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ABSTRACT

The use of low-resolution Analog-to-Digital Converters (ADCs) is a practical solution for

reducing cost and power consumption for massive Multiple-Input-Multiple-Output (MIMO)

systems. However, the severe nonlinearity of low-resolution ADCs causes significant distor-

tions in the received signals and makes the channel estimation and data detection tasks much

more challenging. This report shows that machine learning can be very useful for addressing

the channel estimation and data detection problems in MIMO systems with low-resolution

ADCs.

First, the blind detection problem in MIMO systems with low-resolution ADCs is studied.

Two learning methods, which employ a sequence of pilot symbol vectors as the initial training

data, are proposed. The first method exploits the use of a cyclic redundancy check (CRC) to

obtain more training data, which helps improve the detection accuracy. The second method

is based on the perspective that the to-be-decoded data can itself assist the learning process,

so no further training information is required except the pilot sequence. For the case of 1-bit

ADCs, a performance analysis of the vector error rate for the proposed methods is derived.

Based on the analytical results, a criterion for designing transmitted signals is also presented.

Simulation results show that the proposed learning methods outperform existing techniques

and are also more robust.

Next, Support Vector Machine (SVM) – a well-known supervised-learning technique in

machine learning – is exploited to provide efficient and robust channel estimation and data

detection in massive MIMO systems with 1-bit ADCs. First, the problem of channel estima-

tion for uncorrelated channels is formulated as a conventional SVM problem. The objective

function of this SVM problem is then modified for estimating spatially correlated channels.

Next, a two-stage detection algorithm is proposed where SVM is further exploited in the

first stage. The performance of the proposed data detection method is very close to that of

Maximum-Likelihood (ML) data detection when the channel is perfectly known. An SVM-

vii



based joint Channel Estimation and Data Detection (CE-DD) method is also proposed. The

proposed SVM-based joint CE-DD method makes use of both the to-be-decoded data vectors

and the pilot data vectors to improve the estimation and detection performance. Finally,

an extension of the proposed methods to OFDM systems with frequency-selective fading

channels is presented. Simulation results show that the proposed SVM-based methods are

efficient and robust, and also outperform existing ones.
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Chapter 1

Introduction

Wireless communications have a long history of more than 100 years dating back to the

invention of the first photophone by Alexander Graham Bell and Charles Sumner Tainter

in 1880. The viability of the photophone was significantly reduced due to its operational

requirement of sunlight and a clear line of sight between the transmitter and the receiver.

More than a decade later, in 1894, the first wireless telegraph system using radio waves

was developed by Guglielmo Marconi. However, the revolution of wireless communications

did not really begin until the 1990s when the semiconductor technology achieved advanced

developments. With millions of electronic components packed in a single chip, advanced

digital signal processing techniques and algorithms were implementable, and thus paved the

way for a booming period of different wireless systems/networks such as radio and television

broadcasting, radar communications, satellite communications, cellular networks, WiFi, and

Bluetooth.

Today, most of the wireless communications systems use electromagnetic waves as the

means of communication where the waves are transmitted and received by antenna elements.

A system equipped with multiple antennas is referred to as a “Multiple Input Multiple Out-

put” (MIMO) system. The first commercial MIMO technology was introduced by Iospan

Wireless Inc. in 2001. MIMO is now included in many wireless standards [2] thanks to
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significant benefits obtained by the two main techniques of MIMO including: (i) spatial

diversity which combats fading effects to reduce communication errors, and (ii) spatial mul-

tiplexing which exploits multipath to achieve higher data rates. The development of MIMO

systems has been moving toward the use of more and more antennas at the transceivers.

Massive MIMO technology is a result of this development and is now considered to be one of

the disruptive technologies of 5G networks [3, 4]. The first and foremost benefit of massive

MIMO is the significant increase in the spatial degrees of freedom obtained by combining

tens to hundreds of antennas at the base station. This benefit of spatial degrees of free-

dom helps improve the throughput and energy efficiency by several orders of magnitude over

conventional MIMO systems [5, 6]. However, the use of many antennas at the base station

also poses a number of problems. More specifically, a massive MIMO system requires many

Radio-Frequency (RF) chains and Analog-to-Digital Converters (ADCs) to support a mas-

sive number of antennas. This causes significant increases in hardware complexity, system

cost, and power consumption.

Recently, low-resolution ADCs have attracted significant research interest and are con-

sidered to be a promising solution for the aforementioned problems. This is due to the

simple structure and low power consumption of low-resolution ADCs. As reported in [7],

the power consumption of an ADC is exponentially proportional to its resolution. Hence,

using low-resolution ADCs can significantly reduce the power consumption of the system.

The simplest architecture involving 1-bit ADCs requires only one comparator and does not

require an Automatic Gain Control (AGC). In addition, a massive number of active antennas

and a high sampling rate demand prohibitively high bandwidth on the fronthaul link between

the baseband processing unit and the RF chains. For example, a receiver that is equipped

with 100 antennas, where each antenna employs two separate ADCs for the in-phase and

quadrature components, and where each ADC samples at a rate of 5 GS/s with 10-bit preci-

sion would produce 10 Terabit/s of data, which is much higher than the rates of the common

public radio interface in todays fiber-optical fronthaul links [8]. Thus, low-resolution ADCs
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are an attractive potential solution for the problems of hardware complexity, system cost,

and power consumption.

This report presents a study on the use of low-resolution ADCs in massive MIMO systems,

particularly on the channel estimation and data detection problems. Chapter 2 reviews the

literature on MIMO systems with low-resolution ADCs and states the research problem.

Two learning methods for MIMO blind detection with low-resolution ADCs are proposed in

Chapter 3. A performance analysis for the proposed learning methods and a criterion for

transmit signal design are also provided in Chapter 3. Next, in Chapter 4, channel estimation

and data detection methods based on Support Vector Machine (SVM) for massive MIMO

systems with 1-bit ADCs are proposed. Finally, Chapter 5 presents the conclusion of the

report.
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Chapter 2

Literature Survey and Research

Statement

2.1 Literature Survey

One of the first studies on MIMO systems with low-resolution ADCs is in [9], which shows

that the mutual information of 1-bit ADC MIMO systems degraded by only a factor of

2/π compared to systems with infinite-resolution ADCs. Since then, a lot more attention

and efforts have been spent on this research topic. The capacity in case of correlated noise

and spatially correlated channels are studied in [10] and [11], respectively. Bounds on the

high SNR capacity are derived in [12]. Capacity analysis with Channel State Information

at Transmitter (CSIT) is carried on in [13]. An approximate uplink achievable rate for

massive MIMO systems is calculated in [14] by using the Additive Quantization Noise Model

(AQNM). The achievable rate of hybrid analog-digital MIMO architectures is investigated

in [15,16]. A study of achievable rate for mixed-ADC massive MIMO systems is in [17], which

is extended for frequency-selective channels in [18]. A capacity lower bound for wideband

massive MIMO systems with a large number of channel taps is derived in [19]. Bussgang

decomposition is used for throughput analysis in [20,21].
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One major drawback of low-resolution ADCs is the significant distortions in the received

signals. The severe distortions make the channel estimation and data detection tasks much

more challenging compared to conventional systems with high-resolution ADCs. MIMO

channel estimation with low-resolution ADCs has been studied intensively in a number of pa-

pers with different scenarios, e.g., [1, 21–40]. Maximum-Likelihood (ML) and Least-Squares

(LS) 1-bit channel estimators were proposed in [1] and [22], respectively. The Bussgang

decomposition is exploited in [21] to form a Bussgang-based Minimum Mean-Squared Error

(BMMSE) 1-bit channel estimator. The work in [23] proposes a BMMSE channel estimator

for massive MIMO systems with 1-bit spatial sigma-delta ADCs in a spatially oversam-

pled array or for sectorized users. Channel estimation with temporally oversampled 1-bit

ADCs is studied in [24] and [25]. The use of spatial and temporal oversampling 1-bit ADCs

was shown to help improve the channel estimation accuracy but requires more resources

and computations due to the oversampling process. A channel estimation method based

on Support Vector Machine (SVM) with 1-bit ADCs, referred to as soft-SVM, was pre-

sented in [26]. Deep learning is applied to estimate the uplink massive MIMO channels

with mixed-resolution ADCs [27]. Angular-domain estimation for MIMO channels with 1-

bit ADCs was studied in [28–30]. Other scenarios involving spatially/temporally correlated

channels or multi-cell processing with pilot contamination were investigated in [31] and [32],

respectively. For sparse millimeter-wave MIMO channels, the ML and maximum a poste-

riori (MAP) 1-bit channel estimation problems were studied in [33] and [34], respectively.

Taking into account the sparsity of such channels, the 1-bit ADC channel estimation prob-

lem has been formulated as a compressed sensing problem in [35–37]. Several performance

bounds on the channel estimation of mmWave massive MIMO channels with 1-bit ADCs

were reported in [38]. The works in [39, 40] address the sparse channel estimation problem

in massive MIMO systems where both hybrid analog-digital processing and low-resolution

ADCs are utilized.

Data detection in MIMO systems with low-resolution ADCs has also been studied in-
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tensively in the literature, e.g., [1, 41–51]. The one-bit ML detection problem is formulated

in [1]. For large-scale systems where ML detection is impractical, the authors in [1] proposed

a so-called near-ML (nML) data detection method. The ML and nML methods are however

non-robust at high Signal-to-Noise Ratios (SNRs) when Channel State Information (CSI)

is imperfectly known. ML detection with low-resolution ADCs is studied in [41, 42], where

the ML detection problem in [41] was relaxed to a convex optimization program for it to

be solvable by low-complexity algorithms. A One-bit Sphere Decoding (OSD) technique

was proposed in [43]. However, the OSD technique requires a preprocessing stage whose

computational complexity for each channel realization is exponentially proportional to both

the number of receive and transmit antennas. The exponential computational complexity of

OSD makes it difficult to implement in large scale MIMO systems. Generalized Approximate

Message Passing (GAMP) and Bayes inference are exploited in [44] but the proposed method

is sophisticated and expensive to implement. A number of linear receivers for massive MIMO

systems with 1-bit ADCs are presented in [45] and several learning-based methods are also

proposed in [46–48]. The linear receivers in [45] are easy to implement but their performance

is often limited by an error floor. The learning-based methods in [46,47] are blind detection

methods for which CSI is not required, but they are restricted to MIMO systems with a

small number of transmit antennas and only low-dimensional constellations. Several other

data detection approaches were proposed in [48–51], but they are only applicable in systems

where either a Cyclic Redundancy Check (CRC) [48–50] or an error correcting code such as

Low-Density Parity-Check (LDPC) code [51] is available.

2.2 Research Statement

This report is concerned with the channel estimation and data detection problems in MIMO

systems with low-resolution ADCs. The primary research motivation is to show that machine

learning can be used for efficiently addressing the severe nonlinearity caused by low-resolution

6



ADCs. Blind detection in MIMO systems with low-resolution ADCs is first studied. Blind

detection here means information about the CSI is unavailable. When the CSI is unknown,

the channel is treated as a black box and learning methods can be exploited for addressing

the blind detection problem. Then, the application of SVM to the channel estimation and

data detection problems in massive MIMO systems with 1-bit ADCs is studied.

Throughout the report, we use the following notation: Upper-case and lower-case boldface

letters denote matrices and column vectors, respectively. The notation 1 is a vector where

every element is equal to one. E[·] represents expectation and P[·] is the probability of some

event. I[·] represents the indicator function, which equals 1 if the argument event is true

and equals 0 otherwise. Depending on the context, the operator | · | is used to denote the

absolute value of a real number, or the cardinality of a set. ‖ · ‖ denotes the `2-norm of a

vector. The transpose and conjugate transpose are denoted by [·]T and [·]H , respectively.

The operator mod(a, b) calculates a modulo b. The notations Var[·] and Cov[·, ·] denote the

variance and covariance, respectively. The integral Φ(a) = 1√
2π

∫ a
−∞ e

−t2/2dt is the cumulative

distribution function of the standard normal random variable. The notation <{·} and ={·}

respectively denotes the real and imaginary parts of the complex argument. If <{·}, ={·}

or Φ(·) are applied to a matrix or vector, they are applied separately to every element of

that matrix or vector. R and C denote the set of real and complex numbers, respectively,

and j is the unit imaginary number satisfying j2 = −1. N (·, ·) and CN (·, ·) represent

the real and the complex normal distributions respectively, where the first argument is the

mean and the second argument is the variance or the covariance matrix. The operator

blockdiag(A1, . . . ,An) represents a block diagonal matrix, whose main-diagonal blocks are

A1, . . . ,An.
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Chapter 3

Supervised and semi-supervised

learning for MIMO blind detection

with low-resolution ADCs

This chapter focuses on the blind detection problem in MIMO systems with low-resolution

ADCs. Blind detection in this context means detection without information about the CSI.

The system model is first presented in Section 3.1 and the blind detection problem is stated in

Section 3.2. Then, a supervised learning method and a semi-supervised learning method are

proposed in Section 3.3. A performance analysis for the case of 1-bit ADCs and a criterion

for transmit signal design are presented in Section 3.4. Finally, simulations and results can

be found in Section 3.5.

3.1 System Model

The considered MIMO system, as illustrated in Figure 3.1, has Nt transmit antennas and Nr

receive antennas, where it is assumed that Nr ≥ Nt. Let x[n] = [x1[n], . . . , xNt [n]]T ∈ CNt be

the transmitted signal vector at time slot n, where xi[n] is the symbol transmitted at the ith

transmit antenna. Each symbol xi[n] is drawn from a constellation M with a constellation

8



Figure 3.1: Block diagram of a MIMO communication system with low-resolution ADC at the receiver.

size of M = |M| under the power constraint E[|xi[n]|2] = 1. The channel is assumed to

be block-fading, and each block-fading interval lasts for Tb time slots. Hence, the channel

H = [hnrnt ] ∈ CNr×Nt remains constant over Tb time slots. For the analysis and simulations,

we assume a Rayleigh fading channel with independent and identically distributed (i.i.d.)

elements and hnrnt ∼ CN (0, 1), but the proposed algorithms are applicable to any channel

model. The system model in each block-fading interval is

r[n] = Hx[n] + z[n], (3.1)

where r[n] = [r1[n], . . . , rNr [n]]T ∈ CNr is the analog received signal vector, and z[n] =

[z1[n], . . . , zNr [n]]T ∈ CNr is the noise vector. The noise elements are assumed to be i.i.d.

with zi[n] ∼ CN (0, N0). CSI is unavailable at both the transmitter and receiver sides, i.e.,

H is unknown. The signal-to-noise ratio (SNR) is defined as ρ = Nt/N0.

The considered system employs an ADC that performs b-bit uniform scalar quantization,

b ∈ {1, 2, 3, . . .}. The b-bit ADC model is characterized by a set of 2b− 1 thresholds denoted

as {τ1, τ2, . . . , τ2b−1}. Without loss of generality, we can assume −∞ = τ0 < τ1 < . . . <

τ2b−1 < τ2b =∞. Let ∆ be the step size, so the threshold of a uniform quantizer is given as

τl = (−2b−1 + l)∆, for l ∈ L = {1, 2, . . . , 2b − 1}. (3.2)

9



Let Qb(.) denote the element-wise quantizer, so that the quantization output is defined as

Qb(r) =


τl − ∆

2
if r ∈ (τl−1, τl] with l ∈ L,

(2b − 1)∆
2

if r ∈ (τ2b−1, τ2b ].

(3.3)

It should be noted that this mid-rise uniform quantizer satisfies Qb(−r) = −Qb(r),∀r. The

step size ∆ is chosen to minimize the distortion between the quantized and non-quantized

signals. The optimal value of ∆ depends on the distribution of the input signals [52]. For

standard Gaussian signals, the optimal step size ∆standard
opt can be found numerically as in

[53]. For non-standard complex Gaussian signals with variance σ2 6= 1, the optimal step

size for each real/imaginary signal component can be computed as ∆opt =
√
σ2/2∆standard

opt .

Hence, the optimal step size in the considered system is ∆opt =
√

(Nt +N0)/2∆standard
opt . The

variance of the analog received signals Nt +N0 is assumed to be known at the receiver.

The real and imaginary parts of each received symbol are applied to two separate ADCs.

Hence, if y[n] =
[
y1[n], . . . , yNr [n]

]T ∈ CNr is the quantized version of the received signal vec-

tor r[n], then y[n] = Qb(r[n]) in which <{yi[n]} = Qb(<{ri[n]}) and ={yi[n]} = Qb(={ri[n]})

for all i ∈ Nr = {1, 2, . . . , Nr}.

3.2 Blind Detection Problem

This section describes the blind detection problem for the block-fading channel. The first Tt

time slots of each block fading interval contain the training symbol sequence while the remain-

ing Td = Tb − Tt time slots comprise the data symbol sequence. Let X̌ = {x̌1, x̌2, . . . , x̌K}

denote the set of all possible transmitted symbol vectors with K = MNt and let K =

{1, 2, . . . , K}. Hereafter, a possible transmitted symbol vector is called a label. We first re-

visit the MCD method presented in [54], which serves as a baseline for the study of this chap-

ter. The input-output relations to be learned in the MCD method are
{
E
[
y|x = x̌k

]
, k ∈ K

}
,

in which E
[
y|x = x̌k

]
represents the centroid of the received quantized signal given that the

10



label x̌k is transmitted. The MCD data detection is given by

f(y[n]) = argmin
k∈K

∥∥∥y[n]− E
[
y|x = x̌k

]∥∥∥
2
, (3.4)

where y[n] is the received data symbol vector at time slot n with n ∈ {Tt +1, . . . , Tb}. Thus,

the MCD approach identifies the index of the transmitted label as the one whose centroid is

closest to the received vector. Denote y̌k = E
[
y|x = x̌k

]
; each y̌k is called a representative

vector for the label x̌k. There are K representative vectors Y̌ = {y̌1, y̌2, . . . , y̌K}. Thus, the

MCD method has to learn Y̌ in order to perform the detection task. We now present two

MCD training methods from [46,54] that help the receiver empirically learn Y̌ .

3.2.1 Full-space Training Method

Since the transmitted signal space X̌ contains K labels, a straightforward method to help

the receiver learn Y̌ is using a training sequence that contains all the labels, where each

label is repeated a number of times. Hence, the training symbol matrix can be represented

as Xt = [X̌1, X̌2, . . . , X̌K ], where X̌k = [x̌k, . . . , x̌k] ∈ CNt×Lt consists of Lt labels x̌k, k ∈ K.

Using this training method, the representative vector y̌k can be learned empirically as

y̌k =
1

Lt

Lt∑
t=1

y[(k − 1)Lt + t], (3.5)

where Yt =
[
y[1], . . . ,y[Tt]

]
= Qb(HXt + Zt). The length of the training sequence is

Tt = KLt. This training method has been employed in [54].

3.2.2 Subspace Training Method

It is worth noting that the training sequence does not need to cover all the labels for the

receiver to learn Y̌ when M satisfies either of the following two conditions:

• Condition 1: −x ∈M, ∀x ∈M.

11



• Condition 2: αx ∈M, ∀x ∈M and ∀α ∈ {−1, j,−j}.

Although Condition 2 implies Condition 1 when α = −1, i.e., anyM satisfying Condition 2

will also satisfy Condition 1, we maintain these as two separate conditions for convenience in

our later derivations. Examples ofM for Condition 1 are BPSK, 8-QAM and for Condition 2

are QPSK, 16-QAM.

If Condition 1 is satisfied, −x̌k ∈ X̌ for all x̌k ∈ X̌ . The set of all labels can be written as

X̌ = {X̌ha,−X̌ha}, (3.6)

where X̌ha = {x̌1, . . . , x̌K/2}. Without loss of generality, it is assumed that x̌k+K/2 = −x̌k

with k ∈ {1, . . . , K/2}. If Condition 2 is satisfied, then αx̌k ∈ X̌ for all x̌k ∈ X̌ and

α ∈ {−1, j,−j}. The set of all labels can be written as

X̌ = {X̌fo,−X̌fo, jX̌fo,−jX̌fo}, (3.7)

where X̌fo = {x̌1, . . . , x̌K/4}. It is then assumed that x̌k+K/4 = −x̌k, x̌k+K/2 = jx̌k, and

x̌k+3K/4 = −jx̌k for k ∈ {1, . . . , K/4}. The subscripts ‘ha’ and ‘fo’ here stand for ‘half’ and

‘fourth’, indicating the first one-half and the first one-fourth of the set X̌ , respectively.

The work in [46] showed that if the transmitter employs QAM modulation and the

quantization function satisfies Qb(−r) = −Qb(r) for any r ∈ R, then the length of the

training sequence can be reduced to Tt = KLt/4. In Proposition 3.1 below, we generalize

this result for any modulation scheme.

Proposition 3.1. Given any constellation M, if the quantizer Qb(.) is symmetric, i.e.,

Qb(−r) = −Qb(r) ∀r ∈ R, the length of the training sequence Tt can be reduced to

Tt =


1
2
KLt if Condition 1 holds,

1
4
KLt if Condition 2 holds.

(3.8)
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Proof. For any two labels x̌k1 and x̌k2 = −x̌k1 , we have

p(y|x = x̌k2) = P
[
y = Qb(Hxk2 + z)

]
= P

[
y = Qb(−Hxk1 − z)

]
= P

[
− y = Qb(Hxk1 + z)

]
= p(−y|x = x̌k1). (3.9)

Therefore, y̌k2 = −y̌k1 since

y̌k2 = E
[
y|x = x̌k2

]
=
∑

yp(y|x = x̌k2) =
∑

yp(−y|x = x̌k1)

= −
∑

ẏp(ẏ|x = x̌k1) (3.10)

= −E
[
y|x = x̌k1

]
= −y̌k1 , (3.11)

where (3.10) is obtained by setting ẏ = −y and (3.11) holds because the sample spaces

of ẏ and y are the same. Hence, the representative vectors satisfy y̌k+K/2 = −y̌k with

k ∈ {1, . . . , K/2} if Condition 1 holds. This means the training sequence only needs to cover

X̌ha to help the receiver learn all K representative vectors in Y̌ . Similarly, when Condition 2

holds, we can also show that y̌k+K/4 = −y̌k, y̌k+K/2 = jy̌k, and y̌k+3K/4 = −jy̌k with

k ∈ {1, . . . , K/4}, and so the training sequence only needs to contain X̌fo. It should be noted

that the proof for Condition 2 requires that Qb(jc) = jQb(c),∀c ∈ C, which is satisfied by

the quantizer being used.

3.3 Proposed Learning Methods

The MCD detection method is simple but it has a primary drawback – its detection accuracy

heavily depends on the length of the training sequence. If the training sequence cannot

provide accurate representative vectors in (3.5), then detection errors will appear in (3.4). In

fact, a short training sequence often results in poor estimation of the representative vectors.

In order to improve the detection accuracy without lengthening the training sequence, the

13



Figure 3.2: Usage of CRC for multiple data segments in each block-fading interval.

idea is to use the training sequence as an initial guide for the learning process, and then find

more precise representative vectors by exploiting other information.

3.3.1 Proposed Supervised Learning Method

In practical communications systems, error control mechanisms such as the CRC can be

used to determine whether a segment of data is correctly decoded or not. This approach has

been exploited to mitigate the effect of imperfect CSI on the ML detection for low-resolution

ADCs [55, 56]. An error correcting code was also used to update the weights in a neural

network as the channel changes, assuming perfect ADCs [57].

In the proposed method, should the CRC be available, it can be exploited for blind detec-

tion as follows: Data detection is first performed by the MCD using the training sequence,

then the correctly decoded data confirmed by the CRC is used to augment the training set.

As a result, the representative vectors obtained from the training sequence in (3.5) can be

refined and the incorrectly decoded data can be re-evaluated by the MCD data detection.

The process of CRC checking, updating the representative vectors, and data detection is

repeated until no further correctly decoded segment is found.

In the system considered, we assume the use of the CRC for multiple data segments as

illustrated in Figure 3.2. Suppose there are S segments in one block-fading interval, and

each segment contains a data segment and a CRC block. Let LCRC and Ldata denote the

length of the CRC and the length of each data segment in bits, respectively. Thus, we have

S × (Ldata + LCRC) = Td ×Nt × log2(M). (3.12)

We also assume that Ldata + LCRC is a multiple of Ntlog2M . This means the number of

14



Algorithm 1: Supervised Learning Decoding.

1 Set un = b(n− 1)/Ltc+ 1 and cn = 1 for 1 ≤ n ≤ Tt;
2 Initialize un = 0 and cn = 0 for Tt < n ≤ Tb;
3 Set C = ∅, S = {1, 2, . . . , S}, iter = 0, and done = false;

4 Find Y̌ using (3.13) with the above inital setting;
5 while done = false do
6 foreach s ∈ S do
7 foreach y[n] ∈ Ys do
8 Set un = f(y[n]);
9 end

10 if CRC confirms the correct detection of Ys then
11 Set C = C ∪ {s};
12 foreach y[n] ∈ Ys do
13 Set cn = 1;
14 end

15 end

16 Update Y̌ using (3.13);

17 end
18 Set iter = iter + 1;
19 Set S = S\C, then set C = ∅;
20 if S = ∅ or iter = itermax or no change in u then
21 done = true;
22 end

23 end

bits in a segment is a multiple of the number bits in a transmitted vector. The decoding

algorithm of this proposed method is presented in Algorithm 1. The detailed explanation of

Algorithm 1 is as follows.

Let u = [u1, . . . , uTb ] denote the vector of decoded indices where un ∈ K with n ∈

{1, . . . , Tb} is the decoded index of received signal y[n]. Here, we can set un = b(n−1)/Ltc+1

for 1 ≤ n ≤ Tt (line 1) due to the training sequence and we can initialize un = 0 for

Tt < n ≤ Tb (line 2). Let c = [c1, . . . , cTb ] denote the vector of binary values where cn = 1

if the CRC confirms a correct detection of y[n], otherwise cn = 0. Note that cn = 0 does

not imply an incorrect detection of y[n]. Instead, it implies that the CRC cannot confirm a

correct detection of y[n]. Since the first Tt time slots are for the training sequence, we can

set cn = 1 for 1 ≤ n ≤ Tt (line 1) and initialize cn = 0 for Tt < n ≤ Tb (line 2). Let s denote

the index of the segments, s ∈ {1, . . . , S}, and let Ys denote the sth received data segment.
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After the detection of each segment, y̌k can be refined as (line 16):

y̌k =

∑Tb
n=1

(
I[un = k] + cnγ(n, k)

)
y[n]∑Tb

n=1

(
I[un = k] + cnI[γ(n, k) 6= 0]

) (3.13)

where I is the indicator function, and γ(n, k) is a function of n and k defined as follows:

• Condition 1: γ(n, k) = −I[un = k̄] with

k̄ =


k + K

2
if k ≤ K

2
,

k − K
2

if k > K
2
.

(3.14)

• Condition 2:

Let K1 =
{

1, . . . , K
4

}
, K2 =

{
K
4

+ 1, . . . , K
2

}
, K3 =

{
K
2

+ 1, . . . , 3K
4

}
, and K4 ={

3K
4

+ 1, . . . , K
}

;

if k ∈ K1, let k̄1 = k +
K

4
, k̄2 = k +

K

2
, k̄3 = k +

3K

4
,

if k ∈ K2, let k̄1 = k − K

4
, k̄2 = k +

K

2
, k̄3 = k +

K

4
,

if k ∈ K3, let k̄1 = k +
K

4
, k̄2 = k − K

4
, k̄3 = k − K

2
,

if k ∈ K4, let k̄1 = k − K

4
, k̄2 = k − 3K

4
, k̄3 = k − K

2
,

γ(n, k) = −I[un = k̄1]− jI[un = k̄2] + jI[un = k̄3]. (3.15)

Intuitively, the representative vector y̌k in (3.13) is updated by using received vectors whose

decoded indices are k and ones that are decoded correctly (confirmed by the CRC) with

decoded indices k̄ for Condition 1 or k̄1, k̄2, k̄3 for Condition 2.

The refined representative vectors are then used to perform data detection on the next

segment (back to lines 7–9). In the first iteration, the next segment is Ys+1, which has not

been decoded before. In the subsequent iterations, the next segment is one that has not

been successfully decoded. Iterations here are accounted for by the while loop. The process
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of CRC checking, updating the representative vectors and data detection is repeated until

all segments are decoded correctly or no change in u is found or a maximum number of

iterations is reached (line 20).

3.3.2 Proposed Semi-supervised Learning Method

In this part we propose a semi-supervised learning method. This proposed method is based

on the K-means clustering technique [58]. The idea is to use the training sequence as an

initial guidance to find coarse estimates of the representative vectors. Based on these coarse

estimates, the received data vectors are then self-classified iteratively.

The K-means clustering technique aims to partition data into a number of clusters.

However, in this communication context, the decoding task is not just to partition the

received data into clusters but also to assign labels to the clusters, which can be done by

using the training sequence. In addition, we take into account the constraints y̌k+K/2 =

−y̌k, k = 1, . . . , K/2, if Condition 1 holds; and the constraints y̌k+K/4 = −y̌k, y̌k+K/2 =

jy̌k, y̌k+3K/4 = −jy̌k, k = 1, . . . , K/4, if Condition 2 holds. These constraints can be

adopted because clusters are formed based on their centroids, which are also referred to as

the representative vectors {y̌k} in this paper.

First, we introduce a set of binary variables βn,k ∈ {0, 1} to indicate which of the K

labels that the received vector y[n] belongs to. Specifically, if a received vector y[n] belongs

to label k, then βn,k = 1 and βn,l = 0 ∀l 6= k. We have the following optimization problems:

• Condition 1 :

minimize
{βn,k},{y̌k}

J =

Tb∑
n=1

K∑
k=1

βn,k‖y[n]− y̌k‖2

subject to y̌k+K
2

= −y̌k, k = 1, . . . , K/2.

(3.16)

The objective function in (3.16) is called the distortion measure [58]. This problem

can be rewritten as

minimize
{βn,k},{y̌k}

J1 (3.17)
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where

J1 =

Tb∑
n=1

K
2∑

k=1

(
βn,k‖y[n]− y̌k‖2 + βn,k+K

2
‖y[n] + y̌k‖2

)
. (3.18)

Problem (3.17) can be solved iteratively in which each iteration finds {βn,k} based on

fixed {y̌k} and vice versa. If {y̌k} are fixed, J1 is a linear function of {βn,k}. It can be

seen that the solutions {βn,k} are independent of n, so they can be found separately.

With any n ∈ {Tt + 1, . . . , Tb}, the optimization problem for {βn,k} is

minimize
{βn,k}

K∑
k=1

βn,k‖y[n]− y̌k‖2, (3.19)

whose solution is found by setting βn,k = 1 for the k associated with the minimum

value of ‖y[n]− y̌k‖2. The solutions {βn,k} can be written as

βn,k =


1 if k = argmink′ ‖y[n]− y̌k′‖2,

0 otherwise.

(3.20)

It should be noted that βn,k = 1 whenever n ≤ Tt and k = b(n − 1)/Ltc + 1 because

the labels of the received training vectors are known at the receiver. When the {βn,k}

are fixed, J1 becomes a quadratic function of {y̌k}. Hence the solutions {y̌k} can be

found by finding the derivative of J1 with respect to y̌k:

∂J1

∂y̌k
=

Tb∑
n=1

βn,k
(
− y[n]H + y̌Hk

)
+ βn,k+K

2

(
y[n]H + y̌Hk

)
, (3.21)

when being set to 0 yields

y̌k =

∑
n

(
βn,k − βn,k+K

2

)
y[n]∑

n

(
βn,k + βn,k+K

2

) , k = 1, . . . ,
K

2
. (3.22)

Equation (3.22) says that the representative vector y̌k, with k ≤ K/2, is calculated by

using the received vectors that not only belong to cluster k but also to cluster k+K/2.
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• Condition 2 :

minimize
{βn,k},{y̌k}

J =

Tb∑
n=1

K∑
k=1

βn,k‖y[n]− y̌k‖2

subject to y̌k+K
4

= −y̌k, y̌k+K
2

= jy̌k, y̌k+ 3K
4

= −jy̌k

k = 1, . . . , K/4.

(3.23)

The optimization problem (3.23) can also be rewritten as

minimize
{βn,k},{y̌k}

J2 (3.24)

where

J2 =

Tb∑
n=1

K
4∑

k=1

(
βn,k‖y[n]− y̌k‖2 + βn,k+K

4
‖y[n] + y̌k‖2

+ βn,k+K
2
‖y[n]− jy̌k‖2 + βn,k+ 3K

4
‖y[n] + jy̌k‖2

) (3.25)

Applying the same technique as in Condition 1 to this problem, we can find βn,k from

(3.20) and

y̌k =

∑
n

(
βn,k − βn,k+K

4
− jβn,k+K

2
+ jβn,k+ 3K

4

)
y[n]∑

n

(
βn,k + βn,k+K

4
+ βn,k+K

2
+ βn,k+ 3K

4

) , k = 1, . . . ,
K

4
. (3.26)

Equation (3.26) also points out that the representative vector y̌k, with k ≤ K/4, is

found by using the received vectors that not only belong to cluster k but also to clusters

k +K/4, k +K/2 and k + 3K/4.

The decoding algorithm for this semi-supervised learning method is presented in Al-

gorithm 2. Coarse estimation of the representative vectors is first obtained by using the

training sequence (line 2). Then clustering is applied on all of the received data vectors

(line 5). Depending on whether Condition 1 or Condition 2 is satisfied, the representative

vectors are updated (lines 7-8 or lines 11-12). The process of clustering the received data
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Algorithm 2: Semi-supervised Learning Decoding.

1 Initialize done = false, iter = 0;
2 Find Y using the training sequence;
3 while done = false do
4 iter = iter + 1;
5 Perform (3.20);
6 if Condition 1 holds then
7 Perform (3.22);
8 Set y̌k+K

2
= −y̌k, with k = 1, . . . ,K/2;

9 end
10 if Condition 2 holds then
11 Perform (3.26);
12 Set y̌k+K

4
= −y̌k, y̌k+K

2
= jy̌k, y̌k+ 3K

4
= −jy̌k, with k = 1, . . . ,K/4;

13 end
14 if convergent or iter = itermax then
15 done = true;
16 end

17 end

vectors and updating the representative vectors is repeated until convergence or the number

of iterations exceeds a maximum value (line 15). Convergence is achieved if the solutions

{βn,k} are the same for two successive iterations. Convergence of Algorithm 2 is assured

because after each iteration, the value of the objective function does not increase. However,

the point of convergence is not guaranteed to be a global optimum.

3.4 Performance Analysis with One-bit ADCs

This section presents a performance analysis of the proposed methods for the case of 1-bit

ADCs. The analysis is applicable for any blind detection scheme for MIMO receivers with

low-resolution ADCs and for Rayleigh fading channels, independent of the channel realiza-

tion. We assume that all symbol vectors in X̌ are a priori equally likely to be transmitted.

The objective is to characterize the VER. Since the performance of the proposed methods

for 1-bit ADCs is independent of the step size ∆, we choose ∆ = 2 so that the quantization

function becomes the sign(·) function, where sign(a) = +1 if a ≥ 0 and sign(a) = −1 if
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a < 0. If a is a complex number, then sign(a) = sign(<{a}) + j sign(={a}). The operator

sign(·) of a matrix or vector is applied separately to every element of that matrix or vector.

3.4.1 VER Analysis at Low SNRs

Here, an approximate pairwise VER at low SNRs for the Rayleigh fading channel is presented.

First, using the Bussgang decomposition, the system model y = Qb(r) can be rewritten as

y = Fr + e [10] where e is the quantization distortion and

F =

√
2

π
diag(Σr)

− 1
2 . (3.27)

The term Σr = HHH + N0I is the covariance matrix of r. Let A = FH and w = Fz + e,

then the system model becomes

y = Ax + w, (3.28)

where A =
√

2/π diag(Σr)
− 1

2 H and the effective noise w = [w1, w2, . . . , wNr ]
T is modeled as

Gaussian [10] with zero mean and covariance matrix

Σw =
2

π

[
arcsin

(
diag(Σr)

− 1
2 Σr diag(Σr)

− 1
2

)
−diag(Σr)

− 1
2 Σr diag(Σr)

− 1
2 +N0 diag(Σr)

−1
]
.

(3.29)

Note that the operation arcsin(·) of a matrix is applied element-wise on that matrix. The

representative vector y̌k now becomes y̌k = Ax̌k.

In the low SNR regime, the approximation Σr ≈ Σz holds [10], where Σz = N0I is the

covariance matrix of z. This approximation leads to A ≈
√

2/(N0π)H and Σw ≈ I. Let

υ = [υ1, . . . , υNr ]
T = y̌k − y̌k′ , where υi =

√
2/(N0π)hTi (x̌k − x̌k′) with hi being the ith

column of H. Since H is comprised of i.i.d. Gaussian random variables CN (0, 1), υi is also

Gaussian of zero mean with variance

σ2
kk′ =

2

N0π
‖x̌k − x̌k′‖2

2. (3.30)
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Denote Px̌k→x̌k′
as the pairwise vector error probability of confusing x̌k with x̌k′ when

x̌k is transmitted and when x̌k and x̌k′ are the only two hypotheses [59]. The following

proposition establishes the relationship between Px̌k→x̌k′
and σ2

kk′ .

Proposition 3.2. Px̌k→x̌k′
at low SNR can be approximated as

Px̌k→x̌k′
≈ 1− Φ

(√
Nr/(1 + 2/σ2

kk′)
)
. (3.31)

Proof. Please refer to Appendix A.

The result in Proposition 3.2 clearly shows the dependency of the pairwise VER on the

Euclidean distance between the two symbol vectors x̌k and x̌k′ . We now proceed to obtain

an upper bound on the VER, denoted as P ver
ρ , at low SNR assuming a priori equally likely

x̌1, . . . , x̌K . The VER is defined as

P ver
ρ =

K∑
k=1

P[x̂ 6= x̌k,x = x̌k]

where x̂ is the detected symbol vector and P[x̂ 6= x̌k,x = x̌k] is the probability that x̌k was

transmitted but the detected symbol vector is not x̌k.

Proposition 3.3. P ver
ρ at low SNR is upper-bounded as

P ver
ρ ≤ 1

K

K∑
k=1

K∑
k′ 6=k

[
1− Φ

(√
Nr/(1 + 2/σ2

kk′)
)]

. (3.32)

Proof. The bound on P ver
ρ is obtained via the union bound

P ver
ρ =

K∑
k=1

P[x̂ 6= x̌k,x = x̌k] =
1

K

K∑
k=1

P[x̂ 6= x̌k
∣∣ x = x̌k] ≤

1

K

K∑
k=1

K∑
k′ 6=k

Px̌k→x̌k′

and the application of Proposition 3.2.

The probability P[x̂ 6= x̌k |x = x̌k] is invariant to x̌k for the case of PSK modulation.
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Without loss of generality, we assume that x̌1 was transmitted, so that the VER simplifies to

P ver
ρ ≤

K∑
k 6=1

[
1− Φ

(√
Nr/(1 + 2/σ2

1k)
)]

. (3.33)

We note that this result is valid for low SNRs. In the following analysis, we characterize the

VER at a very high SNR, i.e., ρ→∞.

3.4.2 VER Analysis as ρ→∞

Here, the VER as ρ→∞ is evaluated. Let gk = [gk,1, . . . , gk,Nr ]
T = Hx̌k, then

P[<{yi} = +1 | x = x̌k] = Φ(
√

2ρ/Nt<{gk,i}), (3.34)

P[={yi} = +1 | x = x̌k] = Φ(
√

2ρ/Nt={gk,i}). (3.35)

The true representative vectors are

y̌k = E
[
y | x = x̌k

]
= 2Φ(

√
2ρ/Ntgk)− (1 + j1) (3.36)

which becomes sign(gk) as ρ→∞. It is possible for a given realization of H that more than

one symbol vector will lead to the same representative vector: sign(gk) = sign(gk′) with

k 6= k′, and in such cases a detection error will occur regardless of the detection scheme. In

the following, we analyze the probability that sign(gk) = sign(gk′). The analysis is applicable

for the cases of BPSK and QPSK modulation.

To facilitate the analysis, we convert the notation into the real domain as follows:

x̌<k = [x̌<k,1, x̌
<
k,2, . . . , x̌

<
k,2Nt

]T = [<{x̌k}T ,={x̌k}T ]T ,

g<k = [g<k,1, g
<
k,2, . . . , g

<
k,2Nr

]T = [<{gk}T ,={gk}T ]T .

We first consider BPSK modulation, i.e., M = {±1}. In this case, ={x̌k} = 0.
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Theorem 3.1. Given d = ‖x̌<k − x̌<k′‖0 as the Hamming distance between the two labels, then

P
[
sign(gk) = sign(gk′)

]
=

[
2

π
arctan

√
Nt − d
d

]2Nr

. (3.37)

Proof. Please refer to Appendix B.

As ρ → ∞, the effect of the AWGN can be ignored. Thus, P
[
y̌k = y̌k′

]
= P

[
sign(gk) =

sign(gk′)
]
. An upper bound on the VER is established in the following proposition.

Proposition 3.4. With BPSK modulation, the asymptotic VER at high SNR is upper-

bounded as

P ver
ρ→∞ ≤

1

2

Nt∑
d=1

(
Nt

d

)[
2

π
arctan

√
Nt − d
d

]2Nr

. (3.38)

Proof. Please refer to Appendix C.

Proposition 3.5. With BPSK modulation and Nt = 2, the upper bound in (3.38) is tight.

Proof. For BPSK modulation and Nt = 2, let x̌<1 = [1, 1, 0, 0], x̌<2 = [1,−1, 0, 0], x̌<3 =

[−1, 1, 0, 0], x̌<4 = [−1,−1, 0, 0]. Herein, x̌<1 = −x̌<4 and x̌<2 = −x̌<3 , resulting in y̌1 = −y̌4

and y̌2 = −y̌3 as ρ → ∞. Hence, events y̌1 = y̌2 and y̌1 = y̌3 are mutually exclusive while

event y̌1 = y̌4 does not exist. This proposition thus follows as a direct consequence of the

proof for Proposition 3.4 given in Appendix C.

For the case of QPSK modulation, the Hamming distance d = ‖x̌<k − x̌<k′‖0 between any

two labels can be as large as 2Nt. Following the same derivation as in Theorem 3.1 and

Proposition 3.4, an upper-bound for the asymptotic VER at high SNR can be established

by the following proposition.

Proposition 3.6. With QPSK modulation, the asymptotic VER at high SNR is upper-
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bounded as

P ver
ρ→∞ ≤

1

2

2Nt∑
d=1

(
2Nt

d

)[
2

π
arctan

√
2Nt − d

d

]2Nr

. (3.39)

3.4.3 Transmit Signal Design

Thus far it has been assumed that the transmitter uses all K possible labels for transmission.

However, as K grows large, the training task for all the K labels becomes impractical,

since the block fading interval Tb is finite. In this section, we consider a system where the

transmitter employs only a subset of K̃ labels among the K possible labels for both the

training and data transmission phases. The rest of the K − K̃ labels are unused. While

using only K̃ labels reduces the transmission rate as compared to using all the K possible

labels, the VER can be improved. In many 5G networks, e.g., Machine-to-Machine (M2M)

communication systems, the priority is on the reliability, not the rate [3]. In addition, the

reduction in training time with small K̃ may help improve the system throughput.

The design problem is how to choose K̃ labels among the K labels. To address this

problem, we rely on Proposition 3.4 and Proposition 3.6. These propositions reveal that the

VER at infinite SNR is inversely proportional to the Hamming distances between the labels.

Thus, the following criterion for choosing the transmit signals is proposed:

X ? = arg max
X⊂X̌<

min
1≤k1<k2≤K̃

‖xk1 − xk2‖0, (3.40)

where X = {x1, . . . ,xK̃} denote the set of K̃ different labels for transmission, and X̌< =

{x̌<1 , . . . , x̌<K}. This design criterion aims to maximize the minimum pairwise Hamming

distance among the K̃ labels. Note that the proposed criterion is also applicable for low SNRs

because as shown in Proposition 3.3, the VER is inversely proportional to the Euclidean

distance, which is analogous to the Hamming distance for BPSK and QPSK, albeit with

some scaling factor. It should be noted that the proposed criterion does not rely on a
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Algorithm 3: Transmit Signal Design.

1 Randomly generate Nset initial sets {Xi, i = 1, . . . , Nset};
2 for i = 1 : Nset do
3 done = false;
4 while done = false do
5 Let flag = 1;

6 Set X ′ = X̌ \Xi = {x′1, . . . ,x′K−K̃};
7 for k1 = 1 : K̃ do

8 for k2 = 1 : K − K̃ do

9 Let X̂i =
(
Xi\{xk1}

)
∪
{
x′k2
}

;

10 if dmin(X̂i) > dmin(Xi) then

11 Set Xi = X̂ and flag = 0;
12 Exit both for loops;

13 end

14 end

15 end
16 if flag = 1 then
17 Set done = true and X ?i = Xi;
18 end

19 end

20 end
21 X ? = arg maxX ?

i
dmin(X ?i );

specific channel realization, so the design task can be carried out off-line.

Problem (3.40) can be solved by exhaustive search when
(
K
K̃

)
is not too large. When

the exhaustive search is not possible, we propose a simple greedy algorithm, whose pseudo-

code can be found in Algorithm 3. Here, dmin(X ) denotes the minimum pairwise Hamming

distance among the labels in X and X ′ in line 6 denotes the set of labels, which is not used

for transmission. The principle of Algorithm 3 is as follows:

• Generate Nset initial sets {Xi}i=1,...,Nset , where each set Xi contains K̃ different labels

randomly chosen from X̌<.

• For each initial set Xi, find x′ ∈ X ′ such that when an element of Xi is replaced by

x′, the value of the objective function in (3.40), i.e., the minimum Hamming distance,

is increased. This is repeated until no further increase in the objective function is

possible after evaluating all replacements.
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• Each initial set Xi produces a corresponding solution X ?
i as in line 17. The solution

X ? of (3.40) is obtained by selecting the X ?
i whose objective function value is largest

(line 21).

Note that the larger Nset is, the more likely Algorithm 3 will find the optimal solution.

3.5 Simulations and Results

3.5.1 Numerical Evaluation of the Proposed Methods

Monte Carlo simulations are used to numerically evaluate the performance of the proposed

methods. The simulation settings are as follows. The number of transmit antennas Nt

is set to be 2 unless otherwise stated. The data phase contains Td = 500 time slots. In

the supervised learning method, a 24-bit CRC as in the 3GPP Long Term Evolution (LTE)

standard [60] is adopted. The generator of the CRC in the simulation is z24 +z23 +z14 +z12 +

z8+1, and the length of each data segment is 16 bits. Thus, the length of each coded segment

is 40 bits. This is the minimum length in the 3GPP LTE standard. In all figures, ‘Sup.’

and ‘Semi-sup.’ stand for the supervised learning and semi-supervised learning methods,

respectively.

The effect of the training sequence length Lt on MCD and the two proposed methods

is first studied (Figure 3.3). BPSK modulation with Nr = 16 and 1-bit ADCs are used.

Figure 3.3a shows the change of the BER as Lt varies. An interesting observation is that the

performance of the proposed methods is much less affected by Lt than the MCD method.

Hence, the length of the training sequence can be reduced without causing much degradation

on the performances of the proposed methods. This is illustrated more clearly in Figure 3.3b,

where we carry out the simulation for Lt = 1 and Lt = 3, still with BPSK modulation, 1-bit

ADCs and Nr = 16. It can be seen from Figure 3.3b that, as Lt is reduced from 3 to 1, the

BER of MCD is significantly degraded while the BERs of the proposed methods experience

only a small degradation at low SNRs and do not change at higher SNRs. This leads to a

27



1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1
B

E
R

MCD
Sup.
Semi-sup.

(a) Lt varies and ρ = 0 dB.

-12 -6 0 6 12 18
SNR in dB

10-5

10-4

10-3

10-2

10-1

100

B
E

R

7-dB gain

8-dB gain

(b) Lt = 1 and Lt = 3, ρ varies.

Figure 3.3: Effect of Lt on MCD and the proposed methods with 1-bit ADCs, Nr = 16 and BPSK modulation.

significant improvement for the proposed methods as compared to MCD, for example, about

a 7-dB gain at a BER of 10−3 and 8-dB at a BER of 10−5 when Lt = 1. Even for moderately

long training sequences, e.g., Lt = 3, the gain of the proposed methods is still considerable,

from 3-dB to 4-dB.

The results in Figure 3.3 can be explained as follows. The performance of MCD is

susceptible to Lt because its detection accuracy relies on the representative vectors estimated

only from the training sequence. Therefore, if Lt is small, the representative vectors are not

estimated correctly and so the performance can be degraded significantly. On the other

hand, the proposed methods are much less dependent on Lt because they use the training

sequence only as the initial guide for the detection task. Compared to the semi-supervised

learning method, the supervised learning method is slightly more dependent on Lt because

it depends on detection results from the training sequence.

Since the proposed methods work iteratively, numerous simulations are performed to

evaluate the improvement in BER over the iterations. Simulation results are shown in

Figure 3.4. For the supervised learning method, Figure 3.4a, it can be seen that the BER

converges after only 2 iterations. For the semi-supervised learning method, Figure 3.4b,

there is considerable improvement between the first and the second iterations, but then the
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Figure 3.4: Performance improvement for different iterations with 1-bit ADCs, BPSK modulation, Nr = 16
and Lt = 3.

third and the fourth iterations give approximately the same performance. It is therefore

preferred to limit the maximum number of iterations to 3 in the semi-supervised learning

method. It should be noted that the BER on the first iteration of the semi-supervised

learning method is actually the BER of the MCD method because the first iteration only

exploits the training sequence.

Figure 3.5 compares the aforementioned blind detection methods with several coherent

detection methods. The simulation uses 1-bit ADCs, QPSK modulation, Nr = 16 and

Lt = 3. For coherent detection, CSI is first estimated by the Bussgang Linear Minimum Mean

Squared Error (BLMMSE) method proposed in [21]. The length of the training sequence

in the blind detection methods is 12, so we also set the length of the pilot sequence for the

channel estimation to 12. The ZF detection method is presented in [21]. The ML method

for 1-bit ADCs is provided in [1]. A performance comparison in terms of BER is given in

Figure 3.5a, which shows that the proposed methods outperform the ZF and ML methods

with estimated CSI. It is also seen that the BER of the proposed methods is quite close the

BER of ML detection with perfect CSI. Here, it is observed that a significant increase in

the BER at high SNRs for the ML method with estimated CSI. This observation was also
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Figure 3.5: Performance comparison between blind and coherent detection with 1-bit ADCs, QPSK modu-
lation, Nr = 16 and Lt = 3.

reported in [54]. In comparing the two proposed methods in Figure 3.5a and Figure 3.3,

should the CRC be available, it is more beneficial to use the supervised learning method for

better BER performance.

Figure 3.5b provides a comparison in terms of spectral efficiency η, defined as the average

number of information bits received correctly per block-fading interval Tb. We determine η

for the case without CRC as

η =
Td

Tb

× (1− BER)×Nt × log2M

and for the case with CRC as

η =
Ldata

Ldata + LCRC

× Td

Tb

× (1− BER)×Nt × log2M.

Figure 3.5b indicates a proportional drop in the spectral efficiency due to the use of CRC.

Note that the supervised learning method can only be applied in systems where the CRC

is available but the other methods can be used in any system regardless of the CRC. Thus,

should the CRC be eliminated for improved spectral efficiency, the semi-supervised method
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Figure 3.6: Performance of the proposed methods for different numbers of receive antennas Nr and ADC
resolutions b with Lt = 3.

provides better performance than MCD. It also performs slightly better than conventional

coherent detection with estimated CSI. The small performance gap observed in Figure 3.5b

is due to the small difference in BER performance in the SNR region between −12 to 12

dB, as shown in Figure 3.5a. At high SNR, while the proposed method performs much

better than other methods in terms of BER, its effect on the throughput η is negligible since

1− BER ≈ 1.

To study the trade-off between Nr and b, the proposed methods are evaluated in three

different scenarios: (i) Nr = 4, b = 4; (ii) Nr = 8, b = 2; and (iii) Nr = 16, b = 1. This is

to ensure the same number of bits after the ADCs for baseband processing. The number

of label repetitions Lt is set to be 3. The simulation results are shown in Figure 3.6, with

BPSK in Figure 3.6a and QPSK in Figure 3.6b. For BPSK modulation, the best performance

is achieved by scenario (iii) for all methods. Hence, this suggests the use of more receive

antennas and fewer bits in the ADCs when BPSK modulation is employed. However, for

QPSK modulation, there is a trade-off between scenarios (ii) and (iii). For low SNRs, the

setting Nr = 16 and b = 1 gives better performance, but for high SNRs, the best results

are with Nr = 8 and b = 2. The results in Figure 3.6 also show that the proposed methods
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Figure 3.7: Validation of the analytical pairwise VER in (3.31) and the analytical VER in (3.32) at low
SNRs with Nt = 2, Nr = 16, and BPSK modulation.

outperform the MCD method in all three scenarios.

3.5.2 Validation of Performance Analysis

This section presents a validation on the performance analyses in Section 3.4. Figure 3.7

provides the analytical approximate pairwise VER in (3.31) and the VER in (3.32). the

setting of Nt = 2, Nr = 16, and BPSK modulation is used. The two labels used to examine

the pairwise VER are x̌k = [+1,+1]T and x̌k′ = [+1,−1]T . It can be seen that our approxi-

mate pairwise VER is very close to the simulated pairwise VER at low SNRs, typically with

SNRs less than 0-dB. However, as the SNR increases, the approximate pairwise VER tends

to diverge from the true pairwise VER because the approximation Σr ≈ Σz is inapplicable

for high SNRs. The simulation results also show that the analytical VER is quite close to

the true VER at low SNRs.

Validation of the high SNR expressions for the analytical VER is given in Figure 3.8 with

Nr = 8. The horizontal lines represent the analytical upper bounds on the VER at infinite

SNR. For the case of BPSK and Nt = 2, it can be seen that the simulated VER approaches

the horizontal solid line as the SNR increases and then they match at very high SNRs. This
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Figure 3.9: Validation of the transmit signal design with Nt = 6, Nr = 16, K̃ = 4, and BPSK modulation.
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validates the result of Proposition 3.5 indicating that the bound is tight in the case of BPSK

and Nt = 2. With BPSK and Nt = 3, the horizontal dashed line is just slightly higher

than the floor of the simulated VER. For QPSK modulation, there is a small gap between

the horizontal lines and the floors of the simulated VER. These observations validate the

analytical upper-bound results in Proposition 3.4 and Proposition 3.6.

Figure 3.9 provides a validation for the proposed transmit signal design based on the

minimum Hamming distance in Section 3.4.3. With different selections of the label sets

X , the BER performance in Figure 3.9 improves as dmin(X ) increases, which validates the

analysis. In this particular simulation scenario (Nt = 6, Nr = 16, K̃ = 4, and BPSK

modulation), the minimum Hamming distance of an optimal set can be found to be 4. The

proposed Algorithm 3 then helps select an optimal set X ? with dmin(X ?) = 4. Hence, the

curves with star markers in Figure 3.9 also represent the BER obtained by X ?.

As K̃ is increased, the data rate also increases, but the BER will degrade. Thus, there is a

specific value for K̃ that provides the best compromise for the spectral efficiency. Figure 3.10

illustrates the change of spectral efficiency with respect to K̃ at different SNR values. The

simulations are carried out with Nt = 8, Nr = 16, QPSK modulation, Lt = 3, and K̃ ∈

{4, 8, 16, 32, 64, 128}. The maximum number of time slots for the block-fading interval is

Tb = 500. The availability of the CRC is assumed so that the supervised learning method

can be compared with other methods. The lengths of the data segment for K̃ ∈ {4, 8, 64, 128}

and K̃ ∈ {16, 32} are 18 bits and 16 bits, respectively. This is to ensure that the number of

bits in a segment is a multiple of the number bits in a transmitted vector. The length of the

data block Td is also set to be a multiple of (LCRC + Ldata)/ log2 K̃. The spectral efficiency

is then computed as

η =
Ldata

LCRC + Ldata

× Td

Td + Tt

× (1− BER)× log2 K̃.

For each value of K̃, Algorithm 3 is applied to find the solution X ∗ of (3.40). It is found
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Figure 3.10: Spectral efficiency versus K̃ with Nt = 8, Nr = 16, QPSK modulation, Lt = 3, and Tb = 500.

that the symbol vectors of X ∗ do not satisfy Condition 2, and so the full-space training

method is used. The simulation results in Figure 3.10 show that increasing K̃ does not

necessarily improve the spectral efficiency, due to the increased training overhead. There is

thus an optimal value of K̃ = 32 in this scenario. It is also seen that at low SNR the spectral

efficiencies of the proposed methods are higher than that of MCD.
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Chapter 4

SVM-based channel estimation and

data detection for massive MIMO

systems with one-bit ADCs

This chapter presents an SVM-based approach for channel estimation and data detection in

massive MIMO systems with 1-bit ADCs. The system model is first presented in Section 4.1.

SVM-based methods for flat-fading channels are then proposed in Section 4.2. Section 4.3

includes an extension of the proposed methods to OFDM sysems with frequency-selective

fading channels. Finally, numerical results are provided in Section 4.4.

4.1 System Model

The considered massive MIMO system is illustrated in Figure 4.1 with U single-antenna users

and an N -antenna base station, where it is assumed that N ≥ U . Let x̄ = [x̄1, x̄2, . . . , x̄U ]T ∈

CU denote the transmitted signal vector, where x̄u is the signal transmitted from the uth user

under the power constraint E[|x̄u|2] = 1, u ∈ U = {1, 2, . . . , U}. Let H̄ ∈ CN×U denote the

channel, which for the moment is assumed to be block flat fading. Let r̄ = [r̄1, r̄2, . . . , r̄N ]T ∈
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Figure 4.1: Block diagram of a massive MIMO system with U single-antenna users and an N -antenna base
station equipped with 2N 1-bit ADCs.

CN be the unquantized received signal vector at the base station, which is given as

r̄ = H̄x̄ + z̄, (4.1)

where z̄ = [z̄1, z̄2, . . . , z̄N ]T ∈ CN is a noise vector whose elements are assumed to be i.i.d. as

z̄i ∼ CN (0, N0), and N0 is the noise power. Each analog received signal r̄i is then quantized

by a pair of 1-bit ADCs. Hence, we have the received signal

ȳ = sign(r̄) = sign (<{r̄}) + j sign (={r̄}) (4.2)

where sign(·) represents the 1-bit ADC with sign(a) = +1 if a ≥ 0 and sign(a) = −1 if

a < 0. The operator sign(·) of a matrix or vector is applied separately to every element of

that matrix or vector. The SNR is defined as % = 1/N0.
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4.2 Proposed SVM-based Channel Estimation and Data

Detection with 1-bit ADCs

4.2.1 Linear SVM for Binary Classification

Consider a binary classification problem with a training data set of P data pairs D =

{(xq, yq)}q=1,...,P where xq is a training data point and yq ∈ {±1} is an associated class

label. Note that {xq} here are vectors of real elements. The data set D is said to be

linearly separable if and only if there exists a linear function f(x) = ωTx + δ such that

∀q ∈ {1, 2, . . . , P}, f(xq) > 0 if yq = +1 and f(xq) < 0 if yq = −1. Here, ω and δ are

referred to as the weight vector and the bias, respectively. In other words, the hyperplane

f(x) = ωTx + δ = 0 divides the space into two regions where f(x) = 0 acts as the decision

boundary. The margin of the hyperplane f(x) = 0 with respect to D is defined as

mD(f) =
2

‖ω‖
. (4.3)

The SVM technique seeks to find ω and δ such that the margin mD(f) is maximized.

The optimization problem can be expressed as [58]

minimize
{ω,δ}

1

2
‖ω‖2

subject to yq(ω
Txq + δ) ≥ 1, q = 1, 2, . . . , P.

(4.4)

In case the training data set D is not linearly separable, a generalized optimization problem

is considered as follows:

minimize
{ω,δ,ξq}

1

2
‖ω‖2 + C

P∑
q=1

ξq

subject to yq(ω
Txq + δ) ≥ 1− ξq,

ξq ≥ 0, q = 1, 2, . . . , P.

(4.5)
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Here, {ξq} are slack variables and C > 0 is a parameter that “controls the trade-off between

the slack variable penalty and the margin” [58]. The optimization problems (4.4) and (4.5)

can be solved by very efficient algorithms [61,62]. For example, if the weight vector is sparse,

the complexity of the algorithm in [61] scales linearly in both the number of features (size of

the weight vector ω) and the number of training samples |D|. For arbitrary weight vectors,

the complexity of the algorithm in [62] scales linearly in the number of training samples

and quadratically in the number of features for the worst case. A good review of efficient

methods for solving (4.4) and (4.5) can also be found in [63].

4.2.2 Proposed SVM-based Channel Estimation

Uncorrelated Channels

First, uncorrelated channels are considered. The channel elements are assumed to be i.i.d.

as CN (0, 1). In order to estimate the channel, a pilot sequence X̄t ∈ CU×Tt of length Tt is

used to generate the training data

Ȳt = sign
(
H̄X̄t + Z̄t

)
. (4.6)

For convenience in later derivations, we convert the notation in (4.6) to the real domain as

Yt = sign (HtXt + Zt) , (4.7)

where

Yt =
[
<{Ȳt},={Ȳt}

]
= [yt,1,yt,2, . . . ,yt,N ]T , (4.8)

Ht =
[
<{H̄},={H̄}

]
= [ht,1,ht,2, . . . ,ht,N ]T , (4.9)

Zt =
[
<{Z̄t},={Z̄t}

]
= [zt,1, zt,2, . . . , zt,N ]T , (4.10)
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and

Xt =

 <{X̄t} ={X̄t}

−={X̄t} <{X̄t}

 = [xt,1,xt,2, . . . ,xt,2Tt ]. (4.11)

Note that yTt,i ∈ {±1}1×2Tt , hTt,i ∈ R1×2U , and zTt,i ∈ R1×2Tt with i ∈ {1, 2, . . . , N} represent

the ith rows of Yt, Ht, and Zt, respectively. However, xt,n ∈ R2U×1 with n ∈ {1, 2, . . . , 2Tt}

is the nth column of Xt.

It can be seen from (4.9) that estimating {ht,i}i=1,2,...,N is equivalent to estimating H̄.

Here, the channel estimation problem is formulated in terms of ht,i. Let

yt,i = [yt,i,1, yt,i,2, . . . , yt,i,2Tt ]
T and

zt,i = [zt,i,1, zt,i,2, . . . , zt,i,2Tt ]
T ,

then we have

yt,i,n = sign
(
hTt,ixt,n + zt,i,n

)
. (4.12)

It is stressed that the estimation of ht,i in (4.12) can be interpreted as an SVM binary

classification problem. More specifically, {xt,n, yt,i,n}n=1,...,2Tt
plays the role of the training

data set D. The channel ht,i acts as the weight vector and zt,i,n can be viewed as the bias.

Hence, the SVM classification formulation can be exploited to estimate ht,i by solving the

following optimization problem:

minimize
{ht,i,ξn}

1

2
‖ht,i‖2 + C

2Tt∑
n=1

ξn

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξn,

ξn ≥ 0, n = 1, 2, . . . , 2Tt.

(4.13)

Here, the bias is discarded because the {zt,i,n} are random noise with zero mean. In addition,

at infinite SNR, (4.12) becomes yt,i,n = sign
(
hTt,ixt,n

)
, which has no bias. It should be noted

40



that (4.13) only depends on a single index i, and so its solution is the estimate for the ith row

of the channel matrix H̄, i.e., the channel vector from the U users to the ith receive antenna.

This means we have N separate optimization problems of the same form (4.13), which is an

advantage of the proposed SVM-based method since these N optimization problems can be

solved in parallel.

Let h̃t,i denote the solution of (4.13). This solution provides an estimate of the channel

“direction”, but the magnitude of h̃t,i is determined by the definition of the SVM margin,

which in turn defines the inequality constraints in (4.13). In fact, the instantaneous magni-

tude of ht,i is not identifiable [38] since aht,i for any a > 0 will produce the same data set

{yt,i,n}:

yt,i,n = sign
(
hTt,ixt,n

)
= sign

(
ahTt,ixt,n

)
, with a > 0.

Since in the considered model we assume that the 2U elements of ht,i are each independent

with variance 1/2, the SVM solution is scaled so that the corresponding channel estimate

has a squared norm of U :

ĥt,i =

√
U h̃t,i

‖h̃t,i‖
. (4.14)

This rescaling choice is found to provide the best estimation accuracy.

Remark 1: The soft-SVM method in [26] does not maximize the margin, but instead

calculates ht,i such that the condition yt,i,nh
T
t,ixt,n > 0 is satisfied for as many n as possible.

However, due to the noise component zt,i,n, the condition yt,i,nh
T
t,ixt,n > 0 may not be satisfied

even with the true channel vector ht,i. The proposed method exploits the original idea of

SVM by maximizing the margin achieved by the linear discriminator. The introduction of

the slack variables in the problem circumvents the strict constraint yt,i,nh
T
t,ixt,n > 0.

Remark 2: Without slack variables, the problem in (4.13)

minimize
{ht,i}

1

2
‖ht,i‖2

subject to yt,i,nh
T
t,ixt,n ≥ 1, n = 1, 2, . . . , 2Tt,

(4.15)
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is similar to the form in (4.4). For ht,i ∼ N (0, I) we have

p(ht,i) =
1√

(2π)2U
exp

{
−1

2
‖ht,i‖2

}
, (4.16)

and hence the optimization problem in (4.15) can be read as maximizing the pdf of ht,i

subject to the constraints yt,i,nh
T
t,ixt,n ≥ 1 for n = 1, 2, . . . , 2Tt. Thus, the SVM approach

can be interpreted as finding the channel ht,i that attains the highest likelihood under the

constraints realized by the measured data. This observation will be used next to modify the

SVM-based channel estimator when the channel is spatially correlated. Note that the work

in [26] only considers uncorrelated channels.

Spatially Correlated Channels

Let H̄ = [h̄1, . . . , h̄U ], and so h̄u ∈ CN×1 is the uth column of H̄. Here, it is assumed that the

elements of h̄u are correlated, or in other words that the channels associated with different

antennas are correlated. Let h̄u ∼ CN (0, C̄u) and h̄ = vec(H̄), then h̄ ∼ CN (0, C̄) where

C̄ = blockdiag(C̄1, C̄2, . . . , C̄U). The pdf of h̄ is

p(h̄) =
1

πUN
√

det(C̄)
exp

{
−h̄HC̄−1h̄

}
(4.17)

=
1

πUN
√

det(C̄)
exp

{
−

U∑
u=1

h̄Hu C̄−1
u h̄u

}
. (4.18)

The exponent term in (4.17) becomes a sum in (4.18) because C̄ is a block diagonal matrix,

whose main-diagonal blocks are C̄1, C̄2, . . . , C̄U . Letting

hu =

<{h̄u}
={h̄u}

 and Cu =

<{C̄u} −={C̄u}

={C̄u} <{C̄u}

 ,
the exponent term in (4.18) can be rewritten as

∑U
u=1 hTuC−1

u hu.

To maximize the likelihood of h̄ subject to the constraints yt,i,nh
T
t,ixt,n ≥ 1 with i =
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1, 2, . . . , N and n = 1, 2, . . . , 2Tt, we can follow the intuition in (4.15) to formulate the

following optimization problem:

minimize
{H̄}

1

2

U∑
u=1

‖hTuC−1
u hu‖2

subject to yt,i,nh
T
t,ixt,n ≥ 1,

i = 1, 2, . . . , N and n = 1, 2, . . . , 2Tt.

(4.19)

In the above optimization problem, it is important to note that hu ∈ R2N×1 represents

the uth column of H̄, but hTt,i represents the ith row of H̄. This means the objective function

of (4.19) depends on the columns of H̄, but the constraints depend on the rows of H̄.

Therefore, we cannot decompose (4.19) into smaller independent problems. In other words,

the whole channel matrix H̄ has to be jointly estimated.

Note that the margin hTuC−1
u hu in (4.19) is measured using the Mahalanobis distance [64]

rather than the Euclidean metric used in the standard SVM approach. The optimization

problem in (4.19) can also be generalized by including slack variables as

minimize
{H̄,ξi,n}

1

2

U∑
u=1

‖hTuC−1
u hu‖2 + C

N∑
i=1

2Tt∑
n=1

ξi,n

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξi,n with ξi,n ≥ 0,

i = 1, 2, . . . , N and n = 1, 2, . . . , 2Tt.

(4.20)

Although the form of the objective function in (4.20) is different from that in conventional

SVM problems, (4.20) can still be solved efficiently since it is a convex optimization problem.

Let H̃ be the solution of (4.20), then the channel estimate Ĥ is defined as

Ĥ =

√
UNH̃

‖H̃‖F

,

where ‖ · ‖F denotes the Frobenius norm. This normalization step is similar to that for the
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case of uncorrelated channels, except a different coefficient
√
UN is used since we jointly

estimate the whole channel matrix and E[‖H̄‖F] =
√
UN .

4.2.3 Proposed Two-Stage SVM-based Data Detection

This section proposes a two-stage SVM-based method for data detection with 1-bit ADCs.

The data detection is first formulated as an SVM problem. A second stage is then employed

to refine the solution from the first stage. Let X̄d = [x̄d,1, x̄d,2, . . . , x̄d,Td ] ∈ CU×Td be the

transmitted data sequence of length Td. The received data signal is given as

Ȳd = sign
(
H̄X̄d + Z̄d

)
. (4.21)

The above equation is also converted to the real domain as

Yd = sign (HdXd + Zd) (4.22)

where

Yd =

<{Ȳd}

={Ȳd}

 = [yd,1,yd,2, . . . ,yd,Td ], (4.23)

Xd =

<{X̄d}

={X̄d}

 = [xd,1,xd,2, . . . ,xd,Td ], (4.24)

Zd =

<{Z̄d}

={Z̄d}

 = [zd,1, zd,2, . . . , zd,Td ], and (4.25)

Hd =

<{H̄} −={H̄}
={H̄} <{H̄}

 = [hd,1,hd,2, . . . ,hd,2N ]T . (4.26)

Here, yd,m ∈ {±1}2N×1, xd,m ∈ R2U×1, and zd,m ∈ R2N×1 with m ∈ {1, 2, . . . , Td} are the mth

columns of Yd, Xd, and Zd, respectively. However, hTd,i′ ∈ R1×2U with i′ ∈ {1, 2, . . . , 2N}
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represents the i′th row of Hd.

It can be noted that the real and imaginary parts in (4.8)–(4.11) are stacked side-by-side,

but they are stacked on top of each other in (4.23)–(4.26). This is due to the exchange in the

role of the channel and the data matrices. In the formulation for channel estimation in (4.8)–

(4.11), each row of the channel matrix is treated as the weight vector and the columns of

the pilot data matrix are used as the training data points. On the other hand, the data

detection formulation in (4.23)–(4.26) treats each column of the to-be-decoded data matrix

as the weight vector and the rows of the channel matrix as the training data points.

It should also be noted that the pilot sequence and the data sequence are assumed to

experience the same block-fading channel. Although the two channel matrices Ht in (4.9)

and Hd in (4.26) are constructed differently, they still depend on the same channel H̄. Let

yd,m = [yd,m,1, yd,m,2, . . . , yd,m,2N ]T and

zd,m = [zd,m,1, zd,m,2, . . . , zd,m,2N ]T ,

then we have

yd,m,i′ = sign
(
hTd,i′xd,m + zd,m,i′

)
. (4.27)

It is observed that the estimation of xd,m can also be interpreted as an SVM binary

classification problem. More specifically, we can treat xd,m as the weight vector and the set

{ĥd,i′ , yd,m,i′}i′=1,...,2N as the training set, where ĥd,i′ is the channel estimate of hd,i′ obtained

as explained above. The following optimization problem provides the first-stage in finding

xd,m:

minimize
{xd,m,ξi′}

1

2
‖xd,m‖2 + C

2N∑
i=1

ξi′

subject to yd,m,i′x
T
d,mĥd,i′ ≥ 1− ξi′ ,

ξi′ ≥ 0, i′ = 1, 2, . . . , 2N,

(4.28)

where the bias is discarded as in the channel estimation problem. Let x̃d,m denote the
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solution of (4.28) and let x̀d,m be the normalized version of x̃d,m as

x̀d,m =

√
U x̃d,m

‖x̃d,m‖
. (4.29)

This normalization step is also used in [1] in order to make the power of the estimated signal

equal the power of the transmitted signal.

Let x̀d,m = [x̀d,m,1, . . . , x̀d,m,2U ]T , and define the first-stage detected data vector x̌d,m =

[x̌d,m,1, . . . , x̌d,m,U ]T obtained using symbol-by-symbol detection as

x̌d,m,u = arg min
x∈M

|(x̀d,m,u + jx̀d,m,u+U)− x| , (4.30)

where u ∈ U and M represents the signal constellation (e.g., QPSK or 16-QAM). The

solution to (4.30) is referred to as the stage 1 solution. To further improve the detection

performance, a simple but efficient second detection stage is proposed as follows.

First, a candidate set Xu for each x̄d,m,u is created using x̌d,m,u and x̀d,m,u + jx̀d,m,u+U as

Xu =

{
x́ ∈M

∣∣∣∣ |(x̀d,m,u + jx̀d,m,u+U)− x́|
|(x̀d,m,u + jx̀d,m,u+U)− x̌d,m,u|

< ν

}
(4.31)

where ν ≥ 1 is a parameter that controls the size of Xu. Then the candidate set Xd,m for

xd,m is obtained as

Xd,m =
{

[x́1, x́2, . . . , x́U ]T | x́u ∈ Xu,∀u ∈ U
}
. (4.32)

The above candidate set formation was introduced in [1]. However, the detected data

vector in [1] is obtained by searching over Xd,m using the ML criterion, and the resulting

performance is susceptible to imperfect CSI at high SNRs. This susceptibility has been

reported via numerical results in [46], but no justification was given. An explanation for

this issue is provided in Appendix D. To deal with the issue, here a different criterion
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referred to as minimum weighted Hamming distance [43] is adopted. Suppose that Xd,m =

{x́1, x́2, . . . , x́|Xd,m|} and let ẋl = [<{x́l}T ,={x́l}T ]T with l ∈ {1, 2, . . . , |Xd,m|}. The second-

stage detected data vector x̂d,m is defined as x̂d,m = x́l̂ where

l̂ = arg min
l∈{1,...,|Xd,m|}

dw

(
yd,m, sign(Ĥdẋl)

)
. (4.33)

Here, Ĥd is the channel estimate of Hd and dw(·, ·) is the weighted Hamming distance defined

in [43].

The minimum weighted Hamming distance criterion above was shown to be statistically

efficient [43]. However, the OSD method proposed in [43] requires a preprocessing stage

whose computational complexity is proportional to 2Ns|M|Nt for each channel realization.

Here Ns = 2N/G where G ≥ 1 is an integer. The exponential computational complex-

ity of OSD is a significant drawback in large-scale system implementation. The proposed

SVM-based data detection method in this paper can address this complexity issue since the

optimization problem (4.28) can be solved by very efficient algorithms [61–63].

4.2.4 Proposed SVM-based Joint CE-DD

In 1-bit ADC systems, the channel estimation accuracy can be improved by increasing the

length of the pilot training sequence, but not necessarily by increasing the SNR [21]. For

this reason, an SVM-based joint CE-DD method is here proposed to effectively improve the

channel estimate without lengthening the pilot training sequence. The idea is to use the

detected data vectors from the two-stage SVM-based method together with the pilot data

vectors to obtain a refined channel estimate and then use this refined channel estimate to

improve the data detection performance.

Let X̂d be the detected version of X̄d using the proposed two-stage data detection method
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and let

X̂d2 =

 <{X̂d} ={X̂d}

−={X̂d} <{X̂d}

 = [x̂d2,1, . . . , x̂d2,2Td ], (4.34)

Yd2 =
[
<{Ȳd},={Ȳd}

]
= [yd2,1, . . . ,yd2,N ]T , (4.35)

where yd2,i = [yd2,i,1, yd2,i,2, . . . , yd2,i,2Td ]T , i = 1, . . . , N . The channel estimate can be refined

by solving the following optimization problem:

minimize
{ht,i,ξt,n,ξd,m}

1

2
‖ht,i‖2 + C

(
2Tt∑
n=1

ξt,n +

2Td∑
m=1

ξd,m

)

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξt,n,

yd2,i,mhTt,ix̂d2,m ≥ 1− ξd,m,

ξt,n ≥ 0, n = 1, 2, . . . , 2Tt,

ξd,m ≥ 0, m = 1, 2, . . . , 2Td.

(4.36)

In the optimization problem above, we use two sets of slack variables {ξt,n} and {ξd,m},

which correspond to the pilot sequence and the data sequence, respectively. This is just for

notational convenience, as the two sets of slack variables play the same role. The refined

channel estimate obtained by solving (4.36) can now be used for data detection again in (4.28)

and (4.33). Note that the channel estimate obtained by (4.13) can be used as the initial

solution to (4.36) so that the algorithm will more quickly converge to the optimal solution.

Similarly, X̂d can also be used as the initial solution when solving (4.28) with the refined

channel estimate. Numerical results in Section 4.4 show that this strategy will hit a certain

performance bound as Td increases.
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4.3 Extension to OFDM systems with Frequency-Selective

Fading Channels

This section develops SVM-based channel estimation and SVM-based data detection for

OFDM systems with frequency-selective fading channels. Consider an uplink multiuser

OFDM system with Nc subcarriers. Denote x̄FD
u ∈ CNc×1 as the OFDM symbol from the

uth user in the frequency domain. Throughout the paper, we use the superscripts “TD” and

“FD” to refer to Time Domain and Frequency Domain, respectively. A cyclic prefix (CP) of

length Ncp is added and the number of channel taps L is assumed to satisfy L−1 ≤ Ncp ≤ Nc.

It is assumed that L is known. After removing the CP, the quantized received signal at the

ith antenna in the time domain is given by

ȳTD
i = sign

(
U∑
u=1

ḠTD
i,u ΓH x̄FD

u + z̄TD
i

)
(4.37)

where Γ is the DFT matrix of size Nc × Nc; ḠTD
i,u is a circulant matrix whose first column

is ḡTD
i,u = [(h̄TD

i,u )T , 0, . . . , 0]T ; and h̄TD
i,u is the channel vector of the uth user containing the L

channel taps, which are assumed to be i.i.d. and distributed as CN (0, 1
L

). We also assume

block-fading channels where the first OFDM symbol is used for channel estimation and the

other OFDM symbols in the block-fading interval are for data transmission. Thus, the

problem of channel estimation and data detection are studied separately.
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4.3.1 Proposed SVM-based Channel Estimation in OFDM Sys-

tems with Frequency-Selective Fading Channels

Denote φ̄
TD
u = ΓH x̄FD

u and the training matrix Φ̄TD
u as a circulant matrix with first column

equal to φ̄
TD
u . The system model in (4.37) can be reorganized as follows:

ȳTD
i = sign

(
U∑
u=1

Φ̄TD
u ḡTD

i,u + z̄TD
i

)

= sign

(
U∑
u=1

Φ̄TD
u,Lh̄TD

i,u + z̄TD
i

)

= sign
(
Φ̄

TD
L h̄TD

i + z̄TD
i

)
(4.38)

where Φ̄
TD
u,L is the matrix corresponding to the first L columns of Φ̄TD

u , Φ̄
TD
L = [Φ̄TD

1,L, . . . , Φ̄
TD
U,L],

and h̄TD
i = [(h̄TD

i,1 )T , . . . , (h̄TD
i,U )T ]T .

We also convert (4.38) into the real domain as

yTD
i = sign

(
ΦTD
L hTD

i + zTD
i

)
(4.39)

where

yTD
i =

[
<{ȳTD

i }T ,={ȳTD
i }T

]T
,

hTD
i =

[
<{h̄TD

i }T ,={h̄TD
i }T

]T
,

zTD
i =

[
<{z̄TD

i }T ,={z̄TD
i }T

]T
, and

ΦTD
L =

<{Φ̄TD
L } −={Φ̄

TD
L }

={Φ̄TD
L } <{Φ̄TD

L }

 .
Denote yTD

i = [yTD
i,1 , y

TD
i,2 , . . . , y

TD
i,2Nc

]T and ΦTD
L =

[
(φTD

1 )T , (φTD
2 )T , . . . , (φTD

2Nc
)T
]T

, leading to
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the following SVM problem for estimating the OFDM channel using one-bit ADCs:

minimize
{hTD

i ,ξn}

1

2
‖hTD

i ‖2 + C

2Nc∑
n=1

ξn

subject to yTD
i,n

(
hTD
i

)T
φTD
n ≥ 1− ξn,

ξn ≥ 0, n = 1, 2, . . . , 2Nc.

(4.40)

Denoting h̃TD
i as the solution of (4.40), then hTD

i can be estimated as

ĥTD
i =

√
U h̃TD

i

‖h̃TD
i ‖

. (4.41)

Frequency-selective channel estimation methods using one-bit ADCs have been previously

proposed in [19, 21], and [65] based on the Bussgang decomposition, Additive Quantization

Noise Model (AQNM), and deep learning, respectively. The deep learning method in [65]

was shown to outperform the methods of [19,65] at low SNRs, but its performance tends to

degrade as the SNR increases. In addition, the method in [65] requires a training sequence

that contains many OFDM symbols, which are required to be orthogonal between different

users. In the proposed method, only one OFDM symbol is used in the training phase and

all users send their training symbols concurrently.

4.3.2 Proposed SVM-based Data Detection in OFDM Systems

with Frequency-Selective Fading Channels

This section describes how SVM can also be used for data detection in OFDM systems with

frequency-selective fading channels. The received quantized vector in (4.37) can be rewritten

as

ȳTD
i = sign

(
ḠFD
i x̄FD + z̄TD

i

)
(4.42)
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where ḠFD
i = [ḠTD

i,1 ΓH , . . . , ḠTD
i,UΓH ] ∈ CNc×NcU and x̄FD = [(x̄FD

1 )T , . . . , (x̄FD
U )T ]T is the

transmitted symbol vector from the U users over Nc subcarriers. By stacking all the received

signal vectors
{
ȳTD
i

}
i=1,...,N

in a column vector, we have the following equation:

ȳTD = sign
(
ḠFDx̄FD + z̄TD

)
(4.43)

where ȳTD =
[
(ȳTD

1 )T , (ȳTD
2 )T , . . . , (ȳTD

N )T
]T

and ḠFD =
[
(ḠFD

1 )T , (ḠFD
2 )T , . . . , (ḠFD

N )T
]T

.

Let yTD, GFD, and xFD be the real-valued versions of ȳTD, ḠFD, and x̄FD, respectively.

Converting (4.43) to the real domain as in (4.23)–(4.26), we can formulate an SVM problem

by treating the rows of GFD as the feature vectors, the elements of yTD as the binary

indicators and xFD as the weight vector. The solution of the SVM problem then provides

the detected data.

4.4 Numerical Results

This section presents numerical results to show the superiority of the proposed methods

against existing ones. For the simulations we set C = 1 and parameter ν for the second

stage of the SVM-based detection method as ν = min
{
%
10

+ 1.5, 3
}

for QPSK and ν =

min
{
%
10

+ 1.3, 1.5
}

for 16-QAM where % is the SNR. The length of the block-fading interval

is set to 500 (i.e., Tt + Td = 500) unless otherwise stated. For solving the proposed SVM-

based channel estimation and data detection problems, the Scikit-learn machine learning

library [66] is used.

Figure 4.2 presents a performance comparison of different channel estimation methods in

terms of NMSE, defined here as NMSE = E
[
‖Ĥ − H̄‖2

F

]
/(UN), where Ĥ is an estimate of

the channel H̄. It can first be seen that the soft-SVM method performs worse than the other

methods. The error floor of the proposed SVM-based channel estimator is lower than that

of the BMMSE estimator, and the proposed SVM-based joint CE-DD method significantly

improves the channel estimation accuracy. This is due to the help of the to-be-decoded data
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Figure 4.2: NMSE comparison between different channel estimators with U = 4, N = 32, and Tt = 20.
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Figure 4.3: NMSE comparison between BMMSE and the proposed SVM-based channel estimator with U = 4,
N = 32, and Tt ∈ {20, 40, 100}.

in refining the channel estimate.

Figure 4.3 compares the NMSE of BMMSE with the NMSE of the proposed SVM-based

method for different values of Tt. It is observed that the high-SNR error floor of the BMMSE

method quickly reaches a bound as Tt increases. However, the performance of the proposed

SVM-based method improves as Tt increases. The error floor of BMMSE even with Tt = 100

is still higher than that of the proposed SVM-based method with a much shorter training
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Figure 4.4: Effect of Td on the NMSE of the proposed SVM-based joint CE-DD with U = 4, N = 32, and
Tt = 20 at % = 30 dB.
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Figure 4.5: NMSE comparison between the BMMSE channel estimator and the proposed SVM-based channel
estimator for spatially correlated channels with U = 4, N = 32, and Tt = 20.

sequence (Tt = 20). The results in Figure 4.3 show that increasing Tt can help improve

the channel estimation accuracy. However, the spectral efficiency of the system is adversely

affected as a result. Thus, the proposed SVM-based joint CE-DD method can help improve

both the channel estimation performance and the spectral efficiency.

The effect of Td on the NMSE of the proposed SVM-based joint CE-DD method is studied

in Figure 4.4. It can be seen that as Td increases, the channel estimation performance of the

SVM-based joint CE-DD method reaches a bound. It is also seen that with a data segment

of only about 150 time slots, the channel estimation accuracy can asymptotically reach the

bound, which is much better than the performance of using only the training sequence (the

red star symbol).
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Figure 4.6: Performance comparison between the proposed two-stage SVM-based data detection method
and ML detection [1] with perfect CSI, QPSK modulation, and U = 4. The average cardinalities of X for
N = 16 and N = 32 are 2.9352 and 1.6140, respectively.
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Figure 4.7: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, QPSK modulation, N = 32, U = 4, and Tt = 20.

Figure 4.5 presents channel estimation results for spatially correlated channels. We use

the same typical urban channel model as in [21]. The power angle spectrum of the channel

model follows a Laplacian distribution with an angle spread of 10◦. The simulation results

indicate the performance advantage of the proposed SVM-based solution over the BMMSE

method at high SNR, and thus justify the SVM-based problem formulation in (4.20).
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In Figure 4.6, the proposed two-stage SVM-based data detection method is compared

with the ML and nML detection methods for the case of perfect CSI. It is observed that

the performance of the proposed method is very close to that of the ML method after two

stages. It should be noted that the ML method performs well but it is an exhaustive-search

method and so its computational complexity is prohibitively high for large-scale systems.

While the nML method is applicable for large-scale systems, it is not robust at high SNRs.

This non-robustness occurs regardless of the quality of the CSI, since nML depends on the

gradient of a fractional form whose numerator and denominator both rapidly approach zero.

It should also be noted that the average cardinalities of X for N = 16 and N = 32 are 2.9352

and 1.6140, respectively. This means the second stage of the proposed method is relatively

simple to implement since it only has to search over a few candidates.

For the case of imperfect CSI, a bit-error-rate (BER) comparison is provided in Figure 4.7,

where the estimated CSI is obtained by the SVM-based channel estimator. Here, the SVM-

based joint CE-DD method can be compared with other methods because it also starts

with CSI estimated by the SVM-based channel estimator. It is seen that both the ML and

nML detection methods are non-robust at high SNRs with imperfect CSI. The susceptibility

of ML was also reported in [46]. An explanation for the susceptibility of ML detection

can be found in Appendix D. It is also observed that the proposed SVM-based and OSD

detection methods give the same performance. However, the proposed SVM-based joint CE-

DD algorithm significantly outperforms other methods and its performance is quite close to

the performance of the ML method with perfect CSI. This performance enhancement is due

to the refined channel estimate obtained by solving (4.36).

Although the SVM-based and OSD methods give the same performance, the compu-

tational complexity of the SVM-based approach is much lower than that of OSD. This is

illustrated in Figure 4.8. The average run time required to perform data detection over a

block-fading interval of 500 slots is calculated. Note that the OSD method contains two

stages: a preprocessing stage and a detection stage. It is observed that the OSD method
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Figure 4.8: Run time comparison between OSD and the proposed SVM-based detection method with QPSK
modulation, N = 32, and U varies.
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Figure 4.9: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, QPSK modulation, N = 64, U = 8, and Tt = 40.

has a low-complexity detection stage. Interestingly, Figure 4.8 indicates that the run time of

proposed SVM-based method is comparable to that of the OSD detection stage. However,

the OSD method requires a high-complexity preprocessing stage, which scales exponentially

with the number of users. This makes the total complexity of the OSD method much higher

than that of the SVM-based method, as observed in the figure.

Figure 4.9 and Figure 4.10 provide BER comparisons between the proposed SVM-based

data detection methods and other existing methods with QPSK and 16-QAM modulations
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Figure 4.10: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, 16-QAM modulation, N = 128, U = 8, and Tt = 40.
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Figure 4.11: NMSE comparison between different channel estimators for an OFDM system in a frequency-
selective channel with U = 2, N = 16, and L = 8.

using the CSI estimated by the SVM-based channel estimator. Due to their high compu-

tational complexity, we are not able to provide the BER of the ML and OSD detection

methods. Instead, the performance of the nML method and other linear receivers are pro-

vided as alternatives. The proposed methods not only outperform the existing methods but

are also robust at high SNRs.
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Figure 4.12: BER comparison between different data detection methods for an OFDM system in a frequency-
selective channel with Nc = 256, QPSK modulation, U = 2, N = 16, and L = 8.

Finally, channel estimation and data detection results for OFDM systems with frequency-

selective fading channels are given in Figure 4.11 and Figure 4.12, respectively. It is observed

that the BMMSE channel estimator [21] slightly outperforms the AQNM-based channel es-

timator [19], but both of these methods have higher NMSE than the proposed SVM-based

channel estimator at high SNRs. More specifically, the high-SNR error floor of the SVM-

based method is about 3-dB lower that that of the BMMSE and the AQNM-based methods.

In Figure 4.12, data detection results show that the SVM-based method considerably out-

performs the Regularized Zero-Forcing (RZF) of [19]. At high SNRs, the BER of the RZF

method even with perfect CSI is much higher than the BER of the SVM-based method with

estimated CSI.
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Chapter 5

Conclusion

This report has shown that the channel estimation and data detection problems in MIMO

systems with low-resolution ADCs can be addressed effectively by machine learning-based

methods. Chapter 3 proposed two new learning methods for enhancing the performance

of blind detection in MIMO systems with low-resolution ADCs. The supervised learning

method exploits the use of CRC in practical systems to gain more training data. The semi-

supervised learning method is based on the perspective that the to-be-decoded data can itself

help the detection task thanks to grouping of received symbol vectors for the same trans-

mitted signal. Numerical results demonstrate the performance improvement and robustness

of our proposed methods over existing techniques. Numerical results also show that the two

proposed learning methods require only a few iterations to converge. A performance analysis

for the proposed methods has also been carried out by evaluating the VER in different SNR

regimes. In addition, a new criterion for the transmit signal design problem has also been

proposed.

Chapter 4 showed how linear SVM, a well-known machine learning technique, can be

exploited to provide efficient and robust channel estimation and data detection. SVM-based

channel estimation methods for both uncorrelated and spatially correlated channels, a two-

stage SVM-based data detection method, and an SVM-based joint CE-DD method were

60



proposed. Extension of the proposed methods to OFDM systems with frequency-selective

fading channels was also derived. The key idea is to formulate the channel estimation and

data detection problems as SVM problems so that they can be efficiently solved. Simulation

results revealed the superiority of the proposed SVM-based methods against existing ones

and the gain is greatest for moderate to high SNR regimes.
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Appendix A

Proof of Proposition 3.2

We first express Px̌k→x̌k′
as follows:

Px̌k→x̌k′
= P

[
‖y − y̌k‖2

2 ≥ ‖y − y̌k′‖2
2

∣∣ x = x̌k

]
= P

[
‖υ‖2

2 + 2<{υHw} ≤ 0
]

= P
[ Nr∑
i=1

(
|υi|2 + 2<{υ∗iwi}

)
≤ 0
]
. (A.1)

By letting εi = |υi|2 + 2<{υ∗iwi}, (A.1) becomes

Px̌k→x̌k′
= P

[ Nr∑
i=1

εi ≤ 0
]
. (A.2)

In order to approximate the probability in (A.2), we need to compute the mean and variance

of εi. The mean of εi is

E[εi] = E
[
|υi|2 + 2<{υ∗iwi}

]
= E

[
|υi|2

]
= σ2

kk′ . (A.3)

The variance of εi is given as

σ2
εi

= Var
[
|υi|2

]
+ Var

[
2<{υ∗iwi}

]
+ 2 Cov

(
|υi|2, 2<{υ∗iwi}

)
. (A.4)
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The first term in the right-hand side of (A.4) is

Var
[
|υi|2

]
= E

[
|υi|4

]
− E

[
|υi|2

]2
= σ4

kk′ . (A.5)

The second term in the right-hand side of (A.4) is

Var
[
2<{υ∗iwi}

]
= Var

[
υ∗iwi

]
+ Var

[
υiw

∗
i

]
+ 2 Cov

(
υ∗iwi, υiw

∗
i

)
. (A.6)

Since Var
[
υ∗iwi

]
= Var

[
υiw

∗
i

]
= E

[
|υi|2

]
= σ2

kk′ , and Cov
(
υ∗iwi, υiw

∗
i

)
= 0, we have

Var
[
2<{υ∗iwi}

]
= 2σ2

kk′ . (A.7)

The last term in the right-hand side of (A.4) is

Cov
(
|υi|2, 2<{υ∗iwi}

)
= E

[
|υi|22<{υ∗iwi}

]
+ E

[
|υi|2

]
E
[
2<{υ∗iwi}

]
= 0, (A.8)

since E
[
|υi|22<{υ∗iwi}

]
= E

[
|υi|2(υ∗iwi+υiw

∗
i )
]

= 0 and E
[
2<{υ∗iwi}

]
= E

[
υ∗iwi

]
+ E

[
υiw

∗
i

]
= 0.

Substituting the results in (A.5), (A.7), and (A.8) into (A.4) yields the variance of εi as

σ2
εi

= σ4
kk′ + 2σ2

kk′ . (A.9)

The variables {εi}i=1,...,Nr are i.i.d. because of the i.i.d. elements in H. Hence, by the central

limit theorem, the variable
∑Nr

i=1 εi in (A.2) can be approximated by a Gaussian random

variable with mean Nrσ
2
kk′ and variance Nr(σ

4
kk′ + 2σ2

kk′). Finally, the probability in (A.2)

can be approximated as

Px̌k→x̌k′
≈ Φ

(
−Nrσ

2
kk′√

Nr(σ4
kk′ + 2σ2

kk′)

)
= 1− Φ

(√
Nr/(1 + 2/σ2

kk′)
)
. (A.10)
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Appendix B

Proof of Theorem 3.1

For two labels x̌<k and x̌<k′ , we can always find two disjoint index sets Ic and Id such that

x̌<k,i = x̌<k′,i 6= 0, ∀i ∈ Ic, and x̌<k,i = −x̌<k′,i ∀i ∈ Id. We denote d = |Id| as the Hamming

distance between the two labels x̌<1 and x̌<k . Note that d ≤ Nt and |Ic| = Nt − d for BPSK

signaling. The two vectors g<1 and g<k can now be expressed as g<k = gc+gd and g<k′ = gc−gd,

where gc and gd are the summations of the Nt − d and d columns of H corresponding to

the indices given in Ic and Id, respectively. For Rayleigh fading with unit variance, gc is

N (0, Nt−d
2

I2Nr) and gd is N (0, d
2
I2Nr).

The probability that sign(g<1,i) = sign(g<k,i) is given as

P
[

sign(g<k,i) = sign(g<k′,i)
]

=
2

π
arctan

√
Nt − d
d

. (B.1)

This is obtained by applying a result in [1], which states that if a ∼ N (0, σ2
a) and b ∼ N (0, σ2

b )

then

P
[

sign(a+ b) = sign(a− b)
]

=
2

π
arctan

σa
σb
. (B.2)

Due to the independence between the events sign(g<k,i) = sign(g<k′,i), for i = 1, 2, . . . , 2Nr, the

result in (3.37) thus follows.
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Appendix C

Proof of Proposition 3.4

Without loss of generality, we assume that x̌<1 = [1TNt
,0TNt

]T was transmitted. Denote Ek, 1 <

k ≤ K, as the event y̌1 = y̌k. The detection error event E is then defined as E =
⋃
k>1Ek.

We want to find the VER given event E and subsequently prove that P ver
ρ→∞ ≤ 1

2

∑K
k>1 P(Ek).

We note that E2, . . . , EK are not necessarily mutually exclusive nor independent. However,

we can combine E2, . . . , EK into larger eventsG1, . . . , GL that are mutually exclusive. Herein,

the rule for forming G` is as follows:

1. If Ek is mutually exclusive with all other events, then Ek ⊂ G1.

2. If a pair of events Ek and Em intersect, i.e., Ek ∩ Em 6= ∅, but Ek ∪ Em is mutually

exclusive with all other events, then (Ek ∪ Em) ⊂ G2.

3. G3, . . . , GL are then formed in a similar fashion.

Certainly, if Ek ⊂ G`, then Ek ∩ G`′ = ∅, for `′ 6= `. This combining strategy effectively

partitions E into mutually exclusive events G1, . . . , GL. The VER is calculated as:

1. If event Ek ⊂ G1 has occurred, the receiver would erroneously pick the detected vector

x̂<k 6= x̌<1 with a probability of 1/2, i.e., VER = 1/2.

2. For any two events Ek, Em ⊂ G2 and Ek ∩ Em 6= ∅, we consider the following three

partitions of Ek ∪ Em:
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• If Ek ∩ Ec
m has occurred, VER = 1/2.

• If Ec
k ∩ Em has occurred, VER = 1/2.

• If Ek ∩Em has occurred, the receiver would erroneously pick the detected vector

as either x̂<k or x̂<m with a probability of 2/3, i.e., VER = 2/3.

We then have

1

2
P[Ek ∩ Ec

m] +
1

2
P[Ec

k ∩ Em] +
2

3
P[Ek ∩ Em]

≤ 1

2
P[Ek ∩ Ec

m] +
1

2
P[Ec

k ∩ Em] + P[Ek ∩ Em] =
1

2
P[Ek] +

1

2
P[Em]. (C.1)

3. The same principle of partitioning can be applied for events in G3, . . . , GL to calculate

the VER.

Therefore, P ver
ρ→∞ is upper-bounded as

P ver
ρ→∞ ≤

∑
Ek⊂G1

1

2
P[Ek] +

∑
Ek⊂G2

1

2
P[Ek] + . . .

=
1

2

K∑
k>1

P[Ek]. (C.2)

The inequality presented in the proposition follows by combining the result in Theorem 3.1

and noting that there are
(
Nt

d

)
labels with Hamming distance d from x̌<1 . If the error event

E is comprised of only mutual events E2, . . . , EK , the inequality (C.2) becomes P ver
ρ→∞ =∑K

k=2
1
2
P[Ek]. Thus, the VER upper-bound becomes tight in this case.
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Appendix D

Explanation for the susceptibility of

ML detection at high SNRs with

imperfect CSI

The ML detection method of [1] is defined as

x̂ML
d,m = arg max

x̄∈MU

2N∏
i=1

Φ
(√

2%yd,m,iĥ
T
d,ix
)

︸ ︷︷ ︸
P(x)

, (D.1)

where x = [<{x̄}T ,={x̄}T ]T , P(x) is the likelihood function, and Φ(t) =
∫ t
−∞

1√
2π
e−τ

2/2dτ is

the cumulative distribution function of the standard Gaussian random variable. It is clear

that as %→∞, we have


Φ
(√

2%yd,m,iĥ
T
d,ix
)
→ 0 if yd,m,iĥ

T
d,ix < 0,

Φ
(√

2%yd,m,iĥ
T
d,ix
)
→ 1 if yd,m,iĥ

T
d,ix > 0.

This means, as %→∞, P(x) = 0 if there exists at least one index i such that yd,m,iĥ
T
d,ix < 0

and P(x) = 1 if yd,m,iĥ
T
d,ix > 0 for all i.
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Now, suppose that a vector x̄? was transmitted and let x? = [<{x̄?}T ,={x̄?}T ]T . If the

CSI is perfectly known, i.e., ĥd,i = hd,i, we have yd,m,iĥ
T
d,ix

? > 0 for all i because yd,m,i =

sign(hTd,ix
?) = sign(ĥTd,ix

?) as %→∞. In other words, P(x?) = 1 if the CSI is perfectly known

at infinite SNR. However, if the CSI is not known perfectly, i.e., ĥd,i 6= hd,i, there is a non-

zero probability that yd,m,i = sign(hTd,ix
?) 6= sign(ĥTd,ix

?), which means yd,m,i sign(ĥTd,ix
?) < 0.

This causes P(x?) = 0. For any x 6= x?, it is possible that yd,m,i = sign(hTd,ix
?) 6= sign(ĥTd,ix),

which also leads to P(x) = 0. Hence, detection errors occur. The above explanation is argued

at infinite SNR, but it is also valid for high SNRs because Φ(t) approaches 0 very fast.

To remove the product in (D.1), one may argue to transform the function L(x) into a

sum of log functions as follows:

x̂ML
d,m = arg max

x̄∈MU

2N∑
i=1

log Φ
(√

2%yd,m,iĥ
T
d,ix
)

︸ ︷︷ ︸
P(x)

. (D.2)

However, the function P(x) in (D.2) still depends on Φ(·) and can involve log(0). The

proposed SVM-based data detection method is robust against imperfect CSI since it does

not depend on the Φ(·) function and information about the SNR is not required either.

We note that the OSD method in [43] is also robust against imperfect CSI thanks to

the use of the approximation Φ(t) ≈ 1
2
e−0.374t2−0.777t for non-negative t. This approximation

helps remove the effect of log Φ(·) in (D.2) since log ea = a. However, the OSD method has

higher computational complexity than the proposed SVM-based methods.
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