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Abstract
The common way to define a curl operator considers Stoke’s Theorem and the concept of circulation. Common
numerical discretizations for this operator also use this approach. In this work, we revisit the construction of the
curl operator using an extended form of Gauss’ Divergence Theorem instead. This new approach allows us to
present a discretization framework that naturally inherits all the desirable properties of the mimetic differential
operators. We present the mathematical justification for this new approach and we test the mimetic curl operator
on 2D test cases. Physical applications concern the computational study of hurricanes.
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1. Introduction: The Curl Operator
In this work, we are interested in the curl operator. Figure 1
shows a given vector field.

Figure 1. A given vector field, v.

As the reader should recall, the curl differential operator
computes a vector field, which is orthogonal to the argument
field, and which, physically speaking, gives the direction
of maximum torque. Figure 2 renders the curl for the field
showed in Figure 1.

Figure 2. The curl vector field for v, curl v.

Let i = (1,0,0), j = (0,1,0), and k = (0,0,1) denote the
standard canonical basis for any Euclidean Space E3, and let

v(x) = p(x)i+q(x)j+ r(x)k (1)

be a smooth 3D vector field. We then define:

curl v ,

(
∂ r
∂y
− ∂q

∂ z

)
i+
(

∂ p
∂ z
− ∂ r

∂x

)
j+
(

∂q
∂x
− ∂ p

∂y

)
k.

(2)

In the usual approach to discretize the curl operator, the
three scalar components of curl v are regarded as projections
upon normals n to surfaces S whose boundary C is a closed
circuit, so that if A(S) denotes the area of S, then, by Stokes’
Theorem, we have, for the mean value of curl v ·n over S, the
standard expression:

mean (curl v ·n) = 1
A

∮
C

F ·dr, (3)

which leads to the following conclusion:

curl v ·n = lim
A 7−→0

1
A

∮
C

F ·dr. (4)
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Figure 3. A small rotating disk S, bounded by C, with an orienting normal n. A limiting process then takes place by collapsing
the diameter of S to 0, thus allowing for a definition for the curl operator based on Stokian circulation.

Figure 3 summarizes the limiting process used to attain the
previous definition.

If S is a 2D rectangle (for example) then C appears as a
set of four rectilinear edges for S, and the evaluation of the
circulation of v along C needs an estimation for the so called
tangential components of v (Figure 3). This in turn, implies
the introduction of dual spaces in the context of the general
Stokes’ Theorem on manifolds.

In this work, we propose a different approach, so that such
introduction becomes unnecessary. We will rely on physical
intuition to look at this situation from a different point of view.

2. Mimetic Operators

In this work, we will define a discrete differential operator to
be mimetic, if and only if it satisfies all of the properties of its
continuous counterpart; including approximating the desired
solution with a uniform order of numerical accuracy all along
the discrete domain of interest (including the boundary).

We will denote a k-th order-accurate (k even and positive),
on the (x,y,z), (x,y), or x domains (3, 2, or 1D), mimetic
operator as:

1. Mimetic gradient: Ğk
{xyz,xy,x}

2. Mimetic divergence: D̆k
{xyz,xy,x}

3. Mimetic curl: C̆k
{xyz,xy,x}

Mimetic operators are built by means of computing the
entries of the stencil so that the resulting matrices satisfy the
following theorem [1]:

Theorem 2.1 (Extended Gauss Divergence Theorem) Let
f : R3 7−→ R be a scalar-valued field with continuous first
derivatives on some open superset of Ω, let v(x) = p(x)î+
q(x)ĵ+ r(x)k̂, for any x ∈ Rn (n > 1), where p, q, and r have
continuous first derivatives on some open superset of a solid
Ω, and let n be the outward normal orienting the bounding
surface of Ω, ∂Ω, then∫∫∫

Ω

(∇ f ) ·vdV +
∫∫∫

Ω

f (∇ ·v)dV =
∫∫
∂Ω

(v ·n) f dS (5)

Considering a discretized version of the previous results, for
an approximation of k-th order of numerical accuracy, leads
to:

〈Ğk f̃ , ṽ∆x〉P + 〈 f̃ , D̆kṽ∆x〉Q = 〈 f̃ , B̆ṽ〉. (6)

Castillo and Grone [2] studied and solved an important
drawback of the MFDs at the time through the Castillo–
Grone Method (CGM). In [3], the author presented a similar
approach for constructing mimetic operators, which is then
improved in [1]. This second explanation is referred to as the
Castillo–Runyan–Sanchez (CRS) algorithm. In [3], the au-
thor proposes a discretization scheme for the curl operator,
based upon the concept of circulation.

Although very descriptive, this proposed discretization
requires the interpolation of the argument vector field.

Our goal then is to construct a mimetic curl operator in
two and three dimensions, C̆k

{xyz,xy}, that profits from the high
accuracy up to the boundary exhibited by mimetic divergence
operators, without requiring any interpolation [1, 4].

We will revisit the definition for the curl operator, based
on Stokes’ Theorem, and we will instead construct the curl
operator using Theorem 2.1.
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Figure 4. A limiting process for an infinitesimally thin disk S with boundary C and orienting normal n created upon collapsing
surfaces Su and Sd , aligned through a mantle M of width w, which is then considered to tend to 0.

3. Redefining the Curl Through Gaussian
Fluxes

Mathematically, a closed circuit such as C is a 1D object,
and can be thought of as modeling a 3D thin wire having a
cross-section with an infinitely small diameter, thus collapsing
its three-dimensionality to only one dimension. In fact, this
was Faraday’s view when he formulated mathematically his
experimental magnetic induction Law observed in electric
circuits [5].

But there is an alternative way for collapsing a 3D object
down to a 2D object having a 1D boundary C. Instead of a 2D
plane surface S with oriented normal n, think of a thin three-
dimensional cylindrical plate, with cylindrical axis along n,
and having S as uniform cross-section. If this 3D cylindrical
plate becomes infinitely thin, then it becomes a 2D surface
with 1D boundary C, but now C is regarded as an object
which is a limiting form for a 2D band or cylindrical mantle
M, through which some vector field can flow, and some flux
can be computed there. This mantle M, together with two
surfaces parallel to S, to wit Su above S, and Sd below S, Su
and Sd having the same area A(S), and being very close to
one another, constitute the total surface boundary of a 3D thin
plate P (Figure 4).

Naturally, should we consider some 3D vector field which
is normal to n, and therefore, also parallel to Sd and Su, then
its Gaussian flux through the boundary of P would reduce to
the flux through its mantle M. Since M is a 2D band, with a
width w equal to the distance between the parallel surfaces Sd
and Su (Figure 5).

It follows that when w tends to zero, Sd and Su collapse
to S, and the 2D band M collapses to the 1D closed circuit C
(see Figures 4 and 5).

This visualization of geometric dimensional collapse will
allow us, in the next section, to numerically estimate the scalar

components of a 3D curl vector field from some adequate
2D fluxes, rather than from 1D circulations . This will be
possible by means of some auxiliary 2D vector fields. In turn,
these 2D fluxes will be related to Castillo–Grone 2D mimetic
divergence operators.

3.1 Auxiliary 2D Vector Fields
The basic definitions have already been described in [4], and
we transcribe them here with some notational changes. There,
the type of 2D staggering needed in order to compute the 2D
curl, is worked out in detail, but the combination of simulta-
neous staggerings in the x, y and z-directions needed in the
3D case, is only hinted at graphically (See Figure 4.10 in [4]).
In the present work, a more detailed presentation is given.

These auxiliary vector fields, will be defined as follows.
If:

curl v = i
(

∂ r
∂y
− ∂q

∂ z

)
+ j
(

∂ p
∂ z
− ∂ r

∂x

)
+k
(

∂q
∂x
− ∂ p

∂y

)
,

(7)

then, for the 3D vector field v, we define the following three
2D auxiliary vector fields:

v∗xy = v×k = iq− jp = iP∗xy + jQ∗xy (8)
v∗yz = v× i = jr−kq = jQ∗yz +kR∗yz (9)
v∗zx = v× j = kp− ir = kR∗zx + iP∗zx. (10)

From here it follows immediately that:

curl v(x,y,z) = idiv v∗yz + jdiv v∗zx +kdiv v∗xy. (11)

Therefore, the 3D vector expression for curl v at some
point (x,y,z) depends upon three scalar 2D divergences eval-
uated at that point. These 2D divergences, simultaneously
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Figure 5. A Gaussian-like flux, through the infinitesimally thin disk S.

needed for our 3D curl v, all arise from 2D fluxes of vectors
v∗yz, v∗zx and v∗xy, and these vector fields lie in planes orthogonal
to the coordinate axis, passing through the point (x,y,z) where
curl v is evaluated (Figure 9).

By its definition, v∗xy lies in a plane orthogonal to the
z-axis, and we have that (for 2D vector fields):

< k,curl v(x,y,z)>= div v∗xy(x,y,z). (12)

Analogously:

< i,curl v(x,y,z)> = div v∗yz(x,y,z) (13)
< j,curl v(x,y,z)> = div v∗zx(x,y,z). (14)

As far as the construction of the 2D mimetic operators,
if the natural lexicographical order is chosen, we can build
the 2D counterparts to higher-order mimetic operators, as
follows [3]:

Ğk
xy =

[
Gx(k)
Gy(k)

]
, (15)

D̆k
xy = [Dx(k)Dy(k)] , (16)

where each auxiliary discretization matrix along each spatial
dimension can be computed from the 1D mimetic operator, as
follows:

Gx(k) = ÎT
n ⊗ Ğk

x (17)
Gy(k) = Ğk

y⊗ ÎT
m (18)

Dx(k) = În⊗ D̆k
x (19)

Dy(k) = D̆k
y⊗ Îm (20)

Let us go back to Stokes and Gauss while considering the
component of curl v along the z-axis, i.e., < k,curl v(x,y,z)>.

Stokes reads as:∫∫
< k,curl v(x,y,z)> dxdy = (21)∮
(p(x,y,z)dx+q(x,y,z)dy),

Now, when idx+ jdy is a tangent vector of length ds along a
counterclockwise oriented circuit Cxy in the x-y Plane, then
idy− jdx is a normal field nds, outwardly directed to Cxy, and
the previous Stokes’ formula can be now read “Gauss-like” as
follows:∫∫

(div v∗xy(x,y,z))dxdy =
∮
(P∗xy(x,y,z)dy−Q∗xy(x,y,z)dx)

=
∮

< iP∗xy + jQ∗xy, idy− jdx >

=
∮

< v∗xy(x,y,z),n(x,y,z)> ds.

Since these expressions also equal the mean value of the
quantity < k,curl v(x,y,z) > times the area of the surface
surrounded by Cxy, then we see that this mean value:∮

< v∗xy(x,y,z),n(x,y,z)> ds (22)

equals the outward flux of v∗xy through Cxy, divided by the
above surface area.

It can then be seen that this approach preserves the origi-
nal behavior inherent to the functioning of Stoke’s theorem.
Furthermore, this approach is simple, in the sense that, in its
foundation, it is just a change of variables.



Constructing a Mimetic Curl using Gauss’ Theorem — 5/9

4. Spatial Discretization Through
Staggered Grids

The 2D space is discretized through a staggered grid, as shown
in Figure 6.

Figure 6. A logically rectangular, 2D uniform staggered grid,
as rendered by a visualizer developed by the first author,
available in [6].

However, the introduction of the auxiliary vector fields
span a shifting on the staggered grid. In the case of a 2D
vector field. Figure 7 shows this.

Figure 7. The auxiliary vector fields acting on a 2D domain
implicitly define a translation of the grid, thus making up for
the interpolation of the original method proposed in [3].
Source of image: [4].

The same occurs in the case of a 3D vector field, as it can
be seen in Figure 8. It should be apparent that this implicit
translation of the coordinates, makes up for the interpolation
previously required.

Figure 8. The auxiliary vector fields acting on a 3D domain
implicitly define a translation of the grid, thus making up for
the interpolation of the original method proposed in [3].
Source of image: [4].

Figure 9. A detailed depiction of two out of three auxiliary
fields on a cell of the auxiliary grid, discretizing a 3D vector
field.

Figure 9 provides a more detailed depiction of how is each
cell (in the auxiliary grid) discretized. Figure 10 provides an
intuitive depiction of how is the operator bound to the grid.
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Figure 10. Actual computation of the 3D curl and its binding
to the implicitly defined auxiliary staggering.

5. A 2D Test Case Based on the
Definition of Angular Motion

Let:

v(x,y,z) =−iy+ jx. (23)

This vector field is plotted in Figure 11.

Figure 11. Vector field: v(x) =−yi+ xj.

Since v=k×(ix+jy), we have p(x,y,z)=−y, q(x,y,z)=
x, and r(x,y,z) = 0. In this case, we know that v× k =
i× x + jy = v∗xy(x,y,z). Thus, div v∗xy = 1 + 1 = 2, which
is constant throughout the grid. Figure 12 shows this.

In order to test the correctness of the 2D mimetic diver-
gence, Figure 13 shows a suggested vector field, which is
designed based on the test case of interest. This vector field
was discretized on a staggered grid, and its divergence was
then computed. The results are given in Figure 14.

The suggested vector field, was then discretized, on a
staggered grid, and the auxiliary vector fields, were also dis-
cretized. Figure 15 plots the auxiliary vector field.

Figure 12. Known curl field: ∇×v = 2k.

Figure 13. A 2D discretization of the proposed vector field,
on a logically rectangular 2D uniform staggered grid, to test
the correctness of D̆2

xy.

Figure 14. Result of applying D̆2
xy.

Figure 16 shows the computed mimetic curl, through the
Gaussian approach. This plot has to be compared with that of
Figure 12. It should be clear, given the mathematical nature
of the selected vector field, that the result is correct.



Constructing a Mimetic Curl using Gauss’ Theorem — 7/9

Figure 15. Auxiliary vector field: v∗xy = v×k.

Figure 16. Computed mimetic curl (Gaussian).

6. A Vector Field Modeling Hurricanes
In order for us to try the proposed approach on a model that
has physical meaning, we propose the following test case.
From [7], a hurricane model that combines a velocity field
(counterclockwise vortex flow) around a chosen reference
point (e.g. the origin) of strength k, v1(x,y), and a uniform
sink flow toward the reference point of strength q, v2(x,y), is:

h(x,y) = v1(x,y)+v2(x,y) (24)

or

h(x,y) =− 1
2π(x2 + y2)

[(qx+ ky)i+(qy− kx)j]. (25)

In this work: q = k = 2π .
Both components, v1 and v2 of the proposed model are

rendered in Figures 17 and 18. A hurricane model that com-
bines a velocity field (counterclockwise vortex flow) around
a chosen reference point (e.g. the origin) is rendered in Fig-
ure 19.

Figure 17. A velocity field v1 described by a
counterclockwise vortex flow.

Figure 18. A velocity field v2 described by a uniform sink
flow.

Figure 20 shows first the computed divergence of the
proposed 2D field modeling the hurricanes. One can notice,
that this particular vector field has an avoidable discontinuity
in the origin.

Figure 21 shows the computed curl field. In this context,
the importance of the curl is that it allows us to compute the
vorticity at any point, defined as

Γ = 2||∇×h||. (26)
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Figure 19. A hurricane model that combines a velocity field
(counterclockwise vortex flow) around a chosen reference
point (e.g. the origin) of strength k, v1(x,y), and a uniform
sink flow toward the reference point of strength q, v2(x,y).

Figure 20. Computed divergence of the hurricane model, i.e.
∇ ·h.

Figure 21. Computed curl of the hurricane model, which
allows then to numerically compute the vorticity as
Γ = 2||∇×h||, across the given domain.

7. Summary, Conclusions, and Future
Work

We have presented a new construction of the curl operator,
which is compatible with the framework of mimetic operators:

C̆k
xyzṽ(x) = D̆k

yzṽ
∗
yz(x)i+ D̆k

zxṽ∗zx(x)j+ D̆k
zyṽ∗zy(x)k

C̆k
xyṽ(x) = D̆k

xyṽ∗xy(x)k

No interpolation is required and it can be generalized to a
computational implementation for any order of accuracy. No-
tice that for 1D domains, the curl collapses to a divergence
except that shifted.

In terms of future work, we suggest to compute the curl
of:

v=(i+j+k)×(ix+jy+kz)= i(z−y)+j(x−z)+k(y−x).

(27)

In this case, curl v(x,y,z) = 2i+ 2j+ 2k, which is constant
throughout the entire 3D grid.

Then, we want to integrate this to the The Mimetic Meth-
ods Toolkit (MTK), an API for the intuitive implementation
of Mimetic Finite Differences in scientific applications [8].
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