

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2014

Improving the Performance of
Thermochemical Computations Using Many-

Task Computing Methods
Mary P. Thomas, S. Bhattacharjee, Carny Cheng, Robert A. Edwards,

Christopher P. Paolini

March 17, 2014

Publication Number: CSRCR2014-01

CSRC TECHNICAL REPORT 1

Improving the Performance of
Thermochemical Computations Using Many-

Task Computing Methods
Mary P. Thomas, Member IEEE, S. Bhattacharjee Carny Cheng, Robert A. Edwards, Christopher

P. Paolini

Abstract—The SDSU online Chemical Equilibrium Services perform numerical heat transfer and fluid flow computations, using
the Flame3D simulator, for thousands of researchers, educators, and students. The computation is broken down into a grid of
2D or 3D control volumes, each of which runs for a few seconds, has small memory requirements (100 Bytes), is independent
of its neighbors, and is submitted individually to a Web Service. The embarrassingly parallel simulation requires several hours to
compute a few thousand control volumes, for 10’s of thousands of iterations on a desktop. To improve the computational
performance, a multi-task computing (MTC) approach was adopted. For this, a simple job distribution Web service framework
(JODIS) was designed that distributes application workloads across hetergenous computing systems. JODIS has been
demonstrated to run millions of Flame3D tasks simultaneously on a variety of resources and queuing systems. In this paper we
report on the impact of JODIS on Flame3D computations, along with our experiences gained and challenges encountered when
using heterogeneous computing environments, including the TeraGrid. Using JODIS, we have demonstrated a significant
increase in the resolution of Flame3D (from 103 to more than 106 control volumes) and significant reduction in run times (by a
factor of over 40 for a large test case of 128 processors and 107 tasks). In general, we conclude that the MTC approach can
significantly improve Flame3D computational performance, but that changes need to be made to queuing/job submission
systems in order to facilitate the rapid cycles needed for jobs similar to the Flame3D tasks.

Index Terms—Many-task computing, MTC, high-throughput computing, HTC, high performance computing, HPC, Web
services, Pylons.

——————————  ——————————

1 INTRODUCTION

he Chemical Equilibrium Services (CHEQS) applica-
tion, created at San Diego State University (SDSU),
solves chemical equilibrium problems for thousands

of researchers, educators, and students [1]. The applica-
tion does this using a novel numerical method to mini-
mize a system’s Gibbs free energy function with con-
straints [2]. CyberCHEQS is based on the TEST project,
which has been in existence for several years, and has a
large user community of several thousand users distrib-
uted across many educational institutions. TEST provides
a Web interface that is used to analyze thermofluids prob-
lems, verify hand calculations, pursue what-if scenarios,
and visualize thermal systems. TEST utilizes Web Ser-
vices to provide easy to use software tools that allow en-
gineers to upload data and run experiments and is able to
facilitate online collaboration among users from diverse

scientific backgrounds. The cyberCHEQS application
(which is described in Section 2) is designed to compute
103 to 106 control volumes running for about 500,000 itera-
tions. Currently, the system runs chemical computations
on 2D or 3D volumes, consisting of 103 to 106 control vol-
umes (i.e. cells of a grid) and submits 1 calculation at a
time to a Web Service. Depending on the granularity of
the computation, the system is currently limited to run-
ning small tasks (e.g. a few thousand control volumes for
10’s of thousands of iterations). New approaches are
needed in order to reduce time to solutions, increase reso-
lution, and improve real-time simulations.

To improve the computational performance, we
adopted a multi-task computing (MTC) approach that
must operate within the heterogeneous computing envi-
ronments typically encountered at a research university.
For this, we designed a simple job distribution Web ser-
vice framework (JODIS) that distributes application work-
loads across heterogeneous computing systems. The de-
sign and archticture are presented in Section 3 below.
JODIS is a Web Service application framework based on
the master/worker design pattern and utilizes the SDSU
Cyberinfrastructure Web Application Toolkit (cyberWeb)
as a hosting environment [3] [4]. JODIS has been demon-
strated to run millions of Flame3D tasks simultaneously
on a variety of resources and queuing systems. Using
JODIS, we have demonstrated a significant increase in the

x

————————————————
 Mary Thomas is with the Department of Computer Science and the

Computational Sciences Research Center, San Diego State University,
San Diego, California, 92182. E-mail: mthomas@sciences.sdsu.edu.

 Cheng is with the Computational Sciences Research Cente,San Diego
State University, San Diego, California, 92182. E-mail: carny@me.com.

 Edwards is with the Department of Computer Science and the Computa-
tional Sciences Research Center, San Diego State University, San Die-
go, California, 92182. E-mail: redwards@cs.sdsu.edu.

 Paolini is with the Departmenst of Computer Science and the Computa-
tional Sciences Research Center, San Diego State University, San Die-
go, California, USA. Email: paolini@engineering.sdsu.edu.

Manuscript received Junary 4, 2010.

T

2 CSRC TECHNICAL REPORT, 2010

resolution of Flame3D (from 103 to more than 106 control
volumes) and significant reduction in run times (by a fac-
tor of over 40 for a large test case of 128 processors and
107 tasks). In general, we find that the MTC approach can
significantly improve the CyberCHEQS/Flame3D com-
putational performance, but that changes need to be
made to queuing/job submission systems in order to fa-
cilitate the rapid cycles needed for jobs similar to the
Flame3D tasks tasks. These and other problems and is-
sues encountered which limited our ability to run MTC
problems on clusters and standard HPC clusters are dis-
cussed in more detail in the Conclusions Section of this
paper.

2 THE SDSU CHEMICAL EQUILIBRIUM SERVICES
The SDSU Chemical Equilibrium Services (CHEQS)

have been designed as a Web based alternative to com-
monly used software applications such as STANJAN and
NASA CEA for performing chemical equilibrium analysis
in combustion research [5]. The approach is based on the
next generation style of computational software devel-
opment that relies on loosely-coupled network accessible
software components called Web Services. While several
projects in existence use Web Services to wrap existing
commercial and open-source tools to mine thermodynam-
ic data, no Web Service infrastructure has yet been devel-
oped to provide the thermal science community with a
collection of publicly accessible remote functions for per-
forming complex combustion computation. This work
represents the first effort in the thermochemisty commu-
nity to provide an infrastructure where remotely accessi-
ble software services allows developers of thermodynam-
ics and combustion software to perform complex, multi-
phase chemical equilibrium computation with relative
ease. This service can be integrated into any numerical
application an example where we have coupled the use of
our equilibrium service with an existing thermal-fluid
simulator based on the control-volume formulation of
Patankar and Spalding. In this section we provide an
overview of chemical equilibrium computation, we de-
scribe the CHEQS Web services, as well as a description
of the Flame3D CHEQS-based application, which is used
for the research reported in this paper.

2.1 Background: Chemical Equilibrium
Computation

Numerical determination of the equilibrium state mass
fractions of gaseous and condensed matter is frequently
needed in combustion simulations that model chemically
reacting flows. The numerical method most often used to
calculate an equilibrium distribution is based on minimiz-
ing a system’s Gibbs free energy function with con-
straints. The total Gibbs energy of a system composed
of m species is given by

 (1)

where is the chemical potential of the th

species and a function of the system temperature ,
pressure , and number of moles of each component

species, . From (1) and using the definition of the
chemical potential for an ideal gas species , we have

 (2)

where is the standard state pressure of 1 atm and
the partial pressure of species . The minimum station-
ary point of (1) will be the vector of species molar values

where vanishes. Differentiating (1) we obtain

 (3)

From the isothermal, isobaric Gibbs-Duhem equation
we know that

 (4)

and so we seek the unique vector such that

 (5)

where is the number of moles of species and
is the total number of moles in the equilibrium

composition. Solving (5) amounts to solving a nonlinear
constrained minimization problem. The traditional nu-
merical practice used for solving optimization problems
of this type is the method of Lagrange multipliers using
an iterative Newton-Raphson technique for solving the
resulting set of nonlinear equations. Bhattacharjee and
Paolini [2] have encapsulated this method into a publicly
accessible Web Service that can be called from most con-
temporary programming environments and commercial
applications. This service can be invoked as a reusable
third party software component by a thermal science re-
searcher when developing custom applications. As a re-
sult, the researcher is freed from having to worry about
implementing his or her own code for computing chemi-
cal equilibrium. When a desired equilibrium distribution
is needed, the developer need only insert the requisite
code to remotely discover and dynamically invoke the
Web Service.

2.2 Equilibrium Computation Using the CHEQS
Web Service

Web Services extend the paradigm of object-oriented
programming to the network whereby a single software
application is composed of loosely-coupled modules that
execute on autonomous networked systems. Recent ef-
forts by Dong et al. [6] and Truong et al. [7] have shown
the strength of using Web Service technology in chemoin-
formatics applications to facilitate the organization and
retrieval of chemical data while advances in collaborative
cyberinfrastructure for developing predictive models for
chemically reacting systems have been spearheaded by
Frenklach et al. through the open-source Process Infor-
matics Model (PrIMe) project [8]. Furthermore, the Can-
tera [9] package by Goodwin provides an open-source,
object-oriented suite of software tools to aid in simulating

G

G   jn j

j1

m



 j   j T ,P,i j  j

T
P

n jn ,i
j

j 
j

o RT ln jP oP 
oP jP

j


vn dG

dG  n jd j
j1

m

   jdn j
j1

m



n jd j
j1

m

  0

*n


 j
o RT  ln n j  ln n  ln P Po  dn j

j1

m

  0

n j j
n  n jj1

m

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 3

Figure 1. CHEQS client-server architecture. [3]

be called to solve equilibrium problems from within
FORTRAN, MATLAB, and Python scripts. While several
projects in existence use Web Services to wrap existing
commercial and open-source tools to mine thermodynam-
ic data, no Web Service infrastructure has yet been devel-
oped to provide the thermal science community with a
collection of publicly accessible remote functions for per-
forming complex combustion computation. This work
represents the first effort to provide such an infrastruc-
ture to deploy a remotely accessible software service that
allows developers of thermodynamics and combustion
software to perform complex, multiphase chemical equi-
librium computation with relative ease. This service can
be integrated into any numerical application.

A researcher engaged in the development of software
for simulating a thermal-fluid process will likely have a
need to repeatedly compute the distribution of species
resulting from a combustion reaction in many locations of
a computational domain. If the number of equilibrium
computations is in the tens of thousands, using a serial
approach whereby computations are performed in a loop
construct would likely be unacceptably time-consuming.
Using CHEQS, however, equilibrium computations can
be performed in parallel by asynchronously invoking a
remote operation within the researcher’s own application.
There is no need for the researcher to design his or her
own equilibrium solver or locate a suitable third-party
library. The CHEQS Web service can essentially be
thought of as code that “plugs in” to existing software
and takes advantage of distributed computational re-
sources over the Internet. This style of software devel-
opment based on orchestrating loosely-coupled and dis-
tributed software services is called a Service Oriented
Architecture (SOA). Adopting an SOA approach to build-
ing combustion applications will have a sweeping impact
on research and teaching in the thermal sciences as devel-
opers are able to construct new software tools that build
upon an ever expanding collection of independent and
modular Web Services.

We have developed a chemical equilibrium Web Ser-
vice that exposes an operation to calculate and return the
equilibrium distribution of the products of an arbitrary
reaction at a defined temperature and pressure (see fig. 1).
The client application connects to the SOAP server and
the temperature, pressure, reactants and products are
passed as arguments. The input parameters are the reac-
tion temperature in Kelvin, pressure in kilopascals, a
comma and colon delimited list of reactants, and a com-
ma delimited list of allowable products.

The list of reactant species is specified using the format
where is the chemical for-

mula of a reactant species using the Hill naming system
and is the quantity of the respective species in the

reactant mixture. To illustrate how the Web Service can
be used, consider the standard reaction for ammonia syn-
thesis by means of the well known Haber process,

 . (6)

The Haber process is carried out at about 520°C and 500
atm in the presence of an iron-molybdenum catalyst. The
catalyst increases the rate of the reaction but does not af-
fect the reaction stoichiometry. At equilibrium, the mole
fractions of nitrogen, hydrogen, and ammonia are ap-
proximately 17%, 50%, and 33%.

The CHEQS’ Web Service solve operation returns the
unique distribution of product species that corresponds to
a reaction at a fixed temperature T in Kelvin and pressure
p in kilopascals. To invoke the solve operation, a SOAP
message body is constructed by a client process that in-
cludes a definition of four required input parameters for
T, P, the reactants list, and the products list. The data is
returned using simple JSON (JavaScript Object Notation,
http://www.json.org) format, which makes it easy for
clients to parse results.

2.3 Distributed Equilibrium Computation for Use in
Fluid and Heat Transfer Simulation

Bhattacharjee and Paolini have developed the Flame3D
[10] [11] application, which is based on the control-
volume formulation of Patankar and Spalding. The goal
of this coupling was to provide Flame3D with an ability
to simultaneously compute, using the equilibrium Web
Service, the equilibrium distribution of every control vol-
ume after a steady-state temperature field was found.

Figure 2 shows a snapshot of a slug flow simulation
from Flame3D where carbon dioxide passes at a
constant velocity ux=49.212 mm/s over a semi-infinite hot
plate configured at 6000K. The boundary conditions of all
other walls of the physical domain are configured to have
an ambient temperature of . As CO2 passes
over the plate, some dissociation to carbon monoxide

and oxygen will occur. Once the distribution
of species within each control volume is found, the con-
centration profile along with the temperature profile can
be plotted to evaluate the respective concentration of each
product as well as the thermal boundary layer.

Figure 2 shows a plot of the resulting equilibrium con-
centration of each product species and the thermal
boundary layer in the fourth plot of the figure. Theta is
a dimensionless temperature given by
 (7)

where and . The red line is the
expected theoretical thermal boundary layer with dis-
tance  t  75.1700 mm at the right wall and
the interspersed green dots are numerically calculated
values of where or, equivalently, when
 (8)

is satisfied where .
As one can see from the figure, the numerically calcu-

lated values of closely coincide with the expected
 moles: formula   formula

moles

N 2 g  3H 2 g  2NH 3 g 

CO2 

T  300K

CO  O2 



 T T  Tw T 
T  300K Tw  6000K

 t  75.1700

 t ,x 1  0.99
T T  Tw T  0.99

T  357K

 t ,x

4 CSRC TECHNICAL REPORT, 2010

Figure 2. Concentration and thermal boundary layers of a steady-state (“slug”) flow of carbon dioxide over a

semi-infinite flat plate at 6000K. Theta is dimensionless temperature and the yellow line is the thermal
boundary layer with distance at the right wall. [10]

theoretical using the approximation

 (9)

The thermal diffusivity parameter
was approximated as 2.2x10-5 which is valid for carbon
dioxide gas at 1 atm and 300 K. is the dimensionless
Péclet number with respect to the x-axis and is given by

. The Péclet number characterizes a flow’s rate
of advection to its rate of thermal diffusion. In the third
plot of Figure X6, the red line shows the expected theoret-
ical concentration boundary layer based on the approxi-
mation

 (10)

and the green dots show numerically calculated values
of where

 (11)

 being the concentration of oxygen gas at the sur-
face of the plate. From the plot, one can see a disparity
exists between the numerical and theoretical solution and
this is due to the fact that the numerical solution is an
equilibrium solution and does not account for the diffusion
of oxygen that would actually occur in such a reaction.
The dimensionless parameter in equation (10) is the Lewis
number, which is the ratio of thermal diffusivity to mass
diffusivity and is given by .

3 MANY TASK COMPUTING APPROACH

3.1 Requirements
The Flame3D application computes the temporal and spa-
tial evoloution of species within a volume. The volume is
broken up into a grid of control volumes (CV’s), each of
which is used to compute the chemical composition and
temperature of the species within the CV using the
CHEQS chemical equilibrium Web service. Each CV cal-
culation is independent of any other CV. As mentioned
above, the application compute cycles are run over 1024
CV’s until thermal equilibrium occurs (typically less than
a few thousand iterations for 103 CV’s). For high-
resolution computations, CHEQS equilibrium services are
designed to run using 106 CV’s, over 5x105 iterations, for a
total of 5x1011 total calculations. With the current design,
each CV calculation takes about 1 second, resulting in a
total compute time of thousands of years for large scale
computations.

Based on these characteristics, we chose to focus on a
multi-task computing (MTC) approach. Additional re-
quirements include: the need for the service to operate
within the heterogeneous computing environments typi-
cally encountered at a research university (local clusters
and remote HPC systems, various policies and accounts);
to interface to different queing systems; to be hosted as a
Web service callable by Flame3D applications. The service
also needs to support two types of clients: rapid response
(results be returned rapidly to facilitate real time interac-
tive computations for some applications); and large multi
task computations (e.g. 106 or more CV’s).

CO2 


 t  70.3125 mm

 t

 t ,theoretical  4.92 x Pex  4.92 x u

  k cp  m2 s 
PEx

Pex  ux 

c ,theoreticalt ,theoretical Le

 c ,x

CO2 ,S CO2
  CO2 ,S  0.99,

CO2 ,S

DAB Le  DAB

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 5

Figure 3. The JODIS and CyberWeb architecture. The diagram shows the client interface layer (left), the middle
layer based on cyberWeb, and the back-end remote resources layer [12] [4].

To meet these requirements, the job distribution Web ser-
vice framework (JODIS) was designed to distribute appli-
cation workloads across heterogeneous computing sys-
tems. JODIS is a Web Service application framework
based on the master/worker design pattern and utilizes
the SDSU Cyberinfrastructure Web Application Toolkit
(cyberWeb) as a hosting environment [3] [4].

3.2 SDSU Cyberinfrastructure Web Service
Framework (CyberWeb)

JODIS services are hosted on the Web through the SDSU
Pylons-based Cyberinfrastructure Web Service Frame-
work (CyberWeb). This framework is based on the Pylons
Web Application Framework [4], and includes compo-
nents that interface with the distributed, services oriented
architecture of the Web, as well as the cyberinfrastructure
and middleware services such as those hosted on the
TeraGrid (http://www.teragrid.org). CyberWeb can be
used to host any type of Web 2.0 service, and can route
URI requests, process requests and execute tasks [12].
Using cyberWeb, the JODIS system can host multiple ser-
vices using a variety of interfaces.

One aspect of this project is based on an attempt to
keep systems like JODIS simple. Python is the primary
programming language for several reasons: it has a
strong, active open source developer community; it is
object-oriented; libraries have been proven to work well
for science applications (SciPy, NumPy, PyNGL PyNIO);
and libraries for grid integration (pyGlobus, pyGridWare,
pyGSI). The cyberWeb framework must have the ability
to integrate emerging Web 2.0 technologies including
WSGI (Web Server Gateway Interface), databases,
XML/JavaScript/AJAX, Google Gadgets, social networks,

Web 2.0 services and toolkits, and security. Pylons is a
Python based Web application framework, hence, any
number of components and libraries developed by other
software projects can be incorporated into the system,
which facilitates customization. In the Pylons architec-
ture, the services layer is decoupled from the logic of the
code behind it, JODIS is hosted as a computational service
that can be accessed by a portal, application, or other Web
Services. A feature of Pylons is that all software can be
bundled into a deployable egg that can be installed on
any system and can be modified for use by other applica-
tions. System admin pages have been developed to facili-
tate configuration and management of users and re-
sources. Thus, the JODIS system can be securely deployed
across many hosting systems. The cyberWeb framework
integrates with grid security infrastructure (GSI) authen-
tication and the MyProxy credential services.

A feature of CyberWeb is that it has most of its config-
uration data stored within a relational database (users,
hosts, authentication, jobs, job history) and all of these
tables are administered using either the admin portal or a
command line interface. Currently, CyberWeb uses
SQLITE3, which is stored in memory within the server.
Data is initialized using a flat text file which is in JSON
format, which allows a new project to easily seed the da-
tabase. During run time, all services, including JODIS,
have access to this database. In this way, new resources
can be added or modified and JODIS to control access to
the service (if needed) using the authentication modules.

The CyberWeb framework provides us with a rapid
development cycle and the ability to add new and im-
proved RPC protocols in the future. Using cyberWeb to
host services (and access the same code) means that a de-

6 CSRC TECHNICAL REPORT, 2010

veloper can develop one service (such as job submission
via JODIS) and expose that service to different clients
such as a portal, a remote application, or a Google gadget.

3.3 Job Distribution Services
JODIS consists of multiple services offered through a

Web 2.0 application server environment. In the web ap-
plication environment, all services work together to offer
an end-to-end job dispatching service to multiple clients.
The architecture for the JODIS system can be found in Fig.
2. The Web server environment (based on CyberWeb, see
below) provides users with methods of communicating
with JODIS using either a Python client API or Web Ser-
vice to access the Job Service. The Web Service allows a
wide variety of applications to interact with JODIS re-
gardless of location, device or programming language.
The Job Service provides a majority of the user-accessible
function calls and manages a user’s jobs regardless of the
resource. The Resource Service works on the back end to
manage the various connections between the JODIS and
the compute resources being used. It works as a singleton
to minimize the number of duplicate connections. The
connections between JODIS services are shown in the
architecture diagram (Fig.2). The ability for JODIS to
gather usage information and use this data for predicting
job runtimes and for selecting where to run a job provides
a useful approach to running MTC jobs.

3.3.1 Job Services
Clients primarily interact with the JODIS Job Service API.
It is responsible for tying all of the services together to
provide simple job submission to heterogeneous re-
sources. This service is used for job submission, query,
and cancellation. This service hides many of the complex-
ities involved with job submission such as choosing
which resources to use, tracking these jobs, and managing
connections between the resources. JODIS uses a job
runtime “Guesstimation” along with a Distribution Policy
to dynamically choose which compute resource to use or
each job.

Job “Guesstimation”: This capability provides JODIS
with the ability to forecast job runtimes in order to choose
the appropriate compute resource for each job. Many
cluster queuing systems set maximum run time limita-
tions on jobs to improve general availability of their re-
sources to a wide audience. This limit is arbitrarily set by
the system administrators of the cluster, and in several
cases this limit was set as low as 24 hours (see Table 1).
JODIS Job runtimes can be set via the user or based off of
historical runtimes when JODIS is integrated with a data-
base. Within reasonable limits, forecasts compute worst
case estimates based on upper bound run time limits.

The JODIS Client Service dispatches a sample applica-
tion to measure the expected runtime. CyberCHEQS jobs
increase linearly with respect to the number of tasks. In
our experiments, CyberCHEQS guesstimates come very
close to the actual runtime. In the future, users will be
able to estimate runtimes via historical data stored in a
database and adjust these runtimes based on some sort of
job size parameter.

Job Distribution Policy: This component takes in an ar-
ray of guesstimated run times as its sole parameter. Using
these guesstimates for each compute resource, JODIS
makes an attempt to minimize the runtime of all the jobs
given the restrictions on queue time limits and memory
restrictions of compute resources. JODIS stores the queue
time limits and memory restrictions in a configuration file
loaded in at runtime. As these limits and restrictions
change often, future versions will hopefully mine for this
data when possible. JODIS does not make an attempt to
estimate or take into account queue wait times. This is not
an ideal, however, job forecasting is out of the scope of
this project. To compensate for this, each resource can be
given a weight factor. This weight is multiplied by the
guesstimated runtime implying that a smaller weight
factor improves the guesstimated time for a particular
resource whereas a larger weight factor worsens the
guesstimated time. One can imply that a factor of 0 across
all resources will spread the tasks across those resources
evenly. This becomes useful when differentiating be-
tween internal clusters versus the TeraGrid. The job
queues of the TeraGrid were typically longer than those
of our in-house compute clusters. Possible explanations
include network issues, node configuration and job start
up/node warmup times.

3.3.2 Resource Services
The resource service provides two essential functions to
JODIS. The first being connections from JODIS to its com-
pute resources. Secondly, the resource service wraps the
functionality of batch queuing systems. The resource ser-
vice offers communication to the compute resources and
client targets mainly via Secure Shell (SSH) and GSI-
Enabled SSH. The latter is used for the TeraGrid and oth-
er GSI-Enabled resources. The abstraction of these essen-
tial functions allows JODIS to easily extend its operations
to
new protocols as they emerge. The resource service is a
singleton class shared across all JODIS instances running
on a particular machine in order to reduce useless dupli-
cate connections. These connections can easily become
out of control if, for example, a user creates 20 JODIS job
instances, which in turn might create separate connec-
tions for each compute resource, quickly bogging down
system resources on the client and server.

The resource service also wraps the functionality of
batch queuing systems. Batch queuing systems are essen-
tial in maximizing CPU hours on compute clusters. They
work to ensure jobs on all compute nodes are continually
being exercised. JODIS relies on these queuing systems to
execute jobs on each cluster. JODIS is able to use many
popular queuing systems such as the Sun Grid Engine
(SGE), Portable Batch System (PBS) and Condor. These
systems provide the same core functionality each with its
own slight syntactical nuances. Wrapping the basic queu-
ing functionality and communication provides JODIS the
flexibility to work with any queuing system over any
communication channel offered by the resource service.

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 7

3.3.3 Client Services
JODIS hosts a general client Web Service for author-

ized job submission. Clients interact with JODIS directly
using the Python API, or more popularly, through the
SOAP Web Service interface. Both interfaces offer the
same functionality, however, the Web Service interface
gives clients the flexibility of running their code any-
where and offloading heavy computations to CI re-
sources. The JODIS WSDL allows new users to find the
service as well as keep our users up-to-date on the latest
API. Developers can extended the client Web service for
specific applications with the use of the Job Builder Client
interface which exchanges messages with JODIS. The cli-
ent service can hook into the JODIS job service to provide
functions such as pre-processing, post-processing and
more. The CyberCHEQS client service is specific to the
CHEQS application. This layer is responsible for CHEQS
specific tasks such as runtime guesstimations and job
parsing. For CyberCHEQS, the total number of CVs (also
called tasks) are distributed across the number of jobs to
be run in the computation. The client is responsible for
clustering these tasks into groups which are then passed
as a collection of jobs to the JODIS job service.

Figure 4. Diagram of a typical JODIS job cycle for job
submission from a CHEQS client [3].

3.3.4 The Jodis Job Cycle
A typical JODIS job cycle is shown in fig. 4 and helps to
demonstrate how the various components interact, and is
describe below:
 A client logs into and starts a JODIS session.
 The client adds jobs to be to run as the job set. The cli-

ent tells JODIS when all the jobs have been submitted.
This signals to JODIS to start its work.

 JODIS processes the jobs and collects metadata are col-
lected by JODIS and added to the client’s job queue. In
the current implementation, each connection creates its
own instance of JODIS to differentiate between job sets.
JODIS guesstimates the job runtime and dynamically
chooses where to distribute the jobs.

 JODIS adds jobs to the queues on the remote resources.
JODIS guesstimates the job runtime and dynamically
chooses where to distribute the jobs.

 The client can periodically check the status of running
jobs. The client does not need to be concerned with the
exact location of the job. JODIS stores this information
but is typically abstracted from the user. As far as the
user is concerned, each job is being run on the same re-
source.

 When the jobs are finished, JODIS delivers results di-
rectly to a specified file location or return the results to
the user via a Web Service response. Actions can also
be triggered such as sending an email or updating a da-
tabase table.

3.4 Related Work
The field of MTC is new, and hence, the number of tools
dealing with this topic is small. Even smaller is the infra-
structure optimized specifically for MTC problems. The
MTC community is developing a solid platform starting
with a series of workshops and BOFs held at various con-
ferences and meetings [13] [14]. During these workshops,
several well-known systems were shown that explored
similar topics – Pegasus, Falkon and Swift. While each of
these frameworks exists in the same MTC problem space,
it is difficult to compare these systems to that of JODIS
since the problem requirements for each are different.

Pegasus is the most similar to JODIS. It is a framework
that is designed to map workflows to the Grid environ-
ment. It is responsible for finding the resources on the
Grid that are capable of performing the computations, the
data used in the workflow and the necessary software
[15] [16]. Pegasus was released in 2003 as part of the
GriPhyN Virtual Data Toolkit. Falkon, a fast and light-
weight task execution framework, designed by Raicu et
al. enables users to execute a large number of small and
rapid tasks. Their aim was to show that MTC problems
could be run on very large scale HTC hardware. To ac-
complish this task, Falkon separates the allocation of re-
sources using the conventional scheduler from the dis-
patching of small tasks. [17] Falkon has been optimized
even further using its specially designed TCP protocol for
communication between its client and compute nodes.
Swift, based on CoG Karajan and Falkon, delivers a useful
job management system using a new scripting language
called SwiftScript. This tool provides users a useful tool to
manage large datasets and managing all of the processing
scripts across GSI-enabled resources. [18].

JODIS differs slightly from the above projects in that it
is intended to be lightweight and adaptable, to run on
open scientific computing infrastructure (e.g. TeraGrid,
local clusters), to use standard applications where possi-
ble, and to use existing queues and policies. JODIS does
not include a workflow definition layer. Instead, JODIS
uses a simple Web Service API for batch job pro-
cessing.new protocols as they emerge. Other types of job
scheduling and distributed computing systems exist such
as Condor [19], Globus, Sun Grid Engine, but they are not
universally deployed. Instead, we intend to extend JODIS
interfaces and clients to access these services.

8 CSRC TECHNICAL REPORT, 2010

TABLE 1.

Hostnames and Performance Data

HOST
CPUS
USED

SERIAL

TIME

PER

TASK

PAR

TIME

PER

TASK

RAM PROC. QUEUE LIMITS

dolphin.sdsu.edu 88 0.664 0.096 8 GB Intel Quad Core PBS None
anthill.sdsu.edu 60 0.729 0.008 16 GB Intel Quad Core SGE None
blackbox.sdsu.edu 60 0.529 0.200 12 GB Intel Quad Core Condor None
tg-login.ncsa.teragrid.org
(mercury) 128 2.78 0.035 4.47 TB Intel® Itanium PBS 24 hr; 128 node maximum
tg-login.tacc.teragrid.org
(lonestar) 5,840 0.64 - 8GB Dell Power Edge LSF 48 hr; 40 Job max; 512 nodes max

4 EXPERIMENTS AND RESULTS
To measure the performance of the CHEQS applications,
two types of tests were conducted: (a) performance tests
of how well JODIS can distribute CHEQS equilibrium
computations across resources; (b) integration of the
JODIS services into and existing CHEQS based applica-
tion. These tests were run on several computing resources
including the TeraGrid and local private clusters running
queuing systems including SGE, PBS, LSF, and Condor.
The machines are described in Table 1.

4.1 Distribution of the CHEQS Equilibrium
Computations

A CyberCHEQS client was developed to submit simple
equilibrium test cases to JODIS, which distributed jobs
across the compute resources. The purpose of these tests
is to measure the scaleability of the JODIS plus equilibri-
um services system. In order to isolate latencies on the
client side, the client was run on the same machine as the
JODIS service. A job consists of a copy of the CHEQS
equilibrium solver Java code and the reactant data for a
number of CV’s. The job returns the resultant products.
This is a small test case: it computes results for 1 reactant
and 3 possible product species. Two modes of operation
were tested to simulate the most common use cases of
CHEQS for the Flame3D application.

 The first mode (referred to as ‘single job’) simulates
the current methodology implemented in Flame3D,
where each CV sends its own asynchronous request to a
Web Service to update its own equilibrium composition.
Hence, using this methodology in a volume with 100 con-
trol volumes, the CHEQS web server would receive 100
individual requests. These tests effectively defined the
serial cases. The second method is the parallel (or ensem-
ble) method, where multiple CV computations and data
sets are batched together and sent to the Web Service as 1
request; and multiple requests are sent to the job service.

Tests were performed on a variety of hosts (see Table
1) and number of nodes (ranging from 1 to 128) using a
single resource or in multi-mode (across multiple clus-
ters). Scaling tests were performed as a function of both
the number of nodes and for various numbers of CVs (1
to 107). The number of nodes utilized was a function of
number of jobs and CV’s, cluster size, queuing policies

(which limited the number of jobs that could be submit-

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 9

ted or how long a single job could last) and memory. In
this case, without special permissions, large runs were not
possible (e.g hundreds of MTC jobs).

Runtime and memory were profiled using commodity
tools. Memory was monitored from within the Cyber-
CHEQS application using the standard Java Runtime li-
brary. The memory was profiled during key points dur-
ing the application run. For most cases, the maximum
heap memory usage was measured.

Runtimes were a little more complicated to measure.
Runtime results are reported the longest runtime across
all nodes + the time to transfer result files. For reference,
preliminary published results of CHEQS running
Flame3D using Condor for 1, 2, and 4 nodes [2] on a con-
trol volume grid of 1024 cells are used for comparison.

4.1.1 Results
Figure 5 shows the log of the total runtime vs. the log of
the total number of nodes, as a function of the number of
processors for the SDSU anthill cluster. As expected, the
runtime linearly increases with the number of tasks in-
creases and the runtime decreases as the number of nodes
increases. This type of result was observed for all systems
used in this study as well as for runs involving heteroge-
neous collections of nodes. The curve marked “Blackbox-
Projected” is a projection based on tests run on the
CHEQS system shown in fig. 1, using a 1, 2, and 4 node
Condor system, for ensemble runs of 1000 control vol-
umes. In these cases, the best time per task was 0.200 sec-
onds.

The average time per task is a key factor in determin-
ing how JODIS will distribute tasks across a pool of
nodes. It is important to distinguish between the per-node
run time for a task and the effective parallel runtime for
an ensemble of jobs. For larger jobs (ignoring small jobs
where warmup times dmoniate), the time per task for the
average parallel time per task is given by Tpar = Ttot/Ttasks.
Figure 6 shows the time per task for the different systems
performance when running the ensemble jobs in parallel,
and Table 1 contains a summary of average times for all
machines.

The per-node/per-task runtimes of 2.56 seconds for
mercury (NCSA) are anomolies. It is not clear why the
performance of on mercury is worse than the other ma-
chines. Possible explanations include using an un-
optimized installation of Java or the GSISSH library used

Figure 5. Log of the runtime vs the log of the number
of nodes as a fundtion of the number of tasks on
anthill.

is not as fast as the SSH version. Note that for smaller
numbers of jobs the time per task fluctuates and should
be taken into account when distributing the workloads.

The speedup vs. the number of processors on anthill,
as a function of the number of tasks, is shown in fig. 6.
Speedup is given by Sp=Tser/Tpar. The speedup on ant-
hill begins to converge for large jobs for the larger proces-
sor runs; but there is still speedup occurring and this
trend should continue for larger jobs as long as the node
memory is not maxed out. Speedup on mercury, for the
larger number of tasks, is near linear speedup, with no
signs of leveling out as the number of processors increas-
es. Due to queuing limits, the maximimum number of
jobs was limited to 128.

Overall, the performance improvements are satisfacto-
ry. For the case of the initial 4 node Codor runs, the total
run time was 200 seconds for 1000 CV. Using JODIS, run-
ning 1000 tasks on 4 nodes, the total time would be
around 130 seconds, for a time per task of 0.13. This rep-
resents a reduction in runtime by a factor of about 50%.
However, actual CHEQS calculations are done for more
complex reactions and this could make the JODIS job run
longer, but nonetheless the results are encouraging. Note
that this job can be run on anthill in less than 10 seconds.
From another perspective, the JODIS system could run up
to 50,000 control volume calculations in about 650 sec-
onds. This provides CHEQS with the ability to increase
resolution without adding significant return times to so-
lution from within its existing web system.

Another factor affecting performance and job distribu-
tion is the memory used by a large ensemble job. The size
of a single control volume is small, approximately 100
bytes (depending on the size of the reactions), but for
larger jobs this can be significant. For example for 105

CV’s, the request packet will be about 10 Mbytes. JODIS
measures the memory usage as a function of number of
CV's, number of nodes, architecture/host. This data is
stored and used to predict job requirements for matching
to resources. We find that the CHEQS jobs fall into two
memory usage categories: for small numbers of tasks
(<103) the memory usage is dominated by the size of the
VM (about 0.6 MB on anthill and mercury); while for

10 CSRC TECHNICAL REPORT, 2010

Figure 6. Average runtime per task for the ensemble
of tasks run in parallel as a function of nodes.

Figure 7. Speedup vs number of processors as the
total number of tasks increases for the SDSU anthill
cluster.

larger jobs (103 to 106 CV’s) the memory averages around
0.250 and 0.23 Bytes/task on anthill and mercury, respec-
tively.

The JODIS system is also capable of distributing tasks
across heterogeneous resources. This was tested using
anthill, blackbox, TACC and NCSA clusters for various
test conditions. This is discussed in the next section.

4.2 Integration of JODIS and the Flame3D
Simulation Application

Once the JODIS services were characterized and validat-
ed, we then moved on to inserting JODIS into a real
CHEQS application. In particular, we worked with the
Flame3D simulations (described above in Section 2.3).
The JODIS service replaces the Web service located on
right hand side of fig2. With JODIS, the CHEQS equilibri-
um solver is sent to the compute nodes along with the
equilibrium data. We wanted to also test a more realistic
scenario, so the simulation computes the dissociation of
air flowing over a hot surface:

 (12)

02 03
2 2 2

2 2 2 3 2 2

3.73 4.44 10 1.81 10

CO , , , , , , , , , ,

 , ()

O N Ar CO

CO O N O NO N O NO O N

Ar C g

     

 
 
 

�

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 11

Figure 8. Diagram showing the JODIS enabled
CyberCHEQS architecture [3].

The GUI client is written in Java, so the client can run

anywhere (see figure 9). The Flame3D simulations are run
manually from within a GUI application running on our
laptops or local machines. The JODIS service is running
on a workstation at SDSU.

The goals of the experiment were to solve technical
challenges required to insert JODIS as the Web service
used by the application; to see if we could run larger,
more complex simulations and to increase the number of
control volumes (typically 103 max). Each CV task is small
(about 100 KB/task), but in aggregate numbers the actual
data can be significant: for 105 CV’s, the data is on the
order of 10 MB. In the existing mode, the application
sends one Web service request at a time, which results in
long delays as a result of the job submission times. In the
initial design, the client bundles up batches of tasks and
sends them in groups to the job service.

Using this simple mechanism, we were able to run
tests for cases up to 105 CV’s using nodes across 3 clus-
ters. The average time/task was about 0.1 seconds. How-
ever, we found that the application hangs for these large
jobs, and will require further modifications. Figure 10
shows the computed temperature profiles for this case,
which is similar to those of fig. 2, which verifies that the
system could reproduce results. Further testing will in-
clude modifying the code to run in a more automatic
mode, modification of the graphics display to handle the
large number of CV’s and reconfigureing the timeout pa-
rameters.

5 CONCLUSIONS
Although there exist more complex queuing systems
(such as Condor, Falkon), these are not always available
or easily installed. Hence the motivation to build a simple
system that uses MTC methods. Simple in design, JODIS
has significantly improved the CHEQS performance
overall by providing the ability to run larger simulations
(more control volumes), in parallel, with faster times to
results. JODIS can submit jobs to any queuing system, so
it can interface to these larger systems. JODIS is also flexi

Figure 9. Snapshot of the Flame3D GUI [2] showing
control buttons for temperature, timestep, etc. The
plot shows the temperature distribution across the
plate for a 10x20 matrix of control volumes used in
these eperiments.

ble: it is being used by other applications and for jobs run
within CyberWeb such as third party file transfer.

There are several technical challenges that we encoun-
tered (and mentioned above) that limited what could be
accomplished, especially when attempting to run large
numbers of jobs on large-scale machines, such as those on
the TeraGrid. While these conditions may be common, or
even required for the current infrastructure configura-
tions. These are summarized below:

Queuing Limits: These have a significant impact on
the tests we were running. This was mostly due to the
queuing limits established by the TeraGrid compute re-
sources; most likely because these resources are historical-
ly are weighted towards massively parallel computing
problems. On the NCSA Mercury cluster, tests were lim-
ited to running a maximum of 128 jobs within a 24-hour
period. CHEQS jobs are run as ensembles, so 128 nodes
would be acceptable, but this limits the number of tasks
we can run. Other queues allowed more time but fewer
processors.

While the maximum number of jobs is set to 128, the
maximum number of processors allowed is higher than
128. This works well for MPI-based applications, where 1
job maps to P processors. However, since CyberCHEQS
has a 1:1 mapping of jobs to processors, we were unable
to utilize all 640+ processors It is not within the scope of
JODIS to parallelize an application, but to simply to dis-
tribute the work. Other MPI-enabled applications will
hopefully be able to use JODIS to distribute jobs across
the entire cluster.

The implication of this issue is that MTC problems re-
quire new approaches to queuing and scheduling if we
are able to take advantage of these larger systems. Addi-
tionally, although one could send a request to reserve a
large number of nodes, this does not map well to real-
time simulations that the CHEQS application will be rou-
tinely running.

Universal Resource Availability/Queuing Estimates:
if MTC systems are going to be successful, we need to
have a way to identify what resources are available and

12 CSRC TECHNICAL REPORT, 2010

Figure 10. Concentration and thermal boundary layers
of a steady-state (“slug”) flow of carbon dioxide

over a semi-infinite flat plate at 6000K. Theta is
dimensionless temperature and the yellow line is the
thermal boundary layer with distance
at the right wall [5].

when, and for how long. Ideally, these services will allow
MTC jobs to be used as backfill jobs.

Java Threads: We encountered an interesting phe-
nomenon while running our experiments on several
compute resources including the SDSU Dolphin cluster
(whose results are not reported) and NCSA Mercury. It
was noticed in several environments that multiple pro-
cesses were created for each JVM instance that was run.
The application ran with no errors. We would not have
noticed this, except that our runs on Dolphin froze the
compute node and in turn locked up the PBS queue (con-
sequently annoying system administrators and other us-
ers). Note that while multiple processes were observed on
both Dolphin and Mercury, the processes on Mercury did
not lock up the PBS queue as observed on Dolphin. This
is possibly a queuing configuration limit, but it not re-
solved at this point. The issue further intrigued us when
we noticed Anthill running same operating system and
the same version of Java showed different behaviors. Fur-
ther research showed that these processes were various
different Java threads, which agreed with the observation
that all but one thread sit idly while one lone thread con-
sumed CPU time. While these threads did not seem to
consume resources, the full effect of these threads on a
large CyberCHEQS simulations is unknown.

RPC Standards: Many different RPC protocol and
standards exist out there today. A flexible form of com-
munication between the client and the JODIS Web Service
is needed. The Simple Object Access Protocol (SOAP) is a
good choice, due to its flexibility and its integration with
the Web Service Discovery Language (WSDL). The WSDL

defines services offered by a Web application. These defi-
nitions make client integration with the Web Service very
simple. Packages exist for most programming languages
that create stubs for these RPC calls. Using these stubs
abstracts the fact that the client is using any remote func-
tion at all, making integration with these services quick
and easy.

The Globus Alliance and IBM created the Web Services
Resource Framework (WSRF) in 2003. Normally, Web
Services are considered to be stateless. A Web Service
does not normally remember history. WSRF aimed to fix
this by defining a new standard that provides the notion
of states. Unfortunately, its requirement of WS-
Addressing metadata made it incompatible with the
standard SOAP protocol. The framework was controver-
sial at the time and has since faded from the limelight.
While WSRF is still in use today, it is not as popular as it
once was. Since the majority of SOAP users use the
standard protocol, many Web Service providers choose to
implement persistent storage via a database rather than
maintaining states in the Web Service. Our goal is to
make JODIS widely available and based on commodity
out-of-the-box software. It was decided for JODIS to stick
with the standard SOAP protocol. The addition of states
could later be added using the cyberWeb database.

6 FUTURE WORK
We will continue to modify JODIS in order to improve

performance of the CHEQS service, and to increase its
performance in higher resolution simulations and near
real-time monitoring of the simulations. The project has
the potential to impact hundreds of researchers and stu-
dents as they use the CHEQS web portal interface while
accessing high-end HTC resources on the TeraGrid.

JODIS is an on-going project whose focus will continue
towards exploring more possibilities of integrating CI
resources with new and emerging Web 2.0 technologies.
Future work efforts include integration with the Cyber-
infrastructure WebApp Toolkit (CyberWeb). A demo por-
tal interface to JODIS job submission and monitoring
tools via a portal will be developed. The JODIS applica-
tion framework will be the default cyberWeb job submis-
sion mechanism. JODIS will utilize the cyberWeb data-
base to complement its existing features, with common
functionality, such as: (a) administering user access to the
Web Service and gateway; (b) database capabilities for
configuring resources, monitoring jobs and managing
results, providing access to historical job data; (c) provide
easy integration with other common RPC protocols. A
goal of the CyberWeb project is that the software be wide-
ly adopted freely by scientists everywhere. The
CyberWeb project achieves this goal through the use of
Python eggs (which are similar to Makefile or Maven for
Java) to automate the installation processes. These eggs
take much of the worry out of installation and software
dependencies. This capability will be used to generalize
JODIS for download and use by other projects.

Another major goal for the JODIS project is scalability.
Cloud computing offers a unique scaling opportunity

CO2 


 t  70.3125 mm

THOMAS ET AL.: IMPROVING THE PERFORMANCE OF THERMOCHEMICAL COMPUTATIONS USING MANY-TASK COMPUTING METHODS 13

allowing users to only pay for the computing power they
use. Using cloud resources will allow JODIS yet another
real-time mode of operation that can be used along with
the current offering of HPC and HTC resources. A benefit
of using cyberWeb and the installation egg is that this
should facilitate easy migration of JODIS tasks to differ-
ent cloud resources.

7 ACKNOWLEDGMENT
This research was supported in part by the National Sci-
ence Foundation (Grants NSF-0753283, NSF-0721656), and
with resources available on the NSF TeraGrid Project
(NSF-12345, Texas Advanced Computing Center and the
National Center for Supercomputing Applications), and
NSF grant DBI-0850356 (anthill.sdsu.edu), and the San
Diego State University Computational Sciences Research
Center. (dolphin.sdsu.edu).

REFERENCES
[1] Bhattacharjee, S. and Paolini, C. P., Property Evaluation in The

Expert System for Thermodynamics ("TEST") Web Application,
Journal of Computer Coupling of Phase Diagrams and
Thermochemistry - CALPHAD, 33(2), p 343-352, June 2009.

[2] Paolini, C. P. and Bhattacharjee, S., A Web Service
Infrastructure for Distributed Chemical Equilibrium
Computation, Proceedings of the 6th International Conference
on Computational Heat and Mass Transfer (ICCHMT), May 18–
21, 2009, Guangzhou, China, p. 413-418.

[3] The Job Distribution Service (JODIS) Project Website.
Available: http://acel.sdsu.edu/JODIS

[4] Thomas, M. P. (2008), Using the Pylons Web Framework for
Science Gateways. rid Computing Environments Workshop,
GCE’08 12-16 Nov. 2008.

[5] Bhattacharjee, S. and Paolini, C. P., The Chemical
Thermodynamic Module of The Expert System for
Thermodynamics (“TEST”) Web Application, 2009 ASEE
Annual Conference & Exposition, June 14–17, 2009, Austin, TX

[6] Dong, X., Gilbert; K.E., Guha, R.; Heiland, R.; Kim, J.; Pierce,
M.E.; Fox, G.C.; and Wild, D.J. Web Service Infrastructure for
Chemoinformatics. J. Chem. Inf. Model., 2007, 47(4), 1303 –
1307.

[7] Truong, T.N.; Nayak, M.; Huynh, H.H.; Cook, T.; Mahajan, P.;
Tran, L.T.; Bharath, J.; Jain, S.; Pham, H.B.; Boonyasiriwat, C.;
Nguyen, N.; Andersen, E., Kim, Y.; Choe, S.; Choi, J.;
Cheatham, T.E.; and Facelli, J.C.; Computational Science and
Engineering Online (CSE-Online): A Cyber-Infrastructure for
Scientific Computing, J. Chem. Inf. Model., 2006, (46), 3, 971 -
984.

[8] Frenklach, M.; Packard, A.; Seiler, P.; and Feeley, R.
Collaborative Data Processing In Developing Predictive Models
Of Complex Reaction Systems. Int. J. Chem. Kinetics, 2004, (36),
57 – 66.

[9] Goodwin, D. G.; CANTERA: An Open-Source, Object-Oriented
Software Suite for Combustion, NSF Workshop on Cyber-based
Combustion Science, National Science Foundation, NSF
Headquarters, Arlington, VA, April 19-20, 2006.

[10] Paolini, C., Yeo, K. H. and Bhattacharjee, S., An object oriented
formulation for the finite volume simpler algorithm. In
Proceedings of the Western States Section/The Combustion
Institute, October 2003.

[11] Paolini, C., Yeo, K. H. and Bhattacharjee, S., An object oriented
formulation for unsteady 3d heat transfer. In Proceedings of
CHT-04 ICHMT International Symposium on Advances in
Computational Heat Transfer, April 2004.

[12] Thomas, M. P. and Castillo, J. E. (2009). Development of a
Computational Environment for the General Curvilinear Ocean
Model. To appear in the Proceedings of SciDAC 2009, June

2009, San Diego, CA, USA. Journal of Physics: Conference
Series, 2009.

[13] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra,
and B. Clifford, "Toward loosely coupled programming on
petascale systems," in SC '08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing. Piscataway, NJ,
USA: IEEE Press, 2008, pp. 1-12. [Online]. Available:
http://dx.doi.org/10.1145/1413370.1413393.

[14] Workshop on Many-Task Computing on Grids and
Supercomputers, 2009. MTAGS 2009. [Online]. Available:
http://dsl.cs.uchicago.edu/MTAGS09/.

[15] Deelman, E., Blythe1, J., Gil, Y., Kesselman, C., Mehta. G.,
Patil1, S., Sua, M., Vahi, K., Livny M., “Pegasus: Mapping
Scientific Workflows onto the Grid,” Across Grids Conference
2004. [Online]. Available:
http://pegasus.isi.edu/publications.php

[16] Deelmana, E., Singha, G., Sua, M., Blythea, J., Gila, Y.,
Kesselman, C., Mehta G., Vahi, K., Berriman, B., Good, J., Laity,
A., C. Jacob, J., Katz, D, “Pegasus: A framework for mapping
complex scientific workflows onto distributed systems,”
Scientific Programming Journal, Vol 13(3), 2005, Pages 219-237.
[Online] Available:
http://dev.globus.org/wiki/Incubator/Falkon

[17] Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.,
“Falkon: a Fast and Light-weight tasK executiON framework,”
IEEE/ACM SuperComputing 2007. [Online]. Available:
http://pegasus.isi.edu/publications.php

[18] Zhao, Y., Hategan, M., Clifford, B., Foster, I., Laszewski, G.,
Raicu, I., Stef-Praun, T., Wilde, M., “Swift: Fast, Reliable,
Loosely Coupled Parallel Computation,” in IEEE International
Workshop on Scientific Workflows, 2007. [Online]. Available:
http:// www.ci.uchicago.edu/swift/papers/.

[19] Tannenbaum, T., Wright, D., Miller, K. and Livny, M., Condor -
A Distributed Job Scheduler, in Thomas Sterling, editor,
Beowulf Cluster Computing with Linux, The MIT Press, 2002.

