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Abstract

In this report, a proof of the energy conservation property of second-order mimetic
difference schemes is demonstrated for the one-dimensional advection PDE. This proof
leverages on the discrete analog of the integration by parts mimetic difference property.

1 Introduction

Mimetic difference schemes for structured staggered grids have been around for a couple of
decades [1] [2] [3]. To be able to replicate physical properties and conservation laws, discrete
versions of scalar fields are represented at cell centers (include points on the boundary of
the domain), while discrete versions of vector fields are characterized at grid faces. These
faces, for one-dimensional domains are points; for two-dimensional domains are edges; for
three-dimensional domains proper faces; and so on.

Mimetic difference schemes create analogs of differential operators (G for the gradient,
D for the divergence, C for the curl, L for the Laplacian), that not only preserve their
vector calculus identities but also hold discrete counterparts of integral formulas. The
latter is triggered by the introduction of a boundary operator B and weighted norms P
and @, (for the gradient and divergence operators in the integrand, respectively) to enforce
the additional goal of constant high-order accuracy on the whole staggered grid including
boundary cells.

Energy conservation of mimetic differences have been found in numerical applications but
no targeted effort has been attempted up to date to prove this theoretical property of these
methods.
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Perhaps two of the reasons has been the difficulty of writing the vector calculus inte-
gral identities explicitly in two and three dimensions as well as the lack of appropriate
interpolation operators that have constant high-order accuracy over the whole staggered
domain.

The proof is restricted to second-order mimetic difference divergence operators, but it can
be easily generalized to second-order gradient operators.

This work is the basis for demonstrating energy conservation of mimetic difference schemes
in general.

2 Proof

As mentioned in the introduction, in this report, we keep constrained to one-dimensional
dimensional to avoid some of the multi-dimensional hurdles that complicate the proof of
the energy conservation properties of the mimetic difference schemes.

Consider the following one-dimensional advection partial differential equation

u+u, = 0, x e (-1,1), t>0, (1)
u(=1,t) = g(t), t>0, (2)
u(z,0) = wuo(x), (3)

with condition (2) on the left boundary, and initial condition (3).

It is well-known that (1)-(3) is a well-posed PDE and that its discontinuous Galerkin
Spectral Element Method discretization has the energy conservation property [4].

By multiplying (1) by u and integrating over the spatial domain, one obtains
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/ uutd$+/ uV-udr=0, (4)
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where the spatial derivative has been considered as a divergence.

The first and second terms in (4), respectively hold,
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and hence, after a time integration from 0 to 7', (4) becomes

(/_( 20, T) — 12(z,0) dx) // ) da di = 0. (5)
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Now, we plan write discrete analogs of (5) according to mimetic difference schemes lever-
aging on properties of the formulation of the integration by parts principle [1] [2] [3].

Define vector U, a mimetic numerical approximation of u(x,t), on the staggered grid
—1= Zo, CC%, T, xN_%u IN+1 = 17

with
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where the cell centers are equally separated by h = % So,
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U= (U(:Eo,t), U(:L‘l,t), T U($N,t)> U(:EN-I—lat))T'

For functions defined on the staggered grid, the mimetic difference schemes use the second-
order composite midpoint rule for integration

1 N—-1
/ v(w)dmthvH%, Z+;—fu( i+%)7 i=1,---,N.
-1 i=0

The presence of the first integral of (5) motivates the definition of (discrete) energy of U

at time ¢ by
S SLLERE

Applying the composite midpoint rule for the first term and utilizing for the second term
the weighted inner product for the divergence, (5) becomes

N-1

1
hZU2 21, T E/o 1QDIpU* dt =h Y U*(z (11,0, (6)
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where Ip is the second-order interpolation operator from the staggered cell centers to nodes
of [5], or equivalently, the usual linear interpolation.

The mimetic form of the fundamental theorem of calculus for the divergence states that

1QD(IpU?%) = (=1,0,---,0,1)(U*(z0,t),U*(21,1),--- ,U*(xn_1,1), U (zn,1))T
= —U?*(—1,t) + U*(1,t)

and hence (6) becomes,

N-1 1 T N-1
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hE_OU(xH%,TH—E/O U(1,t)dt—h§_0U 71,0 / U2(—1,t)d



Using the boundary condition (2), and the discrete energy definition, one verifies that

E(T) + }—t /OT U?(1,t)dt = E(0) + % /OTgZ(t) dt,

i.e., the energy at T plus the energy lost at the right boundary matches the initial energy
plus the energy gained at the left boundary.
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