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1 Introduction

This report summarizes some of the key aspects behind the implementation of the Mimetic 
Relaxation Runge Kutta (RRK) methods for hyperbolic partial differential equations (PDEs). 
The implementation has been performed in Matlab using the Mimetic Operators Library 
Enhanced (MOLE). The integration of time-dependant PDEs requires a spatial and tem-
poral discretization in order to obtain a numerical solution. The spatial discretization has 
been performed using the Mimetic discretization methods, and the temporal discretization 
using the energy conserving Relaxation Runge Kutta methods. The codes referenced in 
this report can be accessed via https://github.com/asrinivasan0709/ICOSAHOM2021.

Mimetic methods [1] work on a staggered grid, and the discrete approximations for vec-
tor calculus quantities satisfy a global conservation law. The Castillo-Grone [2] Mimetic 
methods possess high order approximations for the vector calculus quantities of divergence 
and gradient by satisfying the extended Gauss’ divergence theorem. These approximations 
for DIV and GRAD are of uniform order of accuracy at the interiors and the boundaries, 
and are achieved without the use of ghost nodes. More recently, the discretizations intro-
duced by the Corbino-Castillo [3] Mimetic methods possess optimal bandwidth for the DIV 
and GRAD matrices. These DIV and GRAD Corbino-Castillo matrices are implemented as 
part of the Mimetic Operators Library Enhanced (MOLE) open-source code. The library 
can be accessed viahttps://github.com/csrc-sdsu/mole.

This report is organized as follows: we present an overview of the interpolation matrices 
that are required to map data from staggered to nodal grids (and vice-versa). This is 
followed by a description of the traditional Runge Kutta (RK) methods and a review of 
energy stability for PDE’s. Finally, we introduce the RRK methods, and conclude with a 
description of the numerical examples implemented in Matlab.
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2 Interpolant Matrices

The Mimetic DIV and GRAD operators work on a staggered grid. On a 1D domain, the
DIV operator is defined at the cell centers, and maps the functional values from the nodes
to cell centers. The requirement for an interpolant matrix is thus evident, and can be
underscored as follows: Consider, for example, the 1D advection equation ut +∇ · u = 0.
This can be discretized using the divergence operator D̂ ∈ R(N+2)×(N+1) acting on U to
obtain Ut + D̂U = 0. However, U is defined on a staggered grid, with U ∈ R(N+2)×1. An
interpolant is therefore necessary to map the functional values from a staggered to a nodal
grid at each step of the numerical integration.

Interpolants can be obtained by constructing Vandermonde matrices for the polynomial
basis {1, x, x2, . . . }. This approach does present the drawback of numerical oscillations (i.e.,
Runge phenomenon) for interpolants of orders 9 or higher. Our focus here is for interpolants
of even orders 2, 4 and 6, and we therefore do not expect numerical oscillations to be a
concern with the interpolant weights. The Vandermonde approach offers the advantage of
a matrix-representation for the interpolant weights, making it readily usable in the Mimetic
framework offered by the MOLE library.

At the interiors of a 1D grid, the value of the function at nodal location xi can be
obtained by passing a polynomial through the adjacent points
{. . . , xi−3/2, xi−1/2, xi+1/2, xi+1/2, . . . }. As an example, the fourth order interpolant can
be obtained by centering it at xi = 0, and passing the polynomial through the points
{−3/2,−1/2, 1/2, 3/2}. A vandermonde matrix V is then constructed for these interpolat-
ing points. The weights for the interpolating polynomial are obtained by solving the system
of linear equations V w = I, where I is the identity matrix. The first row of the matrix w
then becomes the coefficients for the interpolating divergence matrix at the interiors of the
grid. A similar procedure can be used to obtain the coefficient weights for the boundaries
by implementing a one-sided polynomial interpolation. In the case of the fourth order
interpolant, the points on the left boundary of the 1D grid are {−1,−1/2, 1/2, 3/2, 5/2}.

The resulting second, fourth and sixth order interpolant matrices that map the func-
tional data from a staggered to a nodal grid are as noted below:

I2
D =



1 0 . . .

0 1
2

1
2 0 . . .

. . .

. . . 1
2

1
2 0

. . . 0 1


∈ R(N+1)×(N+2)
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I4
D =



1 0 . . .

−1
7

5
8

5
8 −1

8
1
56 0 . . .

0 − 1
16

9
16

9
16 − 1

16 0 . . .

. . .
. . .

. . . − 1
16

9
16

9
16 − 1

16 0

. . . 1
56 −1

8
5
8

5
8 −1

7

. . . 0 1


I6
D = 

1 0 . . .

− 1
11

63
128

105
128 −21

64
9
64 − 5

128
1

201 0 . . .

1
33 − 7

64
35
64

21
32 − 5

32
7

192 − 1
235 0 . . .

0 3
256 − 25

256
75
128

75
128 − 25

256
3

256 0 . . .

. . .
. . .

. . . 0 3
256 − 25

256
75
128

75
128 − 25

256
3

256 0

. . . 0 − 1
235

7
192 − 5

32
21
32

35
64 − 7

64
1
33

. . . 0 1
201 − 5

128
9
64 −21

64
105
128

63
128 − 1

11

. . . 0 1


With the divergence interpolators defined as above, the advection equation can be

discretized as Ut + D̂
(
IkD U

)
, where k is the same order of accuracy as that of D̂.

A similar procedure can be implemented to obtain the interpolant matrices correspond-
ing to the GRAD operator, where the interpolant maps functional data from the cell centers
to nodes. The interpolating matrices corresponding to the GRAD operator for orders 2,4
and 6 are as noted below:
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I2
G =



1 0 . . .

1
2

1
2 0 . . .

. . .

. . . 0 1
2

1
2

. . . 0 1


∈ R(N+2)×(N+1)

I4
G =



1 0 . . .

35
128

35
32 −35

64
7
32 − 5

128 0 . . .

− 1
16

9
16

9
16 − 1

16 0 0 . . .

. . .
. . .

. . . 0 − 1
16

9
16

9
16 − 1

16

. . . − 5
128

7
32 −35
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35
32

35
128

. . . 0 1


I6
G = 

1 0 . . .

30
133

134
99 −97

86
231
256 −131

271
20
133 − 4

195 0 . . .

−4
195

55
149

311
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−105
256

67
363

−27
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1
146 0 . . .

3
256 − 25

256
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128 − 25

256
3

256 0 0 . . .

. . .
. . .

. . . 0 0 3
256 − 25

256
75
128
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128 − 25

256
3

256

. . . 0 1
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−27
512
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256
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337
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−4
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. . . 0 −4
195

20
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−131
271

231
256

−97
86
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99

30
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. . . 0 1


The advection equation can be written using the gradient operator as ut + ∇u = 0,

and the Mimetic discretized version becomes Ut +
(
IkG G

)
U = 0. The interpolation

matrices can thus be used in conjunction with the Mimetic DIV and GRAD matrices
that are available as part of the MOLE library. Extensions to higher dimensions can be
performed by utilizing the kronecker products. At the time of writing this document, the
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interpolant matrices have been included as subroutines interpDmat.m and interpGmat.m

in the Matlab implementation of MOLE.

3 Runge Kutta Methods

An s-stage Runge Kutta method with real coefficients as1, as2, . . . , b1, . . . , bs, c2, . . . , cs of
the Butcher tableau [4]

c A

b

with n denoting the spatial and time step discretizations, is given by

un+1 = un + ∆t

s∑
i=1

bi k
n
i , where (1)

kns = un + ∆t
i−1∑
j=1

f(tn + cj ∆t, aijk
n
j ), i = 1, 2, . . . , s (2)

The Butcher tableaus for the three schemes (Heun’s third order, classical fourth order
and Verner’s sixth order [5]) that have been implemented in this work are shown in fig.
(1).

4 Energy Stability

Kreiss & Scherer [6] established the existence of SBP-operators, which is the discrete equiv-
alent of integration by parts represented as∫ b

a
udv = uv|ba −

∫ b

a
vdu ⇒ 〈U,DV 〉H = UbVb − UaVa − 〈V,DU〉H

Strand [7] showed that an operator D is an SBP-operator for the first derivative if
it satisfies Q = HD, where QT + Q = diag(−1, 0, . . . , 1). H is the weight matrix that
is invertible. The choice of diagonal weight matrices with positive weights results in the
first derivative approximation that is of even order (or order one-less) at the interiors and
boundaries.

Hicken & Zingg [8] had showed that this property of SBP-operators leads to energy-
preserving solutions for partial differential equations, as long as the discrete equivalent is
indeed an accurate representation of the continuous counter-part. They also showed that
the structure of the quadrature weights is an accurate representation of the integral if and
only if the coefficients satisfy the Euler-Maclaurin series sum.
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Figure 1: Butcher tableaus for the RK schemes; top left - Heun’s third order, top right -
fourth order RK scheme, bottom - Verner’s sixth order RK scheme.
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In the Mimetic framework, the discrete equivalent of the extended Gauss’ divergence
theorem is given by

∫
Ω

(∇ · ~v) fdV +

∫
Ω
~v · (∇f) dV =

∫
∂Ω

(f~v) · ~n dS (3)

⇒
〈
D̂v, f̂

〉
Q

+
〈
GT v, f̂

〉
P

=
〈
Bv, f̂

〉
(4)

Here, the equivalent of the SBP-operators satisfies QD̂ + GTP = B̂. The quadratures
P and Q are positive diagonal weight matrices for even orders up to 6. They satisfy
the coefficients of the Euler-Maclaurin series sum. Preliminary investigations as outlined
in [9] showed the applicability of Mimetic quadratures for numerical integration. The
discretizations obtained from using the Mimetic methods are therefore structure preserving,
and ensure positivity of solutions.

We present the following remarks in regards to the Mimetic discretization of the ad-

vection equation ut +∇ · u = 0. The norm is defined as ||u||2 = 〈u, u〉 =

∫
Ω
u2dV .

Lemma 1. A numerical integration scheme needs to discretely mimic the conservation
law. That is, the change in quantities (eg., mass and energy in the case of the Navier
Stokes’ equation) within the system has to equal the flux at the boundaries.

Remark 1. By construction, the Castillo-Grone Mimetic coefficients satisfy the dis-
crete version of the extended Gauss’ divergence theorem. The extended Gauss’ theorem
can be re-written as∫

Ω
(∇ · ~u)u dV +

∫
~u · (∇u) dV =

∫
Ω
∇ · (u2)dV =

∫
∂Ω
u2 · ~n dS (5)

The Castillo-Grone and the Corbino-Castillo Mimetic coefficients satisfy the conserva-
tion principle, and are therefore structure-preserving.

Lemma 2. A partial differential equation is said to be well-posed in the sense of
energy-stability [10] if the numerical solution is continually dependent on the initial and
boundary conditions.

Remark 2. The energy method can be implemented for the advection equation by
multiplying it with the solution u and integrating over the domain, to obtain∫

Ω
u ut dV +

∫
Ω
u ∇ · u dV = 0 (6)

The first term in eq.(6) becomes
1

2

d

dt

∫
Ω
u2dV =

1

2

d

dt
||u||2. The second term can be
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represented in terms of the extended Gauss’ divergence theorem as

∫
Ω
u ∇ · u dV =

1

2

∫
Ω
∇ · (u2)dV =

1

2

∫
∂Ω
u2dS.

Thus, we obtain for 1D,
d

dt
||u||2 = −u2|10. This is an initial value problem ordinary

differential equation and the solution depends continually on the initial and boundary
conditions. The Mimetic discretization of the advection equation therefore leads to a well-
posed and energy-stable numerical solution of the PDE. Moreover, the Castillo-Grone and
Corbino-Castillo Mimetic discretizations for DIV and GRAD are accurate to high order.
The resulting quadrature matrices Q and P ensure that the functional estimates for the
integral are accurate for the domain.

5 Relaxation RK Methods

The previous section highlighted the fact that the Castillo-Grone & Corbino-Castillo Mimetic
methods are energy-preserving spatial discretizations. The traditional RK methods do not
conserve energy at each time step of numerical integration. The Relaxation RK methods
[11, 12] ensure energy conservation by introducing the relaxation parameter γ. The step
update formula therefore becomes

un+1
γ = un + γn∆t

s∑
i=1

bi k
n
i (7)

The relaxation parameter is calculated such that the energy norm is satisfied at each
time step. Thus, ||un+1

γ || ≤ ||un||. In the case of the advection equation, the energy norm
at time t = 0 is given by E0 = ||u||2 = 〈u, u〉. Taking the norm on both sides of eq. (7)
and using dn =

∑s
i=1 bi k

n
i , we obtain

||u1
γ || = ||u0 + γ∆td0|| (8)

= E0 + γ2∆t2
〈
d0,d0

〉
+ 2γ∆t

〈
u0,d0

〉
(9)

Since the choice of γ ensures energy conservation, the term ||u1
γ ||−E0 equals zero, from

which we obtain an express1986numericalion for γ as

γn∆t = −2 〈un,dn〉
〈dn,dn〉

(10)

Ranocha et al [12] note that a root finding algorithm is necessary in order to calculate
γ in lieu of using a closed form solution as noted above. The implementation of the RRK
methods in this present work does not include a root finding algorithm, and is intended to
be added in the future.
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The combination of the structure-preserving Mimetic spatial discretization method with
the energy-preserving RRK temporal scheme is well suited for problems such as hyperbolic
PDE’s, where numerical energy conservation is necessary.

6 Implementation in Matlab

The advection equation was solved on a one dimensional grid x ∈ [−5, 5] and a = 1, with
a Gaussian initial condition

u(x, 0) =
1√
2πσ

exp

(
−(x− µ)2

2σ

)
, µ = 0, σ = 0.15 (11)

Table (1) shows the convergence rates calculated at time t = 1s, with the maximum
error norm calculated as the difference between the exact and numerical solutions. The
fourth and sixth order Mimetic schemes were compared with those of Wicker & Skamarock’s
[13] flux discretization schemes. Both the Mimetic and the finite difference methods achieve
the desired order of accuracy, with the Mimetic discretization achieving a slightly lower
error norm.

The time integration was performed using three different schemes:

• fourth order Mimetic & third order Runge Kutta (legends MIM4-RK3 & MIM4-
RRK3),

• fourth order Mimetic & Runge Kutta (legends MIM4-RK4 & MIM4-RRK4),

• sixth order Mimetic & Runge Kutta (legends MIM6-RK6 & MIM6-RRK6).

RK3 refers to the third order scheme of Heun, RK4 refers to the traditional RK method,
and RK6 refers to the sixth order Verner’s method. Figure (2) shows the energy evolution
for the standard versus the Relaxation RK schemes. The Mimetic-RRK schemes preserve
numerical energy to numeric precision.

Additional examples illustrating the Mimetic-RRK schemes for the 1D wave equation,
and the non-linear inviscid Burgers’ equation are also available in https://github.com/

asrinivasan0709/ICOSAHOM2021.
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Table 1: Example 1, Order of accuracy

Type N ∆h RK - error RRK - error RK - order RRK - order

WIC4 100 0.1000 0.0026 0.0026
200 0.0500 1.7536e-04 1.7443e-04 3.898 3.889
400 0.0250 1.1074e-05 1.1043e-05 3.985 3.981
800 0.0125 6.9471e-07 6.9374e-07 3.995 3.993
1600 0.0063 4.3451e-08 4.3421e-08 3.999 3.998

MIM4 100 0.1000 0.0024 0.0023
200 0.0500 1.5358e-04 1.5257e-04 3.941 3.934
400 0.0250 9.7021e-06 9.6707e-06 3.985 3.98
800 0.0125 6.0791e-07 6.0696e-07 3.996 3.994
1600 0.0063 3.8021e-08 3.7991e-08 3.999 3.998

WIC6 100 0.1000 1.7976e-04 1.7975e-04
200 0.0500 3.0320e-06 3.0319e-06 5.89 5.89
400 0.0250 4.8326e-08 4.8326e-08 5.971 5.971
800 0.0125 7.6017e-10 7.6016e-10 5.99 5.99
1600 0.0063 1.1891e-11 1.1894e-11 5.998 5.998

MIM6 100 0.1000 1.3871e-04 1.3870e-04
200 0.0500 2.3713e-06 2.3712e-06 5.87 5.87
400 0.0250 3.7856e-08 3.7855e-08 5.969 5.969
800 0.0125 5.9390e-10 5.9393e-10 5.994 5.994
1600 0.0063 9.3284e-12 9.4157e-12 5.992 5.979
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Figure 2: Energy evolution using the standard RK methods (left) and the Relaxation
RK methods (right). The Mimetic-RRK methods preserve energy to machine numeric
precision.

7 Conclusion

This report has summarized the implementation of the Mimetic Relaxation Runge Kutta
methods for hyperbolic PDE’s. The Matlab codes that accompany this report have been
posted on github. The Mimetic RRK schemes ensure conservation of numerical energy at
each step of integration. Suggestions for future work can be outlined as follows:

• The current work has only considered explicit RK schemes. The performance of the
Mimetic schemes with implicit RK methods will need to be investigated. This will
provide a comparison of the computational cost between an explicit method that
requires calculations for γ, versus that of an implicit scheme.

• The comparison of the Mimetic RRK schemes with those of area-preserving symplec-
tic methods require a more in-depth investigation.

• The Rosenbrock temporal schemes [14] that exist in the literature aim to avoid im-
plicit calculations by introducing the Jacobian calculations at each time step. It will
be worthwhile to investigate the possibility of Mimetic-Rosenbrock methods in an
attempt to understand the energy-preserving nature of such discretization schemes.

• The extension of the Mimetic-RRK methods for parabolic equations and other non-
linear problems also remains to be investigated. Once again, the aim here will be to
understand the computational cost versus benefits of these schemes.
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