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Abstract

In this report, a derivation of interpolation operators for scalar and vector fields on
staggered grids is shown. This technique avoids the inversion of a Vandermonde matrix
and provides a faster and more accurate computation of interpolation operators.

1 Introduction

Gradient G and divergence D mimetic difference operators in d dimensions are defined on
staggered grids.

If the staggered grid contains m; cells along the i-th axis, ¢ = 1,---,d, and the set of
staggered grid cell center points in the ¢-th direction, including its boundaries, is given
by C; (with cardinality m; 4+ 2) then the collection of grid cell center points is given by
C =C(C1 x---x Cy and its cardinality is given by N, = Hle(mi +2).

On the other hand, the set F; of d-faces (for d = 1 points, for d = 2 edges, for d = 3 faces,
and so on), associated to the i-th component of a vector field, of the staggered grid along
the i-axis, has a cardinality given by N, = m;ll;+;(m; + 1) and hence the set of all d-
dimensional faces of the staggered grid F' = U?lei, has a cardinality of Ny = Zle Ny, =

d

Like its continuous counterpart, mimetic gradient operators are applied on scalar fields,
which usually are defined on C. Mimetic gradient operators return spatial partial deriva-
tives at F'. In particular, 2D mimetic gradient operators (in coordinates x and y) are split
in two components [G, Gy]T, the first of which, when applied to a scalar field v = (vq, v2),
with vy : F, — R vy 1 F, — R?, provides the value of % evaluated at Fy. Similarly,
the second component of the 2D mimetic gradient operator computes %gf evaluated at Fy,.
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On the other hand, 2D mimetic divergence operators D = [D,, D,] act, onto vector field

components v; and vo and compute %, %—”;, at I, and F, respectively.

It may happen that after applying one of the mimetic operators at a scalar or vector field,
the result should be the input of another mimetic operator and the data might not be at
the appropriate points. In that case, some interpolation might be required.

2 Form of the interpolation operators for d > 1 dimensions

One can foresee that two interpolation operators are required, independently of the space
dimensionality of the PDE to be solved and of the level of accuracy of the operators. One
operator should interpolate data from cell centers to cell faces, namely I;_}f : C — F with
X = (z1, -+ ,24), and another from cell faces to cell centers, namely, I ‘{{_)C :F— C. The
subindex X in both interpolation operators refer to the number of dimensions.

The fact that interpolation operations Iy (where Ix refers to I;_}f or [ ‘{(_m) in d-dimensions,
with d > 1 should apply separately on each dimension, imposes the constraint that they
should be of the form
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where Ix;, i =1,--- ,d, applies to the i-th component of the data.
Since the gradient operator in d-dimensions, d > 1, is of the form
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where

I, = [Opxl‘fplopxl]Ta I, = diag{1,--- ,1},
and with its data is on C' and its image is evaluated at F, then I;:f structure has to be
of the form
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where I;_;f ,i=1,---,d, is the one-dimensional interpolation operator from cell centers
to cell faces in the i-th dimension.

Notice that because of the form of I;:f and Gz - - - x4, the d-dimensional cell centers to
cell faces interpolation operator should act on the image of the d-dimensional gradient
operator.

Similarly, since the d-dimensional divergence operator is of the form

A
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and maps data from the cell faces to the cell centers, then the interpolation operator I A{(—m
should be of the form
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where [ f(_gc, i =1,---,d, is the one-dimensional interpolation operator from cell faces to

cell centers in the i-th dimension.

Notice that because of the form of I ;;_)C and Dx; --- x4, the d-dimensional divergence
operator should act on the image of the d-dimensional cell faces to cell centers interpolation
operator.

What remains now is to determine the one-dimensional interpolation operators.

3 The one dimensional interpolation operators

A motivation for writing this report was [2]. In that document, interpolation operators for
the divergence and gradient mimetic operators are obtained for orders k = 2,4,6. They
are derived via the inversion of a Vandermonde matrix. !

Since the interpolation operators are more related to geometric entities that to differential
operators, we introduce a more appropriate notation for them. To facilitate their rela-
tionship with the interpolation operators defined in [2], when defining the interpolation
operators both notations are kept.

In [1], an exact algorithm for the computation of the inverse of the Vandermonde matrix
is given. As we shown below, it is possible to extract the first row of it (which is actually
what is needed for the interpolation operators) and find 157 and I7¢ (the equivalents to

!We noticed that order k = 8 was missing because of stability issues of the direct inversion.



the divergence I}, and gradient Ig interpolation operators of order k in [2]), for all orders
k=2,4,6,8, exactly.

From [1], one can infer that if the generator of the Vandermonde matrix is given by
g = [cla e 7cm],7

then the first row of the inverse of the respective Vandermode matrix (which corresponds
to the row of interest of the interpolator operator) is given by
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where

3.1 Cell centers to cell faces one-dimensional interpolation operators

The cell centers to cell faces one-dimensional interpolation operators are matrices of order
(N +1) x (N +2) with N the number of cells. They can be obtained without inverting
explicitly the Vandermonde matrix with g generator.

For accuracy order k = 2, the generator of the cell centers to cell faces interpolator I?f (@)
is
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For accuracy order k = 4, the generator for the interior scheme of the cell centers to cell

faces interpolator I?f @ i
3 11 37
dy = [—57—57575] .

In addition, the generator associated to the interpolation near the boundary is
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Thus, I;Hf @ g given by
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For accuracy k = 6, the generator for the interior scheme of the cell centers to cell faces

interpolator Iﬁﬁf’(m is
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In addition, the generators associated to the interpolation near the boundary are
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So, Igﬁf’(ﬁ) is given by
[ 8448
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256 —924 4620 5544 —1320 308 —36
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For accuracy order k = 8, the generator for the interior scheme of the cell centers to cell

faces interpolator I;Hf ®) 4




The generators associated to the interpolation near the boundary are

dg1
dgo

dg3

Hence, Iﬁf ®) s given by

3.2 Cell faces to cell centers one-dimensional interpolation operators

Cell faces to cell centers one-dimensional interpolation operators are matrices of order
(N +2) x (N +1) with N the number of cells. They can be obtained without inverting
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explicitly the Vandermonde matrix with g generator.

For accuracy k = 2, the generator of the cell faces to cell centers interpolator Ig{_m@)
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For accuracy k = 4, the generator for the interior scheme of the cell faces to cell centers

interpolator If—w’(zl) i
[ 3 11 3]’
g4 = _— .
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The generator associated to the interpolation near the boundary is
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Thus, I{_}C’M) is given by

35 140 —-70 28 =5

-8 72 T2 -8
—5 28 =70 140 35
128 |

For accuracy k = 6, the generator for the interior scheme of the cell faces to cell centers

[ 5 3 1135
g6 = 27 97 9797979 °

The generators associated to the interpolation near the boundary are

interpolator I, 5{ e S
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So, Ig{_m’(ﬁ) is given by
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For accuracy k = 8, the generator for the interior scheme of the cell faces to cell centers

interpolator L{; e @) g
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The generator associated to the interpolation near the boundary are
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Hence, L%c —e(®) i given by
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