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Abstract— In recent times, text mining, topic modeling, 

and sentiment analysis have gathered huge attention due to 

the vast availability of data in social media, news articles, 

and other digital sources. Even though digitized, articles are 

typically unstructured and organized based on date and 

time rather than subject. Collecting a month data would 

result in extracting thousands of articles which leads to a 

big data challenge. In this paper, we present data 

extraction, preprocessing, normalization, feature 

engineering, sentiment analysis, natural language 

processing (NLP), LSTM to discover the relation between 

the news articles and EUR-USD exchange rate 

 

I. INTRODUCTION 

The amount of data we produce every day is truly mind-

boggling. There are 2.5 quintillion bytes of data created each 

day at our current pace, but that pace is only accelerating with 

the growth of the Internet of Things (IoT). Over the last two 

years alone 90 percent of the data in the world was generated. 

Data and information or knowledge are often used 

interchangeably, however data becomes information when it is 

viewed in context or in post-analysis. While the concept of data 

is commonly associated with scientific research, data is 

collected by a huge range of organizations and institutions, 

including businesses (e.g., sales data, revenue, profits, stock 

price), governments (e.g., crime rates, unemployment rates, 

literacy rates) and non-governmental organizations. 

 

Information published in the news articles are reliable 

source and helps forecast currency rate. News articles provides 

us a new dimension for predicting the currency rate. Sentiment 

from the news articles becomes a key factor in predicting the 

rise and fall of the currency rate. It is important to analyse the 

information as soon as possible so it can help predict the 

currency rate. The task of analysing the vast number of articles 

manually and predicting the currency rate is very tedious. This 

means that an automated system is needed to extract, process, 

structure and predict. News articles are extracted from websites, 

processed to a structural format and stored for prediction. Not 

every article talks about our topic related matters. So, a filter is 

placed after data extraction to neglect articles which are not 

related to the currency rate. 

 

The time series prediction problem involves textual data so, 

several pre-processing steps are used in these kinds of works. 

Natural Language Processing (NLP) tool kits are used of these 

purposes. Sentiment analysis is performed on these cleaned and 

processed textual data. Finally, in order to train the AI model, 

historical currency rate is also used along with the sentiment of 

each article to forecast the EUR-USD currency rate. 

 

Fig 1. System Architecture 

 

In this paper, we discuss on how the articles are extracted, 

the techniques used for pre-processing, visualizing, extracting 

features from the news articles and develop a model training 

and testing with historical currency rate and features from the 

news article to forecast the currency rate. The model is 

evaluated in three levels. i.e. a base line model such as 

Autoregression Integrated Moving Average (ARIMA) which is 

a time series forecasting model with historical currency rate as 

input. Next, a Long Short-Term Memory (LSTM) model with 

historical currency rate without sentiment score and finally, a 

LSTM model with historical currency rate and sentiment score. 

 

II. LITERATURE REVIEW 

 

(Gholampour & van Wincoop, 2019) has discussed on how 

data from twitter can be used to predict the currency rate 



between euro and dollars. Their research uses the data from vast 

financial tweet accounts and rate them positive, negative or 

neutral based on the underlying sentiment. Word embedding 

technique has been used to prepare a large list of possible words 

that can be in the tweets and categorized them into positive, 

negative and neutral. This type of embedded set preparation can 

be made possible using n-gram approach where n denotes the 

number of words in 1 set. N-gram provides the list of most 

frequently co-occurring words from the entire sample of data. 

(Gholampour & van Wincoop, 2019) approaches the problem, 

like a supervised machine learning technique where the 

prepared financial lexicons with labels are compared with the 

tweets and decide on the probability along with the google 

machine learning tool. Then, the system predicts whether it will 

a bullish or a bearish day. i.e.,  bullish denotes the rates will go 

high, bearish meaning the rates will go down. The author also 

talks about the bad actors, where an actor believes a currency 

will appreciate in a medium run, post negative tweets to make 

other to sell it. But our model uses news article where such 

possibility is very low. This model is validated with mean 

squared error metrics.  

 

(Huang, Lehkonen, Pukthuanthong, & Zhou, 2018) research 

involves predicting not only the currency rate, but also stocks 

bonds, commodities and housing. This paper uses data from 

news articles and social media and evaluates the sentiment 

underneath. Principal component analysis(PCA) and Partial 

least squares(PLS) based sentiment index has been used for 

prediction. The evaluation is based on the returns from 

individual market.  

 

(Mohan, Mullapudi, Sammeta, Vijayvergia, & Anastasiu, 

2019) research work is on predicting stock based on the news 

article. Authors have filtered the data using relevance of the 

company, which is being monitored, but have not considered 

cleaning the data samples by removing non-lexical terms and 

other stop words. The authors use autoregression models like 

ARIMA and neutral network RNN for prediction. These 

models are evulated based on Mean absolute percentage error 

(MAPE).  

III. OUR APPROACH  

A. Overview 

 

A web crawler & scrapper is built with python library 

scrapy to collect news articles from the web. These news 

articles are filtered for articles to have only articles related to 

currency rate, which is accomplished using NLTK. From this 

collection of articles, preprocessing is carried out to remove the 

stop words and custom words are added which doesn’t provide 

any useful information or being repetitive in every article. The 

polarity of each article is calculated and classified as positive 

and negative. The number of positive and negative articles are 

calculated and grouped for each day. This count is used as the 

input for the model along with the historical currency rate.  

 

The sentiment analysis is carried out using TextBlob and 

Vader. A segment of previous currency rate is used as the input, 

where the segment size is defined a parameter called window 

size. For example, the currency rate of a week or two is used as 

input along with the positive and negative sentiment count. The 

model is developed in LSTM architecture – a special type of 

Recurrent Neural Network (RNN). 

 

B. Data Collection 

 

News articles are extracted from the web using scrapy 

sitemap spider, a python library. For example, let us see the 

implementation for Reuters. Articles of Reuters are indexed 

daily, and the index link is available in the robot txt file of the 

site. A web-crawler is developed to generate the sitemap links 

according to the pattern of the index. The sitemap links 

generated provides an XML output which has the list of URLs 

of the articles published on that day. Next, the crawler fetches 

each article and scraps the address, the title of the article, actual 

content and the time of publishing. It ignores the rest, which is 

of the repeated header, footer, and advertainments. This process 

of eliminating the redundant contents is achieved using the 

class name of HTML elements. The class name 

“ArticleHeader_headline” fetches the title, 

“StandardArticleBody_body” fetches the body and 

“ArticleHeader_date” fetches the time of publishing. Similarly, 

data extractors can be built for other web sites by understanding 

the webpage structure of different sites. 

 

Extraction of news articles from a web site takes 

humongous amount of time. For this research, 6 months of news 

articles which sums of to 94726 is collected, which has a daily 

average around 526. These articles are then filtered to get the 

relevant news articles and rest are ignored. The exchange rate 

for EUR USD is also collected using pandas data reader API 

for about the same period as the news articles 

 

C. Data Preprocessing 

 

The raw data is cleaned from special characters and 

numbers by using a regular expression and tokenized. 

Tokenization is the step by which articles are split into an array 

of words called tokens. A larger chunk of the article is 

tokenized into words and token of each word called a corpus. 

Tokenization is also referred to as text segmentation or lexical 

analysis. The raw data consists of a lot of noise like the 

commonly used words such as “the”, “a”, “an”, “in”, symbols 

and numbers. These are useless data and contributes to 

inefficient topic modeling. NLTK library provides the list of 

stop words which are matched and removed. Then, with the 

cleaned data, EUR-USD currency rate related keywords are 

matched and the articles which have at least a word from the 

keywords are selected for the dataset. Below are the set of 

keywords used. 

 



keywords = ['usd', 'us dollar', 'us dollars', 'eurusd', 'eur/usd', 

'usdeur', 'usd/eur', 'eur', 'euro', 'european dollar', 'european 

dollars']  

 

 
Fig 2. Word cloud of data before filtering 

 

 

Even though we have removed stop words, there are some 

words that are not in the stop word vocabulary, but nevertheless 

appear in a large portion of our documents. Similarly, some 

words have a very low count in the corpus. These words could 

be anomalies that will not contribute to our model and removing 

them will speed up and improve our model. News articles will 

usually have days and months in their content, which needs to 

be removed as they don’t add any value. Along with those few 

more custom stop-words have been added to the stop words list.  

 

custom = ["company", "said", "trump", "donald", "white", 

"house", "also", "would", "president", "including", 

"democrates"] 

 

 

 
Fig 3. Word cloud of data after filtering 

 

 

Normalization makes the data to be on the same space 

and allows processing to proceed uniformly. Stemming and 

lemmatization are the ways to extract the root word for the 

given word. The difference between these two methods is 

stemming cuts of the given word aggressively which may not 

be an actual word, compared to lemmatization. Stemming 

eliminates the affixes (suffixed, prefixes, infixes, circumfixes) 

from a word to obtain a word stem. Lemmatization capture 

canonical forms based on a word's lemma. e.g. better → good. 

 

D. Sentiment Analysis 

 

Each article must be classified as positive or negative. To 

do this, TextBlob sentiment analyzer is used. The TextBlob is 

a huge collection of data, where each word in the English 

language is given a score. This score helps in finding the 

polarity and subjectivity of each statement. The document term 

matrix approach is not used here as the order matters. Eg, 

“happy” is positive and “not happy” is negative. The text blob 

returns a score for each article/input where the polarity ranges 

from -1 to 1 and subjectivity from 0 to 1.  

 

 
Fig 4. Positive and Negative samples plotted in terms of their 

polarity and subjectivity. 

 

From literature and research, we could find that the sentence 

which has polarity greater than zero are positive and lesser than 

zero are negative. Some sentiment analyzers like “vader” can 

be used to classify data into positive, negative and neutral. 

Since neutral articles does contribute much in decision making, 

only TextBlob is used and vader is ignored. 

 

 

 
Fig 5. Illustrating the no. of positive and negative articles for 

a month 

 

In the above, count of positive and negative articles is 

stacked up. We could also see that the articles relating to 

currency rates are nil or very few during the weekends, which 

indicates the filtering based on keywords is promising. 

 

30273430
21

0 7

41
25

36
54

36

0 0

3135353430

1 0

28
4039

5150

3 0

3131
22

911
713

20

0
2

9

9
7

9

8

0 0

5
149 612

0 0

6

3
16

1711

0 0

8 8
13

0

20

40

60

80

Positive Negative



E. ARIMA Design 

 

ARIMA is one of the most famous models used for time 

series analysis and forecasting. It uses information from the past 

to predict the future values. It is univariant, i.e., it depends only 

on one variable designed to analyze probability and 

stochasticity of the variable and is purely based on historical 

data without any economic theory. This model requires the 

input data to be stationary, where it should exhibit mean 

reversions, should have finite and time invariant variance. The 

data should depict/represent finite order or convergent 

autoregression approach. The only hyper parameter for this 

model is, p – the lag order, d – the degree of difference, q – the 

order of moving average. These are determined by 

autocorrelation function and partial autocorrelation function. 

 

F. LSTM Design 

 
Fig 6. Architecture of LSTM, adapted from (Hochreiter & 

Schmidhuber, 1997) 

 

LSTM overcomes the vanishing gradient problem. It has 

three gates; the forget gate depending on ft ,the input gate 

depending on it  and the output gate depending on ot. These are 

sigmoid neural layers with point wise multiplication operation. 

The value of each gate ranges from 0 to 1, decides the level of 

information to passthrough them. This provides a control 

system to enable information from the past, control information 

from the input and likewise for output. The forget gate 

controlled by function of current state and previous state along 

weights and passed to a sigmoid function. And the input gate is  

controlled like forget gate with an addition of tanh to current 

and previous state. Finally, the output gate is controlled by the 

tanh function of forget gate and input gate with sigmoid of 

current and previous state. 

 

G. Implementation 

 

The currency rate is decomposed into observed, seasonal, 

trend and residual. Observed is the actual opening/closing 

currency rate for each day. Seasonal, trend and residual add up 

to observed value.  

 
Fig. 7. Decomposition of the currency rate 

 

The p, d and q value for ARIMA is chose from the 

autocorrelation factor where p can be in the range of 1-10 and 

d in range of 0-2 and q in range of 0-5. The data setup for 

ARIMA is historical data(residual). 

 
Fig 8. Partial Autocorrelation – relationship between two 

steps. 

 

Three layers of LSTM has been used in the model and 

different hyper parameters such as the learning rate, dropout, 

activation function, optimization, bias, epoch and batch size are 

chosen to determine the performance of each model. The data 

setup for LSTM has two approach; without sentiment data and 

with sentiment data. 

 

IV. EXPERIMENTS 

A. Evaluation 

 

The data is split into training, validation and testing. 

Training set consists of dataset expect the forecast data, which 

in our case is two weeks. Each sample of data consist a X of 

window size and Y of forecast size. For model with sentiment 

data, the positive and negative percent of that window size is 

stacked up and the end of X. 

 



X Y 

 

data of window size data of forecast size 
 

   

X Sentiment Data Y 

data of window size Postive & Negative percent 
for data of window size 

data of 
forecast 

Table 1 represents the data setup without sentiment data and table 2 

represents the data setup with sentiment data. 

 

Above table illustrates the dataset for with sentiment and 

without sentiment data for LSTM. Models are compared to each 

other with different hyper parameters and evaluated based on 

mean squared error(MSE). 

 

B. Methods 

1. Approach A. 

 

Three ARIMA models are setup. 1. next day forecast 

for 2 weeks with observed values. 2. next day forecast for 2 

weeks with residual values. 3. 2 weeks forecast with residual 

values. Best hyper parameters are chosen based on the lowest 

mean squared error. The data setup for this approach is where 

input is ratet , ratet-1 , ratet-2 … and output is ratet+1 

 

2. Approach B. 

 

LSTM model to predict currency rate ratet+1 , ratet+2 , 

ratet+3 …ratet+f  with ratet , ratet-1 , ratet-2 …ratet-w where f is the 

forecast size w is the window size. A sliding window technique 

is used. Data normalization is applied to get the currency rate 

to the same scale. Data is transformed to range from -1 to 1. 

Training, validation and testing are carried out in residual 

values with different hyper parameters. Along with Adam 

optimizer, Stochastic gradient descent(SDG) optimizer is also 

used to experiment as the residual values are randomly 

changing. An inverse scalar transformation is applied to the 

predicted values. The predicted residual forecast is adding with 

the seasonal and trend and evaluated against the observed 

values. 

 

3. Approach C. 

 

In this approach, a multivariant model is created with 

the currency rate and positive negative sentiment percent. The 

input data has ratet , ratet-1 , ratet-2 …ratet-w, positive percent, 

negative percent for that window and output ratet+1 , ratet+2 , 

ratet+3 …ratet+f. Hyper parameter configuration and evaluation 

is like approach B. 

 

C. Results 

 

In this section, we discuss on the result obtaining on 

experimenting with 3 approaches briefed in the earlier section 

with different hyper parameters. The results are compared and 

evaluated based on mean squared error. Models results are 

different with every run, so experiments are carried out multiple  

times and best results of each model is considered for 

evaluation. 

 

1. ARIMA (Approach A) 

 
Fig 9. Results from ARIMA Model. 

 

Fig 9(a) represents the residual data decomposed from the 6 

months currency rate. ARIMA model 1(fig 9-b) shows the 

forecast for two weeks where the prediction is basically for next 

day and iterated for two weeks. This model uses the observed 

values as the input. ARIMA model 2(fig 9-c) uses the residual 

data as input and the forecast is for two weeks with next day 

prediction. ARIMA model 3(fig 9-d) uses the residual data as 

input and forecasts for 2 weeks. 

 

 
Fig 10. ARIMA model comparison 

 

MSE is in the range of 1e-6 so they are scaled by 

multiplying with 1e6 to intepret better. From model 1 and 

model 3, we could see that as we increase the no. of forecast 

days, the mse increases. The mse for next day prediction will 

be lesser than two weeks forecast. ARIMA model best suits 

stationary data. 

 

2. LSTM (Approach B & C) 

 

Approach B & C are tested side by side with different hyper 

parameters for LSTM. 
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Param Configuration I. 

 
neurons = 50 

Optimizer = SDG 

learning_rate = 0.003 

dropout = 0.2 

activation = 'relu' 

n_output = forecast 

return_seq = True 

batch_size = 10 

n_epochs = 50 

 

 
Fig 11. Training loss 

 

  

 
Fig 12. Two weeks forecast without sentiment data 

 

 

 
Fig 13. Two weeks forecast with sentiment data 

 

The mean squared error is scaled to the same range as 

in ARIMA model. This model uses stochastic gradient descent 

for optimization and is better than ARIMA model. 

 
Param Configuration II. 

 
neurons = 200 

Optimizer = SDG & ADAM 

learning_rate = 0.01 

dropout = 0.2 

activation = 'relu' 

n_output = forecast 

return_seq = True 

batch_size = 10 

n_epochs = 100 

 

 

Fig 13. Plots for Param configuration II, with comparison of 

SDG and Adam optimizer.  

 

From the loss plot, we could incur that the training is 

converge smooth with Adam optimizer and it doesn’t stabilize. 

This creates a overfitting problem. The MSE model with 

sentiment data and without sentiment data is so close while 

using SDG as the optimizer but SDG is far better than Adam 

optimizer.  

 

Param Configuration III. 

 
neurons = 100 

Optimizer = SDG 

learning_rate = 0.001 

dropout = 0.2 

activation = 'tanh' 

 

 

 

 



n_output = forecast 

return_seq = True 

batch_size = 10 

n_epochs = 100 

 

 
Fig 14. Forecast without sentiment data 

 

 
Fig 15. Forecast with sentiment data 

 

The performance of this model is like the model with param 

configuration I. and increasing the number of neurons and 

epoch could result as same as model with param configuration 

II. The next difference in the activation function. We could also 

see that the MSE of model without sentiment is better than the 

model with sentiment.  

 

V. CONCLUSION 

 

In this research, we handled a time series problem by 

extracting news articles from websites, filtered, pre-processed, 

performed sentiment analysis and created a model to predict the 

currency rate. From the results, LSTM performs better than 

ARIMA model and the comparison between model with 

sentiment data and without sentiment shows connections 

between the sentiment of the news articles with EUR-USD 

currency rate. 

 

 
Fig 16. Comparison of LSTM models 

 

From the comparison chart, we could see that there is large 

difference in the error in model 1 and 2 between using and not 

using sentiment data. This shows a strong connection between 

the textual news information available in the internet and the 

currency rate. 

 

VI. FUTURE WORK 

 

Even though LSTM performs well when compared to auto 

regression models. LSTM models have over fitting and under 

fitting problem. To overcome this problem, a better deep 

learning model should be explored. Executing the built script to 

scrap and store news articles and perform predicting is a tedious 

process, so in future this can be automated, and the model is 

continuously trained, validated and tested with new data.  
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