i = Qi,i, i = 1, . . . , N + 2.

Therefore, one only needs to specify the first ⌈N2 ⌉+ 1 entries.

For k = 2, it is easy to verify that due to D(2) weights −1, 1 for the interior cell centers,
one has

Q(2) = diag {1, · · · , 1}.

Unfortunately, for k = 4, 6, 8, the diagonal entries of Q depend on the number of cells
N and one observes that the weights approach a constant value around QN

2
+1,N

2
+1, value

which is close to one. 2 As examples, consider

Q
(4)
N=9 = diag

{
1,

157491

139984
,
52593

69992
,
162675

139984
,
648

673
,
8724

8749
,
648

673
, · · ·

}
Q

(4)
N=10 = diag

{
1,

454949

404376
,
151927

202188
,
469925

404376
,
16224

16849
,
16824

16849
,
16824

16849
, · · ·

}
Q

(4)
N=11 = diag

{
1,

12266099

10902576
,
4096177

5451288
,
12669875

10902576
,
218712

227137
,
226812

227137
,
227112

227137
,
226812

227137
, · · ·

}
In Figure 2, one can see how Q

(4)
⌈N/2⌉+1,⌈N/2⌉+1 (the middle entry of Q(4)) approaches 1

as the number of cells increases.
2In [5] page 6, it is established that the diagonal of Q is given by[

1,
2186

1943
,
1992

2651
,
1993

1715
,
649

674
,
699

700
,
18170

18171
,
471744

471745
, 1, · · ·

]
.

These numbers where obtained inverting in MATLAB the DT operator. A more precise approach is by
computing the same algorithm with MAPLE. These numbers are utilized in the calculation of energy
conservation and their differences in practical terms are negligible.
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N
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1
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e
il(

N
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1
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Q(ceil(N/2)+1,ceil(N/2)+1) converges to 1 as function of N

Figure 2: Q center divergence weight converges to 1 as the number of cells increases.

8.2 The 2D and 3D divergence quadrature weight operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, they are con-
structed by utilizing the Kronecker product ⊗.

The 2D divergence quadrature weight operator Q(k)
xy of k-h order are given by

Q(k)
xy =

[
In+2 ⊗Q

(k)
m+2

Q
(k)
n+2 ⊗ Im+2

]
,

and the 3D divergence quadrature weight operator Q(k)
xyz of k-h order are given by

Q(k)
xyz =

 Io+2 ⊗ In+2 ⊗Q
(k)
m+2

Io+2 ⊗Q
(k)
n+2 ⊗ Im+2

Q
(k)
o+2 ⊗ In+2 ⊗ Im+2

 ,

where Iq is the q × q identity matrix.

8.3 The 1D quadrature gradient weight operators

The Corbino-Castillo 1D quadrature gradient weight operators P are diagonal positive-
definite matrices of order (N + 1)× (N + 1).

If in (11), one assumes the constant discrete vector field V = 1 ∈ RN+1, then (1)
implies

h ⟨GF,1⟩P = FN+1 − F0,
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and, since ⟨GF,1⟩P = ⟨PGF,1⟩ = ⟨F,GTP1⟩ = F TGTP1, then

hF TGTP1 = F T (−1, 0, · · · , 0, 1)T ,

or equivalently, if bN+2 = (−1, 0, · · · , 0, 1) ∈ RN+2 then

hGTP1 = bTN+2. (13)

Symmetry with respect to the center of interval [a, b] imposes

PN+2−i,N+2−i = Pi,i, i = 1, . . . , N + 1.

Therefore, one only needs to specify the first ⌈N+1
2 ⌉ entries.

If pw = (P1,1, · · · , PN+1,N+1)
T then (13) becomes GT p = bTN+2 which is a system of

N + 2 equations with N + 1 unknowns.

For k = 2, it is easy to verify that due to G(2) weights −1, 1 for the interior cell faces,
one has

P (2) = diag

{
3

8
,
9

8
, 1, · · · , 1, 9

8
,
3

8

}
Unfortunately, for k = 4, 6, 8, the diagonal entries of P depend on the number of cells
N and one observes that the weights approach a constant value around PN

2
+1,N

2
+1, value

which is close to one. 3 As examples, consider

P
(4)
N=8 = diag

{
297439

839904
,
257947

209976
,
754333

839904
,
1371

1346
,
17523

17498
,
1371

1346
· · ·
}

P
(4)
N=9 = diag

{
95469

269584
,
331173

269584
,
121059

134792
,
34323

33698
,
33723

33698
,
33723

33698
· · ·
}

P
(4)
N=10 = diag

{
7721957

21805152
,
3348343

2725644
,
19583579

21805152
,
462699

454274
,
454599

454274
,
454299

454274
,
454599

454274
· · ·
}

In Figure 3, one can see how P
(4)
⌊N/2⌋+1,⌊N/2⌋+1 (the middle entry of P (4)) approaches 1

as the number of cells increases.

3In [5] page 6, it is established that the diagonal of P is given by[
227

641
,
941

766
,
811

903
,
1373

1348
,
1401

1400
,
36343

36342
,
943491

943490
, 1, · · ·

]
.

These numbers where obtained inverting in MATLAB the GT operator. A more precise approach is by
computing the same algorithm with MAPLE. These numbers are utilized in the calculation of energy
conservation and their differences in practical terms are negligible.
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Figure 3: P center divergence weight converges to 1 as the number of cells increases.

8.4 The 2D and 3D gradient quadrature weight operators

For a Cartesian grid with m,n, o cells in the x, y, z-axes, respectively, they are con-
structed by utilizing the Kronecker product ⊗.

The 2D gradient quadrature weight operator P(k)
xy of k-h order are given by

P(k)
xy =

[
In+2 ⊗ P

(k)
m+2

P
(k)
n+2 ⊗ Im+2

]
,

and the 3D gradient quadrature weight operator P(k)
xyz of k-h order are given by

P(k)
xyz =

 Io+2 ⊗ In+2 ⊗ P
(k)
m+2

Io+2 ⊗ P
(k)
n+2 ⊗ Im+2

P
(k)
o+2 ⊗ In+2 ⊗ Im+2

 ,

where Iq is the q × q identity matrix.

9 The 1D Boundary operators

Equation (11) can be written as

h ⟨F,GTPV ⟩+ h ⟨F,QDV ⟩ = FN+1VN − F0V0,
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and hence if one defines

B = h (QD +GTP ) ∈ R(N+2)×(N+1),

and B̄ ∈ R(N+2)×(N+1) by

B̄ =


−1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · 0 1

 ,

then (11) becomes
F TBV = F T B̄V.

In addition, for 1 ≤ i ≤ N + 2, the corresponding row sums of B are

N+1∑
j=1

Bij = h

N+1∑
j=1

(GTP +QD)ij = h

N+1∑
j=1

N+2∑
l=1

(GT
ilPlj +QilDlj)

= h
N+1∑
j=1

N+2∑
l=1

(GT
il pl δlj + qi δil Dlj) = h

N+1∑
j=1

GT
ijpj + h qi

N+1∑
j=1

Dij

= hGT
i·P1 =


−1, i = 1,
0, 2 ≤ i ≤ N + 1,
1, i = N + 2

where δij is the Kronecker delta. The last identity follows from (13) and (1).
All row sums of E = B − B̄ are zero. So, E is of order h, and E → 0 as h → 0.
Because of the sizes of matrices Dxyz,Qxyz, Gxyz,Pxyz, and since (11) can be written

as
h ⟨V, PGF ⟩+ h ⟨V,QN+1D

TF ⟩ = FN+1VN − F0V0,

where QN+1 is the Q matrix of order (N +1)× (N +1) instead of order (N +2)× (N +2),
then the 3D version of the boundary operators are defined by

Bxyz = hxhyhz PxyzGxyz + hxhyhz Q3(m+1)(n+1)(o+1),xyzD
T
xyz,

where Q3(m+1)(n+1)(o+1),xyz has order 3(m+1)(n+1)(o+1)× 3(m+1)(n+1)(o+1), and

B̄xyz =

 Io+2 ⊗ In+2 ⊗ B̄x

Io+2 ⊗ B̄y ⊗ Im+2

B̄z ⊗ In+2 ⊗ Im+2

 ,

where B̄p is the one dimensional boundary B̄ matrix along the p-axis.
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10 The extended Gauss divergence theorem

The extended Gauss divergence theorem is given by∫
U
v⃗ · ∇f dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U

f v⃗ · n⃗ dS

By construction, see (11), its Corbino-Castillo mimetic analog in 1D (or IBP formula) is
given by

h
〈
DV,F

〉
Q
+ h
〈
V,GF

〉
P
= FN+1VN − F0V0.

The generalization of the IBP formula to the 3D extended Gauss divergence theorem is

V⃗ BxyzF = V⃗ B̄xyzF, (14)

where V⃗ = (V1, V2, V3) is the discrete version of the 3D vector field v⃗ = (v1, v2, v3) and F
is the discrete version of the scalar field f .

Therefore, one gets

hxhyhz ⟨PxyzGxyzF, V⃗ ⟩+ hxhyhz ⟨Q3(m+1)(n+1)(o+1),xyzD
T
xyzF, V⃗ ⟩ = F T B̄xyzV⃗ .

If F ≡ 1, then
hxhyhz 1

TDxyzQ3(m+1)(n+1)(o+1),xyzV⃗ = 1T B̄xyzV⃗ .

Since, it is valid for all V⃗ then

hxhyhz 1
TDxyzQ3(m+1)(n+1)(o+1),xyz = 1

T B̄xyz,

and

hxhyhz Q3(m+1)(n+1)(o+1),xyzD
T
xyz1 = B̄T

xyz1 =

 1⊗ 1⊗ bm+1

1⊗ bn+1 ⊗ 1
bo+1 ⊗ 1⊗ 1

 .

(15)
Similarly, since

hxhyhz ⟨F,GT
xyzPxyzV⃗ ⟩+ hxhyhz ⟨F,QxyzDxyzV⃗ ⟩ = F T B̄xyzV⃗ .

If V⃗ = 1, then
hxhyhz F

TGT
xyzPxyz1 = F T B̄xyz1.

Since, it is valid for all F , then

hxhyhz G
T
xyzPxyz1 = B̄xyz1 =

 1⊗ 1⊗ bm+2

1⊗ bn+2 ⊗ 1
bo+2 ⊗ 1⊗ 1

 . (16)

28



11 Some Vector Calculus Identities

In this section, Corbino-Castillo mimetic discrete analogs of some of the vector calculus
identities are derived.

Given scalars α, β, the 3D scalar fields f, g and the 3D vector fields v⃗, w⃗, the discrete
analogs of the scalar fields are

F,G : S1 × S2 × S3 → R,

and the discrete analogs of the vector fields are V⃗ , W⃗ with V⃗ = (V1, V2, V3), W⃗ = (W1,W2,W3),
where

V1,W1 : N
1×S2×S3 → R, V2,W2 : S

1×N2×S3 → R, V3,W3 : S
1×S2×N3 → R.

Discrete analogs of some vector calculus identities are found while trying to remove the
dependence on discrete versions of scalar and vector fields.

The list of vector calculus identities is the following.

1. The linearity of the divergence, or

∇ · (α v⃗ + βw⃗) = α∇ · v⃗ + β∇ · w⃗.

It follows from the matrix representation of the divergence mimetic operators.

Dxyz(α vecL(V⃗ ) + β vecL(W⃗ )) = αDxyz vecL(V⃗ ) + β Dxyz vecL(W⃗ ).

where

vec(U⃗)L = (vecL(U1), vecL(U2), vecL(U3))
T ,

with vecL(T ) the vectorization operator in lexicographic order of the discrete vector
field component T .

2. The linearity of the gradient, or

∇(α f + βg) = α∇f + β∇g.

It follows from the matrix representation of the gradient mimetic operators.

Gxyz(α vecL(F ) + β vecL(G)) = αGxyz vecL(F ) + β Gxyz vecL(G).

with vecL(H) the vectorization operator in lexicographic order of the discrete scalar
field H.
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3. The divergence of a constant vector field: for a 3D constant vector field v⃗ = a⃗i+b⃗j+ck⃗,
with a, b, c real constants, one has

∇ · v⃗ = 0.

The discrete analog

Dxyz(a Î
T
o ⊗ ÎTn ⊗ 1m+2 + b ÎTo ⊗ 1n+2 ⊗ ÎTm + c1o+2 ⊗ ÎTn ⊗ ÎTm) = 0,

follows from the definition of Dxyz by Kronecker products and (1).

4. The gradient of a constant scalar field, or

∇ 1 = 0⃗.

The discrete analog
Gxyz1(m+2)(n+2)(o+2) = 0,

follows from the definition of Gxyz by Kronecker products and (3).

5. The Laplacian, or
∆f = ∇ · ∇f.

It follows from the definition of Laplacian mimetic operators that

LxyzF = DxyzGxyzF.

6. The gradient of a product of a product of scalar fields:

∇(fg) = f ∇g + g∇f.

If one integrates this identity over the domain, one gets∫
U
∇(fg) dU =

∫
U
f ∇g dU +

∫
U
g∇f dU.

The mimetic discrete analog of this identity is

⟨Gxyz(diag(f))g,1⟩Pxyz = ⟨Gxyzg, (ID)xyzf⟩Pxyz + ⟨Gxyzf, (ID)xyzg⟩Pxyz ,

where, to simplify notation f, g are the discrete versions of f, g.

The previous identity can be written as

gTdiag(f)GT
xyzPxyz1 = gTGT

xyzP (ID)xyzf + gT (ID)
T
xyzPxyzGxyzf.

Since, it is valid for any g then

diag(f)GT
xyzPxyz1 = GT

xyzPxyz(ID)xyzf + (ID)
T
xyzPxyzGxyzf.
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Multiply on the left by (1)T one gets

(1)Tdiag(f)GT
xyzPxyz1 = (1)TGT

xyzPxyz(ID)xyzf + (1)T (ID)
T
xyzPxyzGxyzf

(1)TPxyzGxyzf = fTGT
xyzPxyz1 = (Gxyz1)

TPxyz(ID)xyzf + ((ID)xyz1)
TPxyzGxyzf.

Since the last identity is valid for any f then

(1)TPxyzGxyz = (Gxyz1)
TPxyz(ID)xyz + ((ID)xyz1)

TPxyzGxyz.

The first term of the right hand side is zero because of (5). The identity follows from
(8).

One can show that the differential version of this identity actually holds in 1D, if the
gradient interpolation operator is of order two. For, consider the mimetic analog

G(f ◦ g) = IDf ◦Gg + IDg ◦Gf,

where ◦ is the component-wise or Hadamard product.

For the boundary points the data to be interpolated is known and hence the first row
of (ID) is (1, 0, · · · , 0) and its last row is (0, · · · , 0, 1).

For the other rows of ID consider the following. If 1 < i < N +1, the i-th component
of the previous identity is given by

N+2∑
k=1

Gikfkgk =

(
N+2∑
l=1

(ID)ilfl

)(
N+2∑
k=1

Gikgk

)
+

(
N+2∑
l=1

(ID)ikgk

)(
N+2∑
l=1

Gilfl

)
.

Or, equivalently,

N+2∑
k=1

N+2∑
l=1

Gikδklgkfl =

N+2∑
k=1

N+2∑
l=1

((ID)ilGik + (ID)ikGil)flgk.

Since the last identity is valid for any f, g, then

Gikδkl = (ID)ilGik + (ID)ikGil.

If Gik = 0, then set (ID)ik = 0. So, ID is zero wherever G is zero.

It is known that for 1 < i < N + 1, one has Gi,i = −1, Gi,i+1 = 1 and Gi,k = 0 for
k ̸= i, i + 1. If k = i, then −δil = −(ID)il + (ID)iiGil. If, in addition, l = i then
(ID)i,i =

1
2 . If, instead l = i+ 1, then (ID)i,i+1 = (ID)i,i =

1
2 .

This is the divergence interpolation operator ID of order two.
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7. The product rule for a multiplication by a scalar of the divergence: for a 3D scalar
field f and a 3D vector field v⃗, one has

∇ · (f v⃗) = ∇f · v⃗ + f ∇ · v⃗.

If one integrates this identity over the domain, one gets∫
U
∇ · (f v⃗) dU =

∫
U
∇f · v⃗ dU +

∫
U
f ∇ · v⃗ dU

The extended Gauss divergence theorem implies that∫
U
∇f · v⃗ dU +

∫
U
f ∇ · v⃗ dU =

∫
∂U

(f v⃗) · n⃗ dS,

and for w⃗ = f v⃗, one has ∫
U
∇ · w⃗ dU =

∫
∂U

w⃗ · n⃗ dS.

The mimetic analog reads, for the discrete version W⃗ of vector field w⃗,

⟨DxyzW⃗ ,1⟩Qxyz = V⃗ BxyzF = V⃗ B̄xyzF,

which is the 3D analog of the extended Gauss divergence theorem.

8. The Laplacian of a product of scalar fields:

∆(fg) = f ∆g + 2∇f · ∇g + g∆f.

If one integrates this identity over the domain, one gets∫
U
∆(fg) dU =

∫
U
f ∆g dU + 2

∫
U
∇f · ∇g dU +

∫
U
g∆f dU.

The mimetic analog is

⟨DxyzGxyz(f◦g),1⟩Qxyz = ⟨DxyzGxyzg, f⟩Qxyz+2 ⟨(IG)xyzg, (IG)xyzf⟩Qxyz+⟨DxyzGxyzf, g⟩Qxyz ,

or, equivalently,

gT (diag(f))GT
xyzD

T
xyzQxyz1 = gTGT

xyzD
T
xyzQxyzf+2 gTGT

xyz(IG)
T
xyzQxyz(IG)xyzGxyzf+gTQxyzDxyzGxyzf.

Since the last identity is valid for all g, one has

(diag(f))GT
xyzD

T
xyzQxyz1 = GT

xyzD
T
xyzQxyzf+2GT

xyz(IG)
T
xyzQxyz(IG)xyzGxyzf+QxyzDxyzGxyzf.
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Multiplying on the left by 1T , and since

1T (diag(f))GT
xyzD

T
xyzQxyz1 = fTGT

xyzD
T
xyzQxyz1 = 1TQxyzDxyzGxyzf,

then

1TQxyzDxyzGxyzf = 1TGT
xyzD

T
xyzQxyzf+21TGT

xyz(IG)
T
xyzQxyz(IG)xyzGxyzf+1

TQxyzDxyzGxyzf.

The last identity is valid for any f . It follows that

1TQxyzDxyzGxyz = (Gxyz1)
TDT

xyzQxyz+2 (Gxyz1)
T (IG)

T
xyzQxyz(IG)xyzGxyz+1

TQxyzDxyzGxyz.

The first two terms of the right hand side are zero because of (5). The identity
follows.

12 Conclusions and future work

The purpose of this document is to demonstrate in what sense mimetic differences
operators satisfy a discrete analog of some 3D vector calculus formulas. Even though these
proofs are shown for the Corbino-Castillo mimetic differences, the same approach applies for
the Castillo-Grone mimetic differences since no particular feature of the Corbino-Castillo
method is utilized.

A high-order discrete analog of the 1D integration by parts formula is central in any
of the mimetic difference methods. Indeed, this property causes the fact that high-order
discrete analogs of some vector calculus identities are valid in the integral sense. Neverthe-
less, it is also exhibited that some vector calculus identities, in the differential sense, can
be established if one gives up on high-order accuracy.

When establishing discrete analogs of these identities, one needs to use 3D interpolation
operators, as well as 3D extensions of weight matrices P and Q, boundary matrices and
some other identities that derive from the 3D integration by parts formula (or extended
Gauss divergence theorem). Since, these extensions can be found widespread in references
or are not published at all, they are collected here. Moreover, the derivation of the Corbino-
Castillo mimetic operators provided in this work avoids inverting explicitly Vandermonde
matrices.

One of our future immediate extensions of mimetic differences operators is to develop a
matrix representation of the curl operator that satisfies discrete analogs of some vector cal-
culus properties. This will facilitate applications of mimetic methods in electromagnetism,
as well as in other areas.
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Matematički Vesnik, September 2019.

[11] Runyan, J.B., A Novel Higher Order Finite Difference Time Domain Method Based
On The Castillo-Grone Mimetic Curl Operator With Applications Concerning The
Time-Dependent Maxwell Equations, M.Sc. Dissertation, San Diego State University,
2011.

[12] Shaskov, M., Conservative Finite-Difference Methods on General Grids, CRC Press,
Boca Raton, FL, 1995.

34

https://github.com/csrc-sdsu/mole

	Mimetic Analogs of Vector Calculus Identities.pdf
	Introduction
	The staggered grid
	Computing mimetic operators without inverting matrices
	The divergence operators
	The 2D and 3D divergence operators

	The gradient operators
	The 2D and 3D gradient operators

	The Laplace operators
	The interpolation operators
	The 1D divergence interpolation operators
	The 2D and 3D divergence interpolation operators

	The 1D gradient interpolation operators
	The 2D and 3D gradient interpolation operators


	The quadrature weight operators
	The 1D divergence quadrature weight operators
	The 2D and 3D divergence quadrature weight operators
	The 1D quadrature gradient weight operators
	The 2D and 3D gradient quadrature weight operators

	The 1D Boundary operators
	The extended Gauss divergence theorem
	Some Vector Calculus Identities
	Conclusions and future work


