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Improving the Performance of 
Thermochemical Computations Using Many-

Task Computing Methods 
Mary P. Thomas, Member IEEE, S. Bhattacharjee Carny Cheng, Robert A. Edwards, Christopher 

P. Paolini 

Abstract—The SDSU online Chemical Equilibrium Services perform numerical heat transfer and fluid flow computations, using 
the Flame3D simulator, for thousands of researchers, educators, and students. The computation is broken down into a grid of 
2D or 3D control volumes, each of which runs for a few seconds, has small memory requirements (100 Bytes), is independent 
of its neighbors, and is submitted individually to a Web Service. The embarrassingly parallel simulation requires several hours to 
compute a few thousand control volumes, for 10’s of thousands of iterations on a desktop. To improve the computational 
performance, a multi-task computing (MTC) approach was adopted. For this, a simple job distribution Web service framework 
(JODIS) was designed that distributes application workloads across hetergenous computing systems. JODIS has been 
demonstrated to run millions of Flame3D tasks simultaneously on a variety of resources and queuing systems. In this paper we 
report on the impact of JODIS on Flame3D computations, along with our experiences gained and challenges encountered when 
using heterogeneous computing environments, including the TeraGrid. Using JODIS, we have demonstrated a significant 
increase in the resolution of Flame3D (from 103 to more than 106 control volumes) and significant reduction in run times (by a 
factor of over 40 for a large test case of 128 processors and 107 tasks). In general, we conclude that the MTC approach can 
significantly improve Flame3D computational performance, but that changes need to be made to queuing/job submission 
systems in order to facilitate the rapid cycles needed for jobs similar to the Flame3D tasks. 

Index Terms—Many-task computing, MTC, high-throughput computing, HTC, high performance computing, HPC, Web 
services, Pylons. 

——————————      —————————— 

1 INTRODUCTION

he Chemical Equilibrium Services (CHEQS) applica-
tion, created at San Diego State University (SDSU), 
solves chemical equilibrium problems for thousands 

of researchers, educators, and students [1]. The applica-
tion does this using a novel numerical method to mini-
mize a system’s Gibbs free energy function with con-
straints [2]. CyberCHEQS is based on the TEST project, 
which has been in existence for several years, and has a 
large user community of several thousand users distrib-
uted across many educational institutions. TEST provides 
a Web interface that is used to analyze thermofluids prob-
lems, verify hand calculations, pursue what-if scenarios, 
and visualize thermal systems. TEST utilizes Web Ser-
vices to provide easy to use software tools that allow en-
gineers to upload data and run experiments and is able to 
facilitate online collaboration among users from diverse 

scientific backgrounds. The cyberCHEQS application 
(which is described in Section 2) is designed to compute 
103 to 106 control volumes running for about 500,000 itera-
tions. Currently, the system runs chemical computations 
on 2D or 3D volumes, consisting of 103 to 106 control vol-
umes (i.e. cells of a grid) and submits 1 calculation at a 
time to a Web Service.  Depending on the granularity of 
the computation, the system is currently limited to run-
ning small tasks (e.g. a few thousand control volumes for 
10’s of thousands of iterations). New approaches are 
needed in order to reduce time to solutions, increase reso-
lution, and improve real-time simulations. 

To improve the computational performance, we 
adopted a multi-task computing (MTC) approach that 
must operate within the heterogeneous computing envi-
ronments typically encountered at a research university. 
For this, we designed a simple job distribution Web ser-
vice framework (JODIS) that distributes application work-
loads across heterogeneous computing systems. The de-
sign and archticture are presented in Section 3 below. 
JODIS is a Web Service application framework based on 
the master/worker design pattern and utilizes the SDSU 
Cyberinfrastructure Web Application Toolkit (cyberWeb) 
as a hosting environment [3] [4]. JODIS has been demon-
strated to run millions of Flame3D tasks simultaneously 
on a variety of resources and queuing systems. Using 
JODIS, we have demonstrated a significant increase in the 
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resolution of Flame3D (from 103 to more than 106 control 
volumes) and significant reduction in run times (by a fac-
tor of over 40 for a large test case of 128 processors and 
107 tasks). In general, we find that the MTC approach can 
significantly improve the CyberCHEQS/Flame3D com-
putational performance, but that changes need to be 
made to queuing/job submission systems in order to fa-
cilitate the rapid cycles needed for jobs similar to the 
Flame3D tasks tasks. These and other problems and is-
sues encountered which limited our ability to run MTC 
problems on clusters and standard HPC clusters are dis-
cussed in more detail in the Conclusions Section of this 
paper. 

2 THE SDSU CHEMICAL EQUILIBRIUM SERVICES 
The SDSU Chemical Equilibrium Services (CHEQS) 

have been designed as a Web based alternative to com-
monly used software applications such as STANJAN and 
NASA CEA for performing chemical equilibrium analysis 
in combustion research [5]. The approach is based on the 
next generation style of computational software devel-
opment that relies on loosely-coupled network accessible 
software components called Web Services. While several 
projects in existence use Web Services to wrap existing 
commercial and open-source tools to mine thermodynam-
ic data, no Web Service infrastructure has yet been devel-
oped to provide the thermal science community with a 
collection of publicly accessible remote functions for per-
forming complex combustion computation. This work 
represents the first effort in the thermochemisty commu-
nity to provide an infrastructure where remotely accessi-
ble software services allows developers of thermodynam-
ics and combustion software to perform complex, multi-
phase chemical equilibrium computation with relative 
ease. This service can be integrated into any numerical 
application an example where we have coupled the use of 
our equilibrium service with an existing thermal-fluid 
simulator based on the control-volume formulation of 
Patankar and Spalding. In this section we provide an 
overview of chemical equilibrium computation, we de-
scribe the CHEQS Web services, as well as a description 
of the Flame3D CHEQS-based application, which is used 
for the research reported in this paper. 

2.1 Background: Chemical Equilibrium 
Computation 

Numerical determination of the equilibrium state mass 
fractions of gaseous and condensed matter is frequently 
needed in combustion simulations that model chemically 
reacting flows.  The numerical method most often used to 
calculate an equilibrium distribution is based on minimiz-
ing a system’s Gibbs free energy function with con-
straints.  The total Gibbs energy  of a system composed 
of m species is given by  

  (1) 

where  is the chemical potential of the th 

species and a function of the system temperature , 
pressure , and number of moles of each component 

species, . From (1) and using the definition of the 
chemical potential for an ideal gas species , we have  

  (2) 

where  is the standard state pressure of 1 atm and  
the partial pressure of species .  The minimum station-
ary point of (1) will be the vector of species molar values 

where  vanishes.  Differentiating (1) we obtain 

  (3) 

From the isothermal, isobaric Gibbs-Duhem equation 
we know that  

  (4) 

and so we seek the unique vector such that  

  (5) 

where  is the number of moles of species  and 
is the total number of moles in the equilibrium 

composition. Solving (5) amounts to solving a nonlinear 
constrained minimization problem. The traditional nu-
merical practice used for solving optimization problems 
of this type is the method of Lagrange multipliers using 
an iterative Newton-Raphson technique for solving the 
resulting set of nonlinear equations. Bhattacharjee and 
Paolini [2] have encapsulated this method into a publicly 
accessible Web Service that can be called from most con-
temporary programming environments and commercial 
applications. This service can be invoked as a reusable 
third party software component by a thermal science re-
searcher when developing custom applications.  As a re-
sult, the researcher is freed from having to worry about 
implementing his or her own code for computing chemi-
cal equilibrium.  When a desired equilibrium distribution 
is needed, the developer need only insert the requisite 
code to remotely discover and dynamically invoke the 
Web Service.     

2.2 Equilibrium Computation Using the CHEQS 
Web Service 

Web Services extend the paradigm of object-oriented 
programming to the network whereby a single software 
application is composed of loosely-coupled modules that 
execute on autonomous networked systems. Recent ef-
forts by Dong et al. [6] and Truong et al. [7] have shown 
the strength of using Web Service technology in chemoin-
formatics applications to facilitate the organization and 
retrieval of chemical data while advances in collaborative 
cyberinfrastructure for developing predictive models for 
chemically reacting systems have been spearheaded by 
Frenklach et al. through the open-source Process Infor-
matics Model (PrIMe) project [8].  Furthermore, the Can-
tera [9] package by Goodwin provides an open-source, 
object-oriented suite of software tools to aid in simulating 
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Figure 1.  CHEQS client-server architecture. [3]  

be called to solve equilibrium problems from within 
FORTRAN, MATLAB, and Python scripts. While several 
projects in existence use Web Services to wrap existing 
commercial and open-source tools to mine thermodynam-
ic data, no Web Service infrastructure has yet been devel-
oped to provide the thermal science community with a 
collection of publicly accessible remote functions for per-
forming complex combustion computation. This work 
represents the first effort to provide such an infrastruc-
ture to deploy a remotely accessible software service that 
allows developers of thermodynamics and combustion 
software to perform complex, multiphase chemical equi-
librium computation with relative ease. This service can 
be integrated into any numerical application. 

A researcher engaged in the development of software 
for simulating a thermal-fluid process will likely have a 
need to repeatedly compute the distribution of species 
resulting from a combustion reaction in many locations of 
a computational domain.  If the number of equilibrium 
computations is in the tens of thousands, using a serial 
approach whereby computations are performed in a loop 
construct would likely be unacceptably time-consuming. 
Using CHEQS, however, equilibrium computations can 
be performed in parallel by asynchronously invoking a 
remote operation within the researcher’s own application. 
There is no need for the researcher to design his or her 
own equilibrium solver or locate a suitable third-party 
library.  The CHEQS Web service can essentially be 
thought of as code that “plugs in” to existing software 
and takes advantage of distributed computational re-
sources over the Internet.  This style of software devel-
opment based on orchestrating loosely-coupled and dis-
tributed software services is called a Service Oriented 
Architecture (SOA). Adopting an SOA approach to build-
ing combustion applications will have a sweeping impact 
on research and teaching in the thermal sciences as devel-
opers are able to construct new software tools that build 
upon an ever expanding collection of independent and 
modular Web Services. 

We have developed a chemical equilibrium Web Ser-
vice that exposes an operation to calculate and return the 
equilibrium distribution of the products of an arbitrary 
reaction at a defined temperature and pressure (see fig. 1). 
The client application connects to the SOAP server and 
the temperature, pressure, reactants and products are 
passed as arguments. The input parameters are the reac-
tion temperature in Kelvin, pressure in kilopascals, a 
comma and colon delimited list of reactants, and a com-
ma delimited list of allowable products.  

The list of reactant species is specified using the format 
where  is the chemical for-

mula of a reactant species using the Hill naming system 
and  is the quantity of the respective species in the 

reactant mixture. To illustrate how the Web Service can 
be used, consider the standard reaction for ammonia syn-
thesis by means of the well known Haber process, 

 
 . (6) 

The Haber process is carried out at about 520°C and 500 
atm in the presence of an iron-molybdenum catalyst.  The 
catalyst increases the rate of the reaction but does not af-
fect the reaction stoichiometry.  At equilibrium, the mole 
fractions of nitrogen, hydrogen, and ammonia are ap-
proximately 17%, 50%, and 33%.  

The CHEQS’ Web Service solve operation returns the 
unique distribution of product species that corresponds to 
a reaction at a fixed temperature T in Kelvin and pressure 
p in kilopascals. To invoke the solve operation, a SOAP 
message body is constructed by a client process that in-
cludes a definition of four required input parameters for 
T, P, the reactants list, and the products list. The data is 
returned using simple JSON (JavaScript Object Notation, 
http://www.json.org) format, which makes it easy for 
clients to parse results. 

2.3 Distributed Equilibrium Computation for Use in 
Fluid and Heat Transfer Simulation  

Bhattacharjee and Paolini have developed the Flame3D 
[10] [11] application, which is based on the control-
volume formulation of Patankar and Spalding. The goal 
of this coupling was to provide Flame3D with an ability 
to simultaneously compute, using the equilibrium Web 
Service, the equilibrium distribution of every control vol-
ume after a steady-state temperature field was found. 

Figure 2 shows a snapshot of a slug flow simulation 
from Flame3D where carbon dioxide  passes at a 
constant velocity ux=49.212 mm/s over a semi-infinite hot 
plate configured at 6000K. The boundary conditions of all 
other walls of the physical domain are configured to have 
an ambient temperature of . As CO2 passes 
over the plate, some dissociation to carbon monoxide 

and oxygen  will occur.  Once the distribution 
of species within each control volume is found, the con-
centration profile along with the temperature profile can 
be plotted to evaluate the respective concentration of each 
product as well as the thermal boundary layer.   

Figure 2 shows a plot of the resulting equilibrium con-
centration of each product species and the thermal 
boundary layer in the fourth plot of the figure. Theta  is 
a dimensionless temperature given by  
  (7) 

where  and . The red line is the 
expected theoretical thermal boundary layer with dis-
tance  t  75.1700  mm at the right wall and 
the interspersed green dots are numerically calculated 
values of  where  or, equivalently, when 
  (8) 

is satisfied where .   
As one can see from the figure, the numerically calcu-

lated values of  closely coincide with the expected
   moles: formula     formula

moles

N 2 g  3H 2 g  2NH 3 g 

CO2 

T  300K

CO  O2 



 T T  Tw T 
T  300K Tw  6000K

 t  75.1700

 t ,x 1  0.99
T T  Tw T  0.99

T  357K

 t ,x
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Figure 2.  Concentration and thermal boundary layers of a steady-state (“slug”) flow of carbon dioxide over a 

semi-infinite flat plate at 6000K.   Theta   is dimensionless temperature and the yellow line is the thermal 
boundary layer with distance   at the right wall. [10] 

 
theoretical  using the approximation  
 

  (9) 

The thermal diffusivity parameter   
was approximated as 2.2x10-5 which is valid for carbon 
dioxide gas at 1 atm and 300 K.   is the dimensionless 
Péclet number with respect to the x-axis and is given by 

. The Péclet number characterizes a flow’s rate 
of advection to its rate of thermal diffusion.  In the third 
plot of Figure X6, the red line shows the expected theoret-
ical concentration boundary layer based on the approxi-
mation  

  (10) 

and the green dots show numerically calculated values 
of  where  

  (11) 

 being the concentration of oxygen gas at the sur-
face of the plate.  From the plot, one can see a disparity 
exists between the numerical and theoretical solution and 
this is due to the fact that the numerical solution is an 
equilibrium solution and does not account for the diffusion 
of oxygen that would actually occur in such a reaction. 
The dimensionless parameter in equation (10) is the Lewis 
number, which is the ratio of thermal diffusivity to mass 
diffusivity  and is given by . 

3 MANY TASK COMPUTING APPROACH 

3.1 Requirements 
The Flame3D application computes the temporal and spa-
tial evoloution of species within a volume. The volume is 
broken up into a grid of control volumes (CV’s), each of 
which is used to compute the chemical composition and 
temperature of the species within the CV using the 
CHEQS chemical equilibrium Web service. Each CV cal-
culation is independent of any other CV. As mentioned 
above, the application compute cycles are run over 1024 
CV’s until thermal equilibrium occurs (typically less than 
a few thousand iterations for 103 CV’s). For high-
resolution computations, CHEQS equilibrium services are 
designed to run using 106 CV’s, over 5x105 iterations, for a 
total of 5x1011 total calculations. With the current design, 
each CV calculation takes about 1 second, resulting in a 
total compute time of thousands of years for large scale 
computations.  

Based on these characteristics, we chose to focus on a 
multi-task computing (MTC) approach. Additional re-
quirements include: the need for the service to operate 
within the heterogeneous computing environments typi-
cally encountered at a research university (local clusters 
and remote HPC systems, various policies and accounts); 
to interface to different queing systems; to be hosted as a 
Web service callable by Flame3D applications. The service 
also needs to support two types of clients: rapid response 
(results be returned rapidly to facilitate real time interac-
tive computations for some applications); and large multi 
task computations (e.g. 106 or more CV’s).  

CO2 


 t  70.3125 mm

 t

 t ,theoretical  4.92 x Pex  4.92 x u

  k cp  m2 s 
PEx

Pex  ux 

c ,theoreticalt ,theoretical Le

 c ,x

CO2 ,S CO2
  CO2 ,S  0.99,

CO2 ,S

DAB Le  DAB
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Figure 3.  The JODIS and CyberWeb architecture. The diagram shows the client interface layer (left), the middle 
layer based on cyberWeb, and the back-end remote resources layer  [12] [4]. 

 
To meet these requirements, the job distribution Web ser-
vice framework (JODIS) was designed to distribute appli-
cation workloads across heterogeneous computing sys-
tems. JODIS is a Web Service application framework 
based on the master/worker design pattern and utilizes 
the SDSU Cyberinfrastructure Web Application Toolkit 
(cyberWeb) as a hosting environment [3] [4].  

3.2 SDSU Cyberinfrastructure Web Service 
Framework (CyberWeb) 

JODIS services are hosted on the Web through the SDSU 
Pylons-based Cyberinfrastructure Web Service Frame-
work (CyberWeb). This framework is based on the Pylons 
Web Application Framework [4], and includes compo-
nents that interface with the distributed, services oriented 
architecture of the Web, as well as the cyberinfrastructure 
and middleware services such as those hosted on the 
TeraGrid (http://www.teragrid.org). CyberWeb can be 
used to host any type of Web 2.0 service, and can route 
URI requests, process requests and execute tasks [12]. 
Using cyberWeb, the JODIS system can host multiple ser-
vices using a variety of interfaces.  

One aspect of this project is based on an attempt to 
keep systems like JODIS simple. Python is the primary 
programming language for several reasons: it has a 
strong, active open source developer community; it is 
object-oriented; libraries have been proven to work well 
for science applications (SciPy, NumPy, PyNGL PyNIO); 
and libraries for grid integration (pyGlobus, pyGridWare, 
pyGSI). The cyberWeb framework must have the ability 
to integrate emerging Web 2.0 technologies including 
WSGI (Web Server Gateway Interface), databases, 
XML/JavaScript/AJAX, Google Gadgets, social networks, 

Web 2.0 services and toolkits, and security. Pylons is a 
Python based Web application framework, hence, any 
number of components and libraries developed by other 
software projects can be incorporated into the system, 
which facilitates customization. In the Pylons architec-
ture, the services layer is decoupled from the logic of the 
code behind it, JODIS is hosted as a computational service 
that can be accessed by a portal, application, or other Web 
Services. A feature of Pylons is that all software can be 
bundled into a deployable egg that can be installed on 
any system and can be modified for use by other applica-
tions. System admin pages have been developed to facili-
tate configuration and management of users and re-
sources. Thus, the JODIS system can be securely deployed 
across many hosting systems. The cyberWeb framework 
integrates with grid security infrastructure (GSI) authen-
tication and the MyProxy credential services.   

A feature of CyberWeb is that it has most of its config-
uration data stored within a relational database (users, 
hosts, authentication, jobs, job history) and all of these 
tables are administered using either the admin portal or a 
command line interface. Currently, CyberWeb uses 
SQLITE3, which is stored in memory within the server. 
Data is initialized using a flat text file which is in JSON 
format, which allows a new project to easily seed the da-
tabase. During run time, all services, including JODIS, 
have access to this database. In this way, new resources 
can be added or modified and JODIS to control access to 
the service (if needed) using the authentication modules. 

The CyberWeb framework provides us with a rapid 
development cycle and the ability to add new and im-
proved RPC protocols in the future. Using cyberWeb to 
host services (and access the same code) means that a de-
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veloper can develop one service (such as job submission 
via JODIS) and expose that service to different clients 
such as a portal, a remote application, or a Google gadget. 

3.3 Job Distribution Services 
JODIS consists of multiple services offered through a 

Web 2.0 application server environment. In the web ap-
plication environment, all services work together to offer 
an end-to-end job dispatching service to multiple clients. 
The architecture for the JODIS system can be found in Fig. 
2. The Web server environment (based on CyberWeb, see 
below) provides users with methods of communicating 
with JODIS using either a Python client API or Web Ser-
vice to access the Job Service. The Web Service allows a 
wide variety of applications to interact with JODIS re-
gardless of location, device or programming language. 
The Job Service provides a majority of the user-accessible 
function calls and manages a user’s jobs regardless of the 
resource. The Resource Service works on the back end to 
manage the various connections between the JODIS and 
the compute resources being used. It works as a singleton 
to minimize the number of duplicate connections. The 
connections between JODIS services are shown in the 
architecture diagram (Fig.2). The ability for JODIS to 
gather usage information and use this data for predicting 
job runtimes and for selecting where to run a job provides 
a useful approach to running MTC jobs. 

3.3.1 Job Services 
Clients primarily interact with the JODIS Job Service API. 
It is responsible for tying all of the services together to 
provide simple job submission to heterogeneous re-
sources. This service is used for job submission, query, 
and cancellation. This service hides many of the complex-
ities involved with job submission such as choosing 
which resources to use, tracking these jobs, and managing 
connections between the resources. JODIS uses a job 
runtime “Guesstimation” along with a Distribution Policy 
to dynamically choose which compute resource to use or 
each job. 

Job “Guesstimation”: This capability provides JODIS 
with the ability to forecast job runtimes in order to choose 
the appropriate compute resource for each job. Many 
cluster queuing systems set maximum run time limita-
tions on jobs to improve general availability of their re-
sources to a wide audience. This limit is arbitrarily set by 
the system administrators of the cluster, and in several 
cases this limit was set as low as 24 hours (see Table 1). 
JODIS Job runtimes can be set via the user or based off of 
historical runtimes when JODIS is integrated with a data-
base. Within reasonable limits, forecasts compute worst 
case estimates based on upper bound run time limits.  

The JODIS Client Service dispatches a sample applica-
tion to measure the expected runtime. CyberCHEQS jobs 
increase linearly with respect to the number of tasks. In 
our experiments, CyberCHEQS guesstimates come very 
close to the actual runtime. In the future, users will be 
able to estimate runtimes via historical data stored in a 
database and adjust these runtimes based on some sort of 
job size parameter. 

Job Distribution Policy: This component takes in an ar-
ray of guesstimated run times as its sole parameter. Using 
these guesstimates for each compute resource, JODIS 
makes an attempt to minimize the runtime of all the jobs 
given the restrictions on queue time limits and memory 
restrictions of compute resources. JODIS stores the queue 
time limits and memory restrictions in a configuration file 
loaded in at runtime. As these limits and restrictions 
change often, future versions will hopefully mine for this 
data when possible. JODIS does not make an attempt to 
estimate or take into account queue wait times. This is not 
an ideal, however, job forecasting is out of the scope of 
this project. To compensate for this, each resource can be 
given a weight factor. This weight is multiplied by the 
guesstimated runtime implying that a smaller weight 
factor improves the guesstimated time for a particular 
resource whereas a larger weight factor worsens the 
guesstimated time. One can imply that a factor of 0 across 
all resources will spread the tasks across those resources 
evenly. This becomes useful when differentiating be-
tween internal clusters versus the TeraGrid. The job 
queues of the TeraGrid were typically longer than those 
of our in-house compute clusters. Possible explanations 
include network issues, node configuration and job start 
up/node warmup times. 

3.3.2 Resource Services 
The resource service provides two essential functions to 
JODIS. The first being connections from JODIS to its com-
pute resources. Secondly, the resource service wraps the 
functionality of batch queuing systems. The resource ser-
vice offers communication to the compute resources and 
client targets mainly via Secure Shell (SSH) and GSI-
Enabled SSH. The latter is used for the TeraGrid and oth-
er GSI-Enabled resources. The abstraction of these essen-
tial functions allows JODIS to easily extend its operations 
to 
new protocols as they emerge. The resource service is a 
singleton class shared across all JODIS instances running 
on a particular machine in order to reduce useless dupli-
cate connections. These connections can easily become 
out of control if, for example, a user creates 20 JODIS job 
instances, which in turn might create separate connec-
tions for each compute resource, quickly bogging down 
system resources on the client and server. 

The resource service also wraps the functionality of 
batch queuing systems. Batch queuing systems are essen-
tial in maximizing CPU hours on compute clusters. They 
work to ensure jobs on all compute nodes are continually 
being exercised. JODIS relies on these queuing systems to 
execute jobs on each cluster. JODIS is able to use many 
popular queuing systems such as the Sun Grid Engine 
(SGE), Portable Batch System (PBS) and Condor. These 
systems provide the same core functionality each with its 
own slight syntactical nuances. Wrapping the basic queu-
ing functionality and communication provides JODIS the 
flexibility to work with any queuing system over any 
communication channel offered by the resource service. 
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3.3.3 Client Services 
JODIS hosts a general client Web Service for author-

ized job submission. Clients interact with JODIS directly 
using the Python API, or more popularly, through the 
SOAP Web Service interface. Both interfaces offer the 
same functionality, however, the Web Service interface 
gives clients the flexibility of running their code any-
where and offloading heavy computations to CI re-
sources. The JODIS WSDL allows new users to find the 
service as well as keep our users up-to-date on the latest 
API. Developers can extended the client Web service for 
specific applications with the use of the Job Builder Client 
interface which exchanges messages with JODIS. The cli-
ent service can hook into the JODIS job service to provide 
functions such as pre-processing, post-processing and 
more. The CyberCHEQS client service is specific to the 
CHEQS application. This layer is responsible for CHEQS 
specific tasks such as runtime guesstimations and job 
parsing. For CyberCHEQS, the total number of CVs (also 
called tasks) are distributed across the number of jobs to 
be run in the computation. The client is responsible for 
clustering these tasks into groups which are then passed 
as a collection of jobs to the JODIS job service.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Diagram of a typical JODIS job cycle for job 
submission from a CHEQS client [3]. 

 

3.3.4 The Jodis Job Cycle 
A typical JODIS job cycle is shown in fig. 4 and helps to 
demonstrate how the various components interact, and is 
describe below: 
 A client logs into and starts a JODIS session. 
 The client adds jobs to be to run as the job set. The cli-

ent tells JODIS when all the jobs have been submitted. 
This signals to JODIS to start its work.  

 JODIS processes the jobs and collects metadata are col-
lected by JODIS and added to the client’s job queue. In 
the current implementation, each connection creates its 
own instance of JODIS to differentiate between job sets. 
JODIS guesstimates the job runtime and dynamically 
chooses where to distribute the jobs. 

 JODIS adds jobs to the queues on the remote resources. 
JODIS guesstimates the job runtime and dynamically 
chooses where to distribute the jobs. 

 The client can periodically check the status of running 
jobs. The client does not need to be concerned with the 
exact location of the job. JODIS stores this information 
but is typically abstracted from the user. As far as the 
user is concerned, each job is being run on the same re-
source.  

 When the jobs are finished, JODIS delivers results di-
rectly to a specified file location or return the results to 
the user via a Web Service response. Actions can also 
be triggered such as sending an email or updating a da-
tabase table. 

3.4 Related Work 
The field of MTC is new, and hence, the number of tools 
dealing with this topic is small. Even smaller is the infra-
structure optimized specifically for MTC problems. The 
MTC community is developing a solid platform starting 
with a series of workshops and BOFs held at various con-
ferences and meetings [13] [14]. During these workshops, 
several well-known systems were shown that explored 
similar topics – Pegasus, Falkon and Swift. While each of 
these frameworks exists in the same MTC problem space, 
it is difficult to compare these systems to that of JODIS 
since the problem requirements for each are different.  

Pegasus is the most similar to JODIS. It is a framework 
that is designed to map workflows to the Grid environ-
ment. It is responsible for finding the resources on the 
Grid that are capable of performing the computations, the 
data used in the workflow and the necessary software 
[15] [16]. Pegasus was released in 2003 as part of the 
GriPhyN Virtual Data Toolkit. Falkon, a fast and light-
weight task execution framework, designed by Raicu et 
al. enables users to execute a large number of small and 
rapid tasks. Their aim was to show that MTC problems 
could be run on very large scale HTC hardware. To ac-
complish this task, Falkon separates the allocation of re-
sources using the conventional scheduler from the dis-
patching of small tasks. [17] Falkon has been optimized 
even further using its specially designed TCP protocol for 
communication between its client and compute nodes. 
Swift, based on CoG Karajan and Falkon, delivers a useful 
job management system using a new scripting language 
called SwiftScript. This tool provides users a useful tool to 
manage large datasets and managing all of the processing 
scripts across GSI-enabled resources. [18].   

JODIS differs slightly from the above projects in that it 
is intended to be lightweight and adaptable, to run on 
open scientific computing infrastructure (e.g. TeraGrid, 
local clusters), to use standard applications where possi-
ble, and to use existing queues and policies. JODIS does 
not include a workflow definition layer. Instead, JODIS 
uses a simple Web Service API for batch job pro-
cessing.new protocols as they emerge. Other types of job 
scheduling and distributed computing systems exist such 
as Condor [19], Globus, Sun Grid Engine, but they are not 
universally deployed. Instead, we intend to extend JODIS 
interfaces and clients to access these services. 
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TABLE 1. 

Hostnames and Performance Data 

HOST 
CPUS 
USED 

SERIAL 

TIME 

PER 

TASK 

PAR 

TIME 

PER 

TASK 

RAM PROC. QUEUE LIMITS 

dolphin.sdsu.edu 88 0.664 0.096 8 GB Intel Quad Core  PBS None 
anthill.sdsu.edu 60 0.729 0.008 16 GB Intel Quad Core  SGE None 
blackbox.sdsu.edu 60 0.529 0.200 12 GB Intel Quad Core  Condor None 
tg-login.ncsa.teragrid.org  
(mercury) 128 2.78 0.035 4.47 TB Intel® Itanium PBS 24 hr; 128 node maximum 
tg-login.tacc.teragrid.org 
(lonestar) 5,840 0.64 - 8GB Dell Power Edge LSF 48 hr; 40 Job max; 512 nodes max 

 

4 EXPERIMENTS AND RESULTS 
To measure the performance of the CHEQS applications, 
two types of tests were conducted: (a) performance tests 
of how well JODIS can distribute CHEQS equilibrium 
computations across resources; (b) integration of the 
JODIS services into and existing CHEQS based applica-
tion. These tests were run on several computing resources 
including the TeraGrid and local private clusters running 
queuing systems including SGE, PBS, LSF, and Condor.  
The machines are described in Table 1. 

4.1 Distribution of the CHEQS Equilibrium 
Computations 

A CyberCHEQS client was developed to submit simple 
equilibrium test cases to JODIS, which distributed jobs 
across the compute resources. The purpose of these tests 
is to measure the scaleability of the JODIS plus equilibri-
um services system. In order to isolate latencies on the 
client side, the client was run on the same machine as the 
JODIS service.  A job consists of a copy of the CHEQS 
equilibrium solver Java code and the reactant data for a 
number of CV’s. The job returns the resultant products. 
This is a small test case: it computes results for 1 reactant 
and 3 possible product species. Two modes of operation 
were tested to simulate the most common use cases of 
CHEQS for the Flame3D application. 

 The first mode (referred to as ‘single job’) simulates 
the current methodology implemented in Flame3D, 
where each CV sends its own asynchronous request to a 
Web Service to update its own equilibrium composition. 
Hence, using this methodology in a volume with 100 con-
trol volumes, the CHEQS web server would receive 100 
individual requests. These tests effectively defined the 
serial cases. The second method is the parallel (or ensem-
ble) method, where multiple CV computations and data 
sets are batched together and sent to the Web Service as 1 
request; and multiple requests are sent to the job service. 

Tests were performed on a variety of hosts (see Table 
1) and number of nodes (ranging from 1 to 128) using a 
single resource or in multi-mode (across multiple clus-
ters). Scaling tests were performed as a function of both 
the number of nodes and for various numbers of CVs (1 
to 107). The number of nodes utilized was a function of 
number of jobs and CV’s, cluster size, queuing policies 

(which limited the number of jobs that could be submit- 
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ted or how long a single job could last) and memory. In 
this case, without special permissions, large runs were not 
possible (e.g hundreds of MTC jobs).  

Runtime and memory were profiled using commodity 
tools. Memory was monitored from within the Cyber-
CHEQS application using the standard Java Runtime li-
brary. The memory was profiled during key points dur-
ing the application run. For most cases, the maximum 
heap memory usage was measured.  

Runtimes were a little more complicated to measure. 
Runtime results are reported the longest runtime across 
all nodes + the time to transfer result files. For reference, 
preliminary published results of CHEQS running 
Flame3D using Condor for 1, 2, and 4 nodes [2] on a con-
trol volume grid of 1024 cells are used for comparison.  

4.1.1 Results 
Figure 5 shows the log of the total runtime vs. the log of 
the total number of nodes, as a function of the number of 
processors for the SDSU anthill cluster. As expected, the 
runtime linearly increases with the number of tasks in-
creases and the runtime decreases as the number of nodes 
increases.  This type of result was observed for all systems 
used in this study as well as for runs involving heteroge-
neous collections of nodes. The curve marked “Blackbox-
Projected” is a projection based on tests run on the 
CHEQS system shown in fig. 1, using a 1, 2, and 4 node 
Condor system, for ensemble runs of 1000 control vol-
umes. In these cases, the best time per task was 0.200 sec-
onds.  

The average time per task is a key factor in determin-
ing how JODIS will distribute tasks across a pool of 
nodes. It is important to distinguish between the per-node 
run time for a task and the effective parallel runtime for 
an ensemble of jobs. For larger jobs (ignoring small jobs 
where warmup times dmoniate), the time per task for the 
average parallel time per task is given by Tpar = Ttot/Ttasks. 
Figure 6 shows the time per task for the different systems 
performance when running the ensemble jobs in parallel, 
and Table 1 contains a summary of average times for all 
machines.  

The per-node/per-task runtimes of 2.56 seconds for 
mercury (NCSA) are anomolies. It is not clear why the 
performance of on mercury is worse than the other ma-
chines. Possible explanations include using an un-
optimized installation of Java or the GSISSH library used  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.  Log of the runtime vs  the log of the number 
of nodes as a fundtion of the number of tasks on 
anthill. 

is not as fast as the SSH version. Note that for smaller 
numbers of jobs the time per task fluctuates and should 
be taken into account when distributing the workloads. 

The speedup vs. the number of processors on anthill, 
as a function of the number of tasks, is shown in fig. 6. 
Speedup is given by Sp=Tser/Tpar. The speedup on ant-
hill begins to converge for large jobs for the larger proces-
sor runs; but there is still speedup occurring and this 
trend should continue for larger jobs as long as the node 
memory is not maxed out. Speedup on mercury, for the 
larger number of tasks, is near linear speedup, with no 
signs of leveling out as the number of processors increas-
es. Due to queuing limits, the maximimum number of 
jobs was limited to 128. 

Overall, the performance improvements are satisfacto-
ry. For the case of the initial 4 node Codor runs, the total 
run time was 200 seconds for 1000 CV. Using JODIS, run-
ning 1000 tasks on 4 nodes, the total time would be 
around 130 seconds, for a time per task of 0.13. This rep-
resents a reduction in runtime by a factor of about 50%. 
However, actual CHEQS calculations are done for more 
complex reactions and this could make the JODIS job run 
longer, but nonetheless the results are encouraging. Note 
that this job can be run on anthill in less than 10 seconds. 
From another perspective, the JODIS system could run up 
to 50,000 control volume calculations in about 650 sec-
onds. This provides CHEQS with the ability to increase 
resolution without adding significant return times to so-
lution from within its existing web system.  

Another factor affecting performance and job distribu-
tion is the memory used by a large ensemble job. The size 
of a single control volume is small, approximately 100 
bytes (depending on the size of the reactions), but for 
larger jobs this can be significant. For example for 105 

CV’s, the request packet will be about 10 Mbytes. JODIS 
measures the memory usage as a function of number of 
CV's, number of nodes, architecture/host. This data is 
stored and used to predict job requirements for matching 
to resources. We find that the CHEQS jobs fall into two 
memory usage categories: for small numbers of tasks 
(<103 ) the memory usage is dominated by the size of the 
VM (about 0.6 MB on anthill and mercury); while for  
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Figure 6.  Average runtime per task for the ensemble 
of tasks run in parallel as a function of nodes. 

 
Figure 7.  Speedup vs number of processors as the 
total number of tasks increases for the SDSU anthill 
cluster. 

larger jobs (103 to 106  CV’s) the memory averages around 
0.250 and 0.23 Bytes/task on anthill and mercury, respec-
tively.  

The JODIS system is also capable of distributing tasks 
across heterogeneous resources. This was tested using 
anthill, blackbox, TACC and NCSA clusters for various 
test conditions. This is discussed in the next section.    

4.2 Integration of JODIS and the Flame3D 
Simulation Application  

Once the JODIS services were characterized and validat-
ed, we then moved on to inserting JODIS into a real 
CHEQS application. In particular, we worked with the 
Flame3D simulations (described above in Section 2.3). 
The JODIS service replaces the Web service located on 
right hand side of fig2. With JODIS, the CHEQS equilibri-
um solver is sent to the compute nodes along with the 
equilibrium data. We wanted to also test a more realistic 
scenario, so the simulation computes the dissociation of 
air flowing over a hot surface:  
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Figure 8.  Diagram showing the JODIS enabled 
CyberCHEQS architecture [3]. 

 
The GUI client is written in Java, so the client can run 

anywhere (see figure 9). The Flame3D simulations are run 
manually from within a GUI application running on our 
laptops or local machines. The JODIS service is running 
on a workstation at SDSU.   

The goals of the experiment were to solve technical 
challenges required to insert JODIS as the Web service 
used by the application; to see if we could run larger, 
more complex simulations and to increase the number of 
control volumes (typically 103 max). Each CV task is small 
(about 100 KB/task), but in aggregate numbers the actual 
data can be significant: for 105 CV’s, the data is on the 
order of 10 MB. In the existing mode, the application 
sends one Web service request at a time, which results in 
long delays as a result of the job submission times. In the 
initial design, the client bundles up batches of tasks and 
sends them in groups to the job service.   

Using this simple mechanism, we were able to run 
tests for cases up to 105  CV’s using nodes across 3 clus-
ters. The average time/task was about 0.1 seconds. How-
ever, we found that the application hangs for these large 
jobs, and will require further modifications. Figure 10 
shows the computed temperature profiles for this case, 
which is similar to those of fig. 2, which verifies that the 
system could reproduce results. Further testing will in-
clude modifying the code to run in a more automatic 
mode, modification of the graphics display to handle the 
large number of CV’s and reconfigureing the timeout pa-
rameters.  

5 CONCLUSIONS  
Although there exist more complex queuing systems 
(such as Condor, Falkon), these are not always available 
or easily installed. Hence the motivation to build a simple 
system that uses MTC methods. Simple in design, JODIS 
has significantly improved the CHEQS performance 
overall by providing the ability to run larger simulations 
(more control volumes), in parallel, with faster times to 
results. JODIS can submit jobs to any queuing system, so 
it can interface to these larger systems. JODIS is also flexi 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9.  Snapshot of the Flame3D GUI [2] showing 
control buttons for temperature, timestep, etc. The 
plot shows the temperature distribution across the 
plate for a 10x20 matrix of control volumes used in 
these eperiments. 

ble: it is being used by other applications and for jobs run 
within CyberWeb such as third party file transfer. 

There are several technical challenges that we encoun-
tered (and mentioned above) that limited what could be 
accomplished, especially when attempting to run large 
numbers of jobs on large-scale machines, such as those on 
the TeraGrid. While these conditions may be common, or 
even required for the current infrastructure configura-
tions.  These are summarized below:  

Queuing Limits:  These have a significant impact on 
the tests we were running. This was mostly due to the 
queuing limits established by the TeraGrid compute re-
sources; most likely because these resources are historical-
ly are weighted towards massively parallel computing 
problems. On the NCSA Mercury cluster, tests were lim-
ited to running a maximum of 128 jobs within a 24-hour 
period. CHEQS jobs are run as ensembles, so 128 nodes 
would be acceptable, but this limits the number of tasks 
we can run. Other queues allowed more time but fewer 
processors. 

While the maximum number of jobs is set to 128, the 
maximum number of processors allowed is higher than 
128. This works well for MPI-based applications, where 1 
job maps to P processors. However, since CyberCHEQS 
has a 1:1 mapping of jobs to processors, we were unable 
to utilize all 640+ processors It is not within the scope of 
JODIS to parallelize an application, but to simply to dis-
tribute the work. Other MPI-enabled applications will 
hopefully be able to use JODIS to distribute jobs across 
the entire cluster. 

The implication of this issue is that MTC problems re-
quire new approaches to queuing and scheduling if we 
are able to take advantage of these larger systems. Addi-
tionally, although one could send a request to reserve a 
large number of nodes, this does not map well to real-
time simulations that the CHEQS application will be rou-
tinely running. 

Universal Resource Availability/Queuing Estimates:  
if MTC systems are going to be successful, we need to 
have a way to identify what resources are available and  
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Figure 10.  Concentration and thermal boundary layers 
of a steady-state (“slug”) flow of carbon dioxide 

over a semi-infinite flat plate at 6000K.   Theta   is 
dimensionless temperature and the yellow line is the 
thermal boundary layer with distance   
at the right wall [5]. 

 
when, and for how long. Ideally, these services will allow 
MTC jobs to be used as backfill jobs.  

Java Threads:  We encountered an interesting phe-
nomenon while running our experiments on several 
compute resources including the SDSU Dolphin cluster 
(whose results are not reported) and NCSA Mercury. It 
was noticed in several environments that multiple pro-
cesses were created for each JVM instance that was run. 
The application ran with no errors. We would not have 
noticed this, except that our runs on Dolphin froze the 
compute node and in turn locked up the PBS queue (con-
sequently annoying system administrators and other us-
ers). Note that while multiple processes were observed on 
both Dolphin and Mercury, the processes on Mercury did 
not lock up the PBS queue as observed on Dolphin. This 
is possibly a queuing configuration limit, but it not re-
solved at this point. The issue further intrigued us when 
we noticed Anthill running same operating system and 
the same version of Java showed different behaviors. Fur-
ther research showed that these processes were various 
different Java threads, which agreed with the observation 
that all but one thread sit idly while one lone thread con-
sumed CPU time. While these threads did not seem to 
consume resources, the full effect of these threads on a 
large CyberCHEQS simulations is unknown. 

RPC Standards: Many different RPC protocol and 
standards exist out there today. A flexible form of com-
munication between the client and the JODIS Web Service 
is needed. The Simple Object Access Protocol (SOAP) is a 
good choice, due to its flexibility and its integration with 
the Web Service Discovery Language (WSDL). The WSDL 

defines services offered by a Web application. These defi-
nitions make client integration with the Web Service very 
simple. Packages exist for most programming languages 
that create stubs for these RPC calls. Using these stubs 
abstracts the fact that the client is using any remote func-
tion at all, making integration with these services quick 
and easy. 

The Globus Alliance and IBM created the Web Services 
Resource Framework (WSRF) in 2003. Normally, Web 
Services are considered to be stateless. A Web Service 
does not normally remember history. WSRF aimed to fix 
this by defining a new standard that provides the notion 
of states. Unfortunately, its requirement of WS-
Addressing metadata made it incompatible with the 
standard SOAP protocol. The framework was controver-
sial at the time and has since faded from the limelight. 
While WSRF is still in use today, it is not as popular as it 
once was. Since the majority of SOAP users use the 
standard protocol, many Web Service providers choose to 
implement persistent storage via a database rather than 
maintaining states in the Web Service. Our goal is to 
make JODIS widely available and based on commodity 
out-of-the-box software. It was decided for JODIS to stick 
with the standard SOAP protocol. The addition of states 
could later be added using the cyberWeb database. 

6 FUTURE WORK 
We will continue to modify JODIS in order to improve 

performance of the CHEQS service, and to increase its 
performance in higher resolution simulations and near 
real-time monitoring of the simulations. The project has 
the potential to impact hundreds of researchers and stu-
dents as they use the CHEQS web portal interface while 
accessing high-end HTC resources on the TeraGrid.  

JODIS is an on-going project whose focus will continue 
towards exploring more possibilities of integrating CI 
resources with new and emerging Web 2.0 technologies. 
Future work efforts include integration with the Cyber-
infrastructure WebApp Toolkit (CyberWeb). A demo por-
tal interface to JODIS job submission and monitoring 
tools via a portal will be developed. The JODIS applica-
tion framework will be the default cyberWeb job submis-
sion mechanism. JODIS will utilize the cyberWeb data-
base to complement its existing features, with common 
functionality, such as: (a) administering user access to the 
Web Service and gateway; (b) database capabilities for 
configuring resources, monitoring jobs and managing 
results, providing access to historical job data; (c) provide 
easy integration with other common RPC protocols. A 
goal of the CyberWeb project is that the software be wide-
ly adopted freely by scientists everywhere. The 
CyberWeb project achieves this goal through the use of 
Python eggs (which are similar to Makefile or Maven for 
Java) to automate the installation processes. These eggs 
take much of the worry out of installation and software 
dependencies. This capability will be used to generalize 
JODIS for download and use by other projects.  

Another major goal for the JODIS project is scalability. 
Cloud computing offers a unique scaling opportunity 

CO2 
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allowing users to only pay for the computing power they 
use. Using cloud resources will allow JODIS yet another 
real-time mode of operation that can be used along with 
the current offering of HPC and HTC resources. A benefit 
of using cyberWeb and the installation egg is that this 
should facilitate easy migration of JODIS tasks to differ-
ent cloud resources. 
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