

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2020

Sentiment analysis on news articles to forecast
EUR-USD exchange rates

 Gopinath Dayalan and Xiaobai Liu

June 29, 2020

Publication Number: CSRCR2020-03

Sentiment analysis on news articles to forecast

EUR-USD exchange rates
Gopinath Dayalan1, Xiaobai Liu2

Computational Science Research Center

San Diego State University
1gdayalan1814@sdsu.edu

2xiaobai.liu@sdsu.edu

Abstract— In recent times, text mining, topic modeling,

and sentiment analysis have gathered huge attention due to

the vast availability of data in social media, news articles,

and other digital sources. Even though digitized, articles are

typically unstructured and organized based on date and

time rather than subject. Collecting a month data would

result in extracting thousands of articles which leads to a

big data challenge. In this paper, we present data

extraction, preprocessing, normalization, feature

engineering, sentiment analysis, natural language

processing (NLP), LSTM to discover the relation between

the news articles and EUR-USD exchange rate

I. INTRODUCTION

The amount of data we produce every day is truly mind-

boggling. There are 2.5 quintillion bytes of data created each

day at our current pace, but that pace is only accelerating with

the growth of the Internet of Things (IoT). Over the last two

years alone 90 percent of the data in the world was generated.

Data and information or knowledge are often used

interchangeably, however data becomes information when it is

viewed in context or in post-analysis. While the concept of data

is commonly associated with scientific research, data is

collected by a huge range of organizations and institutions,

including businesses (e.g., sales data, revenue, profits, stock

price), governments (e.g., crime rates, unemployment rates,

literacy rates) and non-governmental organizations.

Information published in the news articles are reliable

source and helps forecast currency rate. News articles provides

us a new dimension for predicting the currency rate. Sentiment

from the news articles becomes a key factor in predicting the

rise and fall of the currency rate. It is important to analyse the

information as soon as possible so it can help predict the

currency rate. The task of analysing the vast number of articles

manually and predicting the currency rate is very tedious. This

means that an automated system is needed to extract, process,

structure and predict. News articles are extracted from websites,

processed to a structural format and stored for prediction. Not

every article talks about our topic related matters. So, a filter is

placed after data extraction to neglect articles which are not

related to the currency rate.

The time series prediction problem involves textual data so,

several pre-processing steps are used in these kinds of works.

Natural Language Processing (NLP) tool kits are used of these

purposes. Sentiment analysis is performed on these cleaned and

processed textual data. Finally, in order to train the AI model,

historical currency rate is also used along with the sentiment of

each article to forecast the EUR-USD currency rate.

Fig 1. System Architecture

In this paper, we discuss on how the articles are extracted,

the techniques used for pre-processing, visualizing, extracting

features from the news articles and develop a model training

and testing with historical currency rate and features from the

news article to forecast the currency rate. The model is

evaluated in three levels. i.e. a base line model such as

Autoregression Integrated Moving Average (ARIMA) which is

a time series forecasting model with historical currency rate as

input. Next, a Long Short-Term Memory (LSTM) model with

historical currency rate without sentiment score and finally, a

LSTM model with historical currency rate and sentiment score.

II. LITERATURE REVIEW

(Gholampour & van Wincoop, 2019) has discussed on how

data from twitter can be used to predict the currency rate

between euro and dollars. Their research uses the data from vast

financial tweet accounts and rate them positive, negative or

neutral based on the underlying sentiment. Word embedding

technique has been used to prepare a large list of possible words

that can be in the tweets and categorized them into positive,

negative and neutral. This type of embedded set preparation can

be made possible using n-gram approach where n denotes the

number of words in 1 set. N-gram provides the list of most

frequently co-occurring words from the entire sample of data.

(Gholampour & van Wincoop, 2019) approaches the problem,

like a supervised machine learning technique where the

prepared financial lexicons with labels are compared with the

tweets and decide on the probability along with the google

machine learning tool. Then, the system predicts whether it will

a bullish or a bearish day. i.e., bullish denotes the rates will go

high, bearish meaning the rates will go down. The author also

talks about the bad actors, where an actor believes a currency

will appreciate in a medium run, post negative tweets to make

other to sell it. But our model uses news article where such

possibility is very low. This model is validated with mean

squared error metrics.

(Huang, Lehkonen, Pukthuanthong, & Zhou, 2018) research

involves predicting not only the currency rate, but also stocks

bonds, commodities and housing. This paper uses data from

news articles and social media and evaluates the sentiment

underneath. Principal component analysis(PCA) and Partial

least squares(PLS) based sentiment index has been used for

prediction. The evaluation is based on the returns from

individual market.

(Mohan, Mullapudi, Sammeta, Vijayvergia, & Anastasiu,

2019) research work is on predicting stock based on the news

article. Authors have filtered the data using relevance of the

company, which is being monitored, but have not considered

cleaning the data samples by removing non-lexical terms and

other stop words. The authors use autoregression models like

ARIMA and neutral network RNN for prediction. These

models are evulated based on Mean absolute percentage error

(MAPE).

III. OUR APPROACH

A. Overview

A web crawler & scrapper is built with python library

scrapy to collect news articles from the web. These news

articles are filtered for articles to have only articles related to

currency rate, which is accomplished using NLTK. From this

collection of articles, preprocessing is carried out to remove the

stop words and custom words are added which doesn’t provide

any useful information or being repetitive in every article. The

polarity of each article is calculated and classified as positive

and negative. The number of positive and negative articles are

calculated and grouped for each day. This count is used as the

input for the model along with the historical currency rate.

The sentiment analysis is carried out using TextBlob and

Vader. A segment of previous currency rate is used as the input,

where the segment size is defined a parameter called window

size. For example, the currency rate of a week or two is used as

input along with the positive and negative sentiment count. The

model is developed in LSTM architecture – a special type of

Recurrent Neural Network (RNN).

B. Data Collection

News articles are extracted from the web using scrapy

sitemap spider, a python library. For example, let us see the

implementation for Reuters. Articles of Reuters are indexed

daily, and the index link is available in the robot txt file of the

site. A web-crawler is developed to generate the sitemap links

according to the pattern of the index. The sitemap links

generated provides an XML output which has the list of URLs

of the articles published on that day. Next, the crawler fetches

each article and scraps the address, the title of the article, actual

content and the time of publishing. It ignores the rest, which is

of the repeated header, footer, and advertainments. This process

of eliminating the redundant contents is achieved using the

class name of HTML elements. The class name

“ArticleHeader_headline” fetches the title,

“StandardArticleBody_body” fetches the body and

“ArticleHeader_date” fetches the time of publishing. Similarly,

data extractors can be built for other web sites by understanding

the webpage structure of different sites.

Extraction of news articles from a web site takes

humongous amount of time. For this research, 6 months of news

articles which sums of to 94726 is collected, which has a daily

average around 526. These articles are then filtered to get the

relevant news articles and rest are ignored. The exchange rate

for EUR USD is also collected using pandas data reader API

for about the same period as the news articles

C. Data Preprocessing

The raw data is cleaned from special characters and

numbers by using a regular expression and tokenized.

Tokenization is the step by which articles are split into an array

of words called tokens. A larger chunk of the article is

tokenized into words and token of each word called a corpus.

Tokenization is also referred to as text segmentation or lexical

analysis. The raw data consists of a lot of noise like the

commonly used words such as “the”, “a”, “an”, “in”, symbols

and numbers. These are useless data and contributes to

inefficient topic modeling. NLTK library provides the list of

stop words which are matched and removed. Then, with the

cleaned data, EUR-USD currency rate related keywords are

matched and the articles which have at least a word from the

keywords are selected for the dataset. Below are the set of

keywords used.

keywords = ['usd', 'us dollar', 'us dollars', 'eurusd', 'eur/usd',

'usdeur', 'usd/eur', 'eur', 'euro', 'european dollar', 'european

dollars']

Fig 2. Word cloud of data before filtering

Even though we have removed stop words, there are some

words that are not in the stop word vocabulary, but nevertheless

appear in a large portion of our documents. Similarly, some

words have a very low count in the corpus. These words could

be anomalies that will not contribute to our model and removing

them will speed up and improve our model. News articles will

usually have days and months in their content, which needs to

be removed as they don’t add any value. Along with those few

more custom stop-words have been added to the stop words list.

custom = ["company", "said", "trump", "donald", "white",

"house", "also", "would", "president", "including",

"democrates"]

Fig 3. Word cloud of data after filtering

Normalization makes the data to be on the same space

and allows processing to proceed uniformly. Stemming and

lemmatization are the ways to extract the root word for the

given word. The difference between these two methods is

stemming cuts of the given word aggressively which may not

be an actual word, compared to lemmatization. Stemming

eliminates the affixes (suffixed, prefixes, infixes, circumfixes)

from a word to obtain a word stem. Lemmatization capture

canonical forms based on a word's lemma. e.g. better → good.

D. Sentiment Analysis

Each article must be classified as positive or negative. To

do this, TextBlob sentiment analyzer is used. The TextBlob is

a huge collection of data, where each word in the English

language is given a score. This score helps in finding the

polarity and subjectivity of each statement. The document term

matrix approach is not used here as the order matters. Eg,

“happy” is positive and “not happy” is negative. The text blob

returns a score for each article/input where the polarity ranges

from -1 to 1 and subjectivity from 0 to 1.

Fig 4. Positive and Negative samples plotted in terms of their

polarity and subjectivity.

From literature and research, we could find that the sentence

which has polarity greater than zero are positive and lesser than

zero are negative. Some sentiment analyzers like “vader” can

be used to classify data into positive, negative and neutral.

Since neutral articles does contribute much in decision making,

only TextBlob is used and vader is ignored.

Fig 5. Illustrating the no. of positive and negative articles for

a month

In the above, count of positive and negative articles is

stacked up. We could also see that the articles relating to

currency rates are nil or very few during the weekends, which

indicates the filtering based on keywords is promising.

30273430
21

0 7

41
25

36
54

36

0 0

3135353430

1 0

28
4039

5150

3 0

3131
22

911
713

20

0
2

9

9
7

9

8

0 0

5
149 612

0 0

6

3
16

1711

0 0

8 8
13

0

20

40

60

80

Positive Negative

E. ARIMA Design

ARIMA is one of the most famous models used for time

series analysis and forecasting. It uses information from the past

to predict the future values. It is univariant, i.e., it depends only

on one variable designed to analyze probability and

stochasticity of the variable and is purely based on historical

data without any economic theory. This model requires the

input data to be stationary, where it should exhibit mean

reversions, should have finite and time invariant variance. The

data should depict/represent finite order or convergent

autoregression approach. The only hyper parameter for this

model is, p – the lag order, d – the degree of difference, q – the

order of moving average. These are determined by

autocorrelation function and partial autocorrelation function.

F. LSTM Design

Fig 6. Architecture of LSTM, adapted from (Hochreiter &

Schmidhuber, 1997)

LSTM overcomes the vanishing gradient problem. It has

three gates; the forget gate depending on ft ,the input gate

depending on it and the output gate depending on ot. These are

sigmoid neural layers with point wise multiplication operation.

The value of each gate ranges from 0 to 1, decides the level of

information to passthrough them. This provides a control

system to enable information from the past, control information

from the input and likewise for output. The forget gate

controlled by function of current state and previous state along

weights and passed to a sigmoid function. And the input gate is

controlled like forget gate with an addition of tanh to current

and previous state. Finally, the output gate is controlled by the

tanh function of forget gate and input gate with sigmoid of

current and previous state.

G. Implementation

The currency rate is decomposed into observed, seasonal,

trend and residual. Observed is the actual opening/closing

currency rate for each day. Seasonal, trend and residual add up

to observed value.

Fig. 7. Decomposition of the currency rate

The p, d and q value for ARIMA is chose from the

autocorrelation factor where p can be in the range of 1-10 and

d in range of 0-2 and q in range of 0-5. The data setup for

ARIMA is historical data(residual).

Fig 8. Partial Autocorrelation – relationship between two

steps.

Three layers of LSTM has been used in the model and

different hyper parameters such as the learning rate, dropout,

activation function, optimization, bias, epoch and batch size are

chosen to determine the performance of each model. The data

setup for LSTM has two approach; without sentiment data and

with sentiment data.

IV. EXPERIMENTS

A. Evaluation

The data is split into training, validation and testing.

Training set consists of dataset expect the forecast data, which

in our case is two weeks. Each sample of data consist a X of

window size and Y of forecast size. For model with sentiment

data, the positive and negative percent of that window size is

stacked up and the end of X.

X Y

data of window size data of forecast size

X Sentiment Data Y

data of window size Postive & Negative percent
for data of window size

data of
forecast

Table 1 represents the data setup without sentiment data and table 2

represents the data setup with sentiment data.

Above table illustrates the dataset for with sentiment and

without sentiment data for LSTM. Models are compared to each

other with different hyper parameters and evaluated based on

mean squared error(MSE).

B. Methods

1. Approach A.

Three ARIMA models are setup. 1. next day forecast

for 2 weeks with observed values. 2. next day forecast for 2

weeks with residual values. 3. 2 weeks forecast with residual

values. Best hyper parameters are chosen based on the lowest

mean squared error. The data setup for this approach is where

input is ratet , ratet-1 , ratet-2 … and output is ratet+1

2. Approach B.

LSTM model to predict currency rate ratet+1 , ratet+2 ,

ratet+3 …ratet+f with ratet , ratet-1 , ratet-2 …ratet-w where f is the

forecast size w is the window size. A sliding window technique

is used. Data normalization is applied to get the currency rate

to the same scale. Data is transformed to range from -1 to 1.

Training, validation and testing are carried out in residual

values with different hyper parameters. Along with Adam

optimizer, Stochastic gradient descent(SDG) optimizer is also

used to experiment as the residual values are randomly

changing. An inverse scalar transformation is applied to the

predicted values. The predicted residual forecast is adding with

the seasonal and trend and evaluated against the observed

values.

3. Approach C.

In this approach, a multivariant model is created with

the currency rate and positive negative sentiment percent. The

input data has ratet , ratet-1 , ratet-2 …ratet-w, positive percent,

negative percent for that window and output ratet+1 , ratet+2 ,

ratet+3 …ratet+f. Hyper parameter configuration and evaluation

is like approach B.

C. Results

In this section, we discuss on the result obtaining on

experimenting with 3 approaches briefed in the earlier section

with different hyper parameters. The results are compared and

evaluated based on mean squared error. Models results are

different with every run, so experiments are carried out multiple

times and best results of each model is considered for

evaluation.

1. ARIMA (Approach A)

Fig 9. Results from ARIMA Model.

Fig 9(a) represents the residual data decomposed from the 6

months currency rate. ARIMA model 1(fig 9-b) shows the

forecast for two weeks where the prediction is basically for next

day and iterated for two weeks. This model uses the observed

values as the input. ARIMA model 2(fig 9-c) uses the residual

data as input and the forecast is for two weeks with next day

prediction. ARIMA model 3(fig 9-d) uses the residual data as

input and forecasts for 2 weeks.

Fig 10. ARIMA model comparison

MSE is in the range of 1e-6 so they are scaled by

multiplying with 1e6 to intepret better. From model 1 and

model 3, we could see that as we increase the no. of forecast

days, the mse increases. The mse for next day prediction will

be lesser than two weeks forecast. ARIMA model best suits

stationary data.

2. LSTM (Approach B & C)

Approach B & C are tested side by side with different hyper

parameters for LSTM.

0.2824419
37

0.4772734
86

0.5054062
58

0

0.1

0.2

0.3

0.4

0.5

0.6

Model 1 Model 2 Model 3

m
se

ARIMA

Param Configuration I.

neurons = 50

Optimizer = SDG

learning_rate = 0.003

dropout = 0.2

activation = 'relu'

n_output = forecast

return_seq = True

batch_size = 10

n_epochs = 50

Fig 11. Training loss

Fig 12. Two weeks forecast without sentiment data

Fig 13. Two weeks forecast with sentiment data

The mean squared error is scaled to the same range as

in ARIMA model. This model uses stochastic gradient descent

for optimization and is better than ARIMA model.

Param Configuration II.

neurons = 200

Optimizer = SDG & ADAM

learning_rate = 0.01

dropout = 0.2

activation = 'relu'

n_output = forecast

return_seq = True

batch_size = 10

n_epochs = 100

Fig 13. Plots for Param configuration II, with comparison of

SDG and Adam optimizer.

From the loss plot, we could incur that the training is

converge smooth with Adam optimizer and it doesn’t stabilize.

This creates a overfitting problem. The MSE model with

sentiment data and without sentiment data is so close while

using SDG as the optimizer but SDG is far better than Adam

optimizer.

Param Configuration III.

neurons = 100

Optimizer = SDG

learning_rate = 0.001

dropout = 0.2

activation = 'tanh'

n_output = forecast

return_seq = True

batch_size = 10

n_epochs = 100

Fig 14. Forecast without sentiment data

Fig 15. Forecast with sentiment data

The performance of this model is like the model with param

configuration I. and increasing the number of neurons and

epoch could result as same as model with param configuration

II. The next difference in the activation function. We could also

see that the MSE of model without sentiment is better than the

model with sentiment.

V. CONCLUSION

In this research, we handled a time series problem by

extracting news articles from websites, filtered, pre-processed,

performed sentiment analysis and created a model to predict the

currency rate. From the results, LSTM performs better than

ARIMA model and the comparison between model with

sentiment data and without sentiment shows connections

between the sentiment of the news articles with EUR-USD

currency rate.

Fig 16. Comparison of LSTM models

From the comparison chart, we could see that there is large

difference in the error in model 1 and 2 between using and not

using sentiment data. This shows a strong connection between

the textual news information available in the internet and the

currency rate.

VI. FUTURE WORK

Even though LSTM performs well when compared to auto

regression models. LSTM models have over fitting and under

fitting problem. To overcome this problem, a better deep

learning model should be explored. Executing the built script to

scrap and store news articles and perform predicting is a tedious

process, so in future this can be automated, and the model is

continuously trained, validated and tested with new data.

Model 1 Model 2 Model 3

without sentiment 0.059052 0.033071 0.063604

with sentiment 0.04626 0.032703 0.046888

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
SE

REFERENCES

[1] Gholampour, V., & van Wincoop, E. (2019). Exchange rate disconnect and private information: What can we learn from

Euro-Dollar tweets? Journal of International Economics, 119, 111–132. https://doi.org/10.1016/j.jinteco.2019.04.007

[2] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735

[3] Huang, D., Lehkonen, H., Pukthuanthong, K., & Zhou, G. (2018). Sentiment Across Asset Markets. SSRN Electronic

Journal. https://doi.org/10.2139/ssrn.3185140

[4] Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. C. (2019). Stock price prediction using news

sentiment analysis. Proceedings - 5th IEEE International Conference on Big Data Service and Applications,

BigDataService 2019, Workshop on Big Data in Water Resources, Environment, and Hydraulic Engineering and

Workshop on Medical, Healthcare, Using Big Data Technologies. https://doi.org/10.1109/BigDataService.2019.00035

[5] Blei, D. M. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res., 993--1022.

[6] Harshman, S. D. (1990). Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY FOR

INFORMATION SCIENCE, 391--407.

[7] Lee, D. D. (2000). Algorithms for Non-negative Matrix Factorization. MIT Press, 535--541.

[8] Loper, E. a. (2002). NLTK: The Natural Language Toolkit. Association for Computational Linguistics, 63--70. Retrieved

from NLTK: The Natural Language Toolkit.

[9] Pedregosa, F. a. (2011). Scikit-learn: Machine Learning in Python. Retrieved from Scikit-learn: Machine Learning in

Python.

[10] Peterson, E. J. (2001). {SciPy}: Open source scientific tools for {Python}. Retrieved from {SciPy}: Open source

scientific tools for {Python}.

[11] Sojka, R. {. (2010, May 22). Software Framework for Topic Modelling with Large Corpora. Retrieved from Proceedings

of the LREC 2010 Workshop on New Challenges for NLP Frameworks: http://is.muni.cz/publication/884893/en

[12] (n.d.). Thomson Reuters: Reuters News Agency.

[13] (chollet2015keras, 2015)

