

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2014

Regridding Data: A Package to Interpolate,
Extrapolate, and Fitt a Curve

M. Abouali and Jose E. Castillo

March 16, 2014

Publication Number: CSRCR2014-02

Regridding Data: A package to interpolate, extrapolate, and Fitt a
Curve

M. Abouali ∗1 and Jose E. Castillo2

1Ph.D. Candidate at San Diego State University
2Director, Computational Science Research Center, San Diego State University

March 16, 2014

1 Introduction
The idea of representing a data field via parameterization of a function is not new. In fact, if the functions or
basis are sine and cosine, the procedure is known as the Fourier transformation. Many meshless methods make
frequent use of radial basis functions (RBF) such as the Gaussian function, and polynomial functions are also used
frequently. If the degree of the polynomial is equal to one, then the procedure is called a linear/bilinear/trilinear
interpolation in a 1D/2D/3D domain. In geophysical fluid models and many other numerical models, the data is
often stored in one location, but its value is needed at multiple locations. For example, in the A-grid approach,
all variables, including the velocity and pressure, are stored at the cell centers; however, in order to calculate the
fluxes, they are also needed at the cell faces. Therefore, some type of interpolation must be performed. Depending
on the curvature of the boundary in curvilinear grids, one might need to use extrapolation. Another approach is
to fit a surface to the data points and evaluate it at the desired locations. Hereafter, all of these methods will be
used interchangeably (although mathematically they are not the same procedure), or they may simply referred to
as ”regridding” or ”reprojecting”.

The choice of interpolating functions can also affect the stability of the numerical scheme in use. As mentioned
above, there are numerous choices available; however, these procedures are quite time-consuming (e.g., in fluid
models, the same procedure has to be performed millions of times). In some methods, including Kriging’s, the
values of the data must be known before beginning the method. However, in most approaches, the most time-
consuming aspect of the method depends on the locations of the points, and not on the value of the data. (The
polynomial approach is one such method.) Programs such as SCRIP scr (n.d.), NCL ncl (n.d.), and ESMF esm
(n.d.), pre-calculate the ”interpolation weights”. Once the weights are known, the re-projecting procedure would
be reduced to a single matrix multiplication. While ESMF and NCL allow for scattered data interpolation, SCRIP
only works on structured data. In addition, all of these packages support only interpolation, and not extrapolation
or a curve-fitting approach.

Due to their importance, a MATLAB package was developed to calculate these interpolation weights. They can
now be interpolated, extrapolated, or fit into a local surface of the data. This package can be used for structured,
non-structured, and even scattered grids. The following section describes the equations, how the matrix is formed,
and explains important results.

2 Governing Equations
Let us assume fj is a measured or computed parameter, such as pressure or temperature, at locations denoted by
(xj , yj) for 2D distribution and (xj , yj , zj) for 3D distribution, where j ∈ [1, n] and n is the number of points. These
points, with a known value, are called source points or the source grid. Note that there is no assumption made as to
how these points are distributed; therefore, the source grid can be structured, unstructured, or even scattered. In
polynomial presentation, the aim is to describe the spatial variation of the parameter with a polynomial functions;
This function can be written as follows:

∗maboualiedu@gmail.com

1

f = f(x, y) =
pd∑

p1=0

pd∑
p2=0

ap1,p2x
p1yp2 , (1)

for 2D grids and in 3D grids as:

f = f(x, y, z) =
pd∑

p1=0

pd∑
p2=0

pd∑
p3=0

ap1,p2,p3x
p1yp2zp3 , (2)

where pd is the polynomial degree, and ap1,p2 or ap1,p2,p3 are the polynomial coefficients that must be determined.
These coefficients are also called free parameters. There are various well-known approaches to determine these
coefficients, including Lagrange, Newton, and Barycentric interpolations. Once these coefficients are determined,
one can replace (x∗

i , y
∗
i , z

∗
i) at the point, where there is no measurement or computed value, in order to estimate a

value for the parameter, i.e. f∗
i , where i ∈ [1,m] and m is the number of points. These points, whose values are

unknown, are called the destination grid.
In 2D there are ns = (pd + 1)2 free parameters and in 3D there are ns = (pd + 1)3; by substituting the value

and location of the points on the source grid we can form a system of equations to determine the free parameters
and uniquely define the polynomial. If exactly ns points from the source grid are chosen to form the system of the
equation, the resulting polynomial passes exactly through the points on the source grid. Therefore, it would either
be interpolation (once the destination point falls within the convex hull of the source grid) or extrapolation (once
the destination point falls outside). If more points than the minimum required are used we are actually fitting a
curve to the source grid.

If all points at the source grid are used to determine the polynomial coefficients, the resulting polynomial is
considered ”global”; however, if only a subset of points on the source grid are used to form the polynomial for each
point on the destination grid, then the polynomial is termed ”local.”

This entire procedure can be thought of as a transform function, which projects/transforms/regrids data from
the source grid onto the destination grid. Note that no assumptions on any of the grids are made, so they can
be structured, unstructured, or even scattered. The software package introduced here uses the local polynomial
approach by inverting the resulting Vandermonde matrices. Vandermonde matrices are known to be poorly condi-
tioned for large polynomial degrees. Another issue regarding high pd is the Runge phenomenon and the oscillation
arising at the boundaries. Both of these issues requires the user to choose pd, carefully.

This entire procedure can be simplified as a sparse matrix, Pm×n, which can then be used to re-project data
from the source grid onto the destination grid with a single matrix multiplication, i.e.:

f∗
m×1 = Pm×nfn×1, (3)

where fn×1 = [f1, f2, · · · , fn]T and f∗
m×1 = [f∗

1 , f
∗
2 , · · · , f∗

m]T . The following outlines how this matrix was con-
structed; for the simplicity’s sake, the procedure is described for 2D source grids with pd = 1.

Let us assume si points were used on the source grid to project data onto the ith point on the destination grid.
Note that si could be a different value for each point; however, si > ns. Let us also assume Si = [fj1, fj2, · · · , fjsi]T
are the si closest points to the ith point on the destination grid. We then determine

f∗
i = Pi


fj1
fj2
...

fjsi

 , (4)

where Pi is a 1× si matrix computed as follows:

Pi = A∗ (ATA
)−1

AT , (5)

and:

Asi×ns =


1 xj1 yj1 xj1yj1
1 xj2 yj2 xj2yj2
...

...
...

...
1 xjsi

yjsi
xjsi

yjsi

 , (6)

2

and:

A∗
1×ns

=
(

1 x∗
i y∗

i x∗
i y

∗
i

)
. (7)

Pi must be calculated for each point on the destination grid. Each element of Pi, i.e. < Pi >1,c is then
substituted at < P >i,jc, or:

< Pi >1,1 → < P >i,j1, (8)
< Pi >1,2 → < P >i,j2,

...
< Pi >1,si → < P >i,jsi ,

and all other elements of Pm×n are set to zero. Note that P is completely independent of the data and is only a
function of the locations. This means that, as long as the points on both the destination and source grids have not
moved relative to each other, P will not change. Again, this movement is relative, i.e. points on both grids can
move, but not relative to each other. Hence, the grids can be translated or even rotated, as long as the same rotation
or translation is applied to both grids. Under certain conditions, the grids can alse be scaled, while continuing to
use the same weights.

In many cases, the fact that P stays constant can be used to reduce computational need. In our case, i.e., fluid
mechanics, the grid cells stay constant throughout the entire simulation; with the only changes being in the values
of the velocity, pressure, and other variables. Therefore, we can calculate P once, then reuse it as many time as
needed at a cost of a single, sparse matrix multiplication. Although this procedure was explained for polynomials,
the author has successfully applied the same concept to RBF, the Gradient plus Inverse Distance Squared (GIDS)
method, and the Inverse Distance Weighted (IDW) method (paper in preparation).

3 MATLAB Command
The command to create a 2D projector is as follows:

P=ConstructProjector2D(xs,ys,xd,yd,nPoly,nInterp),

where:

• xs and ys are the source grid points in the physical domain,

• xd and yd are the destination grid points in the physical domain,

• nPoly defines the degree of the polynomial to use, and

• nInterp determines how many points from the source grid must be used to determine the free parameters.

If nInterp is set to ns, i.e. the minimum required, the resulting matrix, i.e. P would perform true interpolation
or extrapolation. If nInterp is set to a larger number, for each point on the destination grid, the program finds
nInterp-closest points on the source grid, fits a surface with a degree given by nPoly and calculates the weights.
In this package the points are selected only based on the distance and closeness; however, we can harness a more
robust approach in selecting the points. As long as this selection is not depending on the data, the same procedure
can be used.

The command for 3D grids is the same as for 2D Grids:

P=ConstructProjector3D(xs,ys,zs,xd,yd,zd,nPoly,nInterp)

where zs and zd are the third dimension coordinates for points on both the source grid and the destination grid.
In the geosciences, inverse distance weighted (IDW) is very commonly used; the IDW can be formulated as:

f∗ =
Σ 1

dn
i
fi

Σ 1
dn

i

(9)

3

Most of the computation time in IDW is spent locating the nInterp closest points. Using a similar approach,
the IDW can also be simplified into a single sparse matrix. Since IDW is very common in the geosciences, a similar
function was developed for IDW interpolation for in both 2D and 3D.

Once P is calculated, we can re-grid data from the source grid onto the destination grid, as follows:

f∗
m×1 = Pm×nfn×nf

, (10)

where nf is the number of data fields; i.e., if there are multiple data fields, we can either re-grid them one by one,
or each data field can be represented as a column and all re-gridded at once.

4 Results
To test the code a structured grid was generated where (x, y) ∈ [0, 2π]× [0, 2π]. Four data fields were developed, as
follows:

F1(x, y) = sin (
√
x2 + y2), (11)

F2(x, y) = sin (x) cos (y), (12)

F3(x, y) = e−
√

x2+y2
, (13)

F4(x, y) = e−
√

(x−x0)2+(y−y0)2
. (14)

Using the developed MATLAB package, a Projector, P , was computed, which interpolates from the nodal grid
to the cell centers. P was computed only once, and then the same matrix was applied to all four functions. The
results are shown in Figure 1. To test the package for scattered grids, two sets of random data were generated,
Figure 2. The projector P was constructed only once and the above mentioned functions were evaluated on source
grid points to produce a data field. Using the P generated above, the data field was projected to the destination
grid and its accuracy was computed. The accuracy is shown in Figure 3. Note that since both the destination and
source grids are randomly generated, each execution of the code will generate a different graph.

Figure 1: Interpolating from cell corners to cell centers.

The effect of nInterp is interesting. By choosing an nInterp bigger than ns, we can actually fitt a local surface
on the source grid and evaluate the resulting function on the destination grid to get a value. This means that,

4

Figure 2: Scattered points.

Figure 3: Interpolation results for scattered points.

unlike the interpolation, the function representing the surface does not necessarily match the values of the source
grid. To check the effect of this approach on the error, a series of tests were performed. Two scattered grids were
randomly generated; the degree of the polynomial was set to 4, i.e. pd = 4; and multiple projector, P , was generated
using different nInterps ranging from ns = 25 to 45. Figure 4 shows how the root mean squared error (RMSE)
changes with nInterp. The grid is generated randomly each time the code is executed; and, depending on how the
points in the source and destination grids are distributed, different errors will be achieved. However, in all cases,
RMSE shows the same behavior relative to nInterp. As shown in the graph, the RMSE is decreased by increasing
the nInterp. This behavior was consistent in all the executations that we tried. We have shown that how the
accuracy of the numerical solution to Poisson’s equation changes by changing the nInterp in a separate publication
(submitted, under review).

5

Once nInterp is set to the minimum required value, i.e. ns, the system is forced to have zero errors at the
source grids, i.e. true interpolation. Therefore, all errors are forced to be distributed only on the destination grid
points. However, by setting nInterp to a number larger that of the minimum, we can relax the distribution of the
error; thereby, compensating for some of the errors on the source grid. This explanation has been confirmed by
subsequent tests.

25 30 35 40 45

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

nInterp

R
M

S
E

Figure 4: Effect of nInterp on interpolation accuracy.

5 Software Availability
This MATLAB package is available for download at:

http://www.mathworks.com/matlabcentral/fileexchange/41669-interpolantextrapolant-2d3d-data
We recommend beginning with one of the test functions to get acquainted with the code.

References
Earth System Modelling Framework (ESFM), http://www.earthsystemmodeling.org/.

The NCAR Command Language (Version 6.1.2) [Software]. (2013). Boulder, Colorado:
UCAR/NCAR/CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5.

Spherical Coordinate Remapping and Interpolation Package, http://climate.lanl.gov/Software/SCRIP/index.shtml.

6

