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Abstract

In this work, we introduce the Mimetic Methods Toolkit (MTK), an object-oriented Appli-
cation Programming Interface for the implementation of Mimetic Discretization Methods in
developing computer applications of a scientific nature, where the numerical solution of Partial
Differential Equations may be required. The MTK was designed based on the Castillo–Grone
Method for the construction of discrete differential operators that mimic important properties
of their continuous counterparts. The MTK is built as a collection of abstract and concrete
classes, thus allowing for an extensible framework, which fosters code reutilization, while intu-
itively educating the user about the important theoretical aspects of the Mimetic Discretization
Methods. In this work, we present an introduction to Mimetic Discretization Methods, and we
discuss the computational modeling of the related concepts; in this way, we explain how does
the MTK implement these methods. By means of examples, we illustrate the MTK’s usage
philosophy and, finally, by means of comparing the attained result against previously studied
reference solutions, we conclude the correctitude of the implementation efforts in the MTK.
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Notational Conventions

In this work, we shall take notational conventions very seriously. Notation is our only interface with
the already complex world of the abstract theories we will be dealing with, so why not give it its
importance?

1. We shall denote continuous scalar-valued quantities, say temperature or pressure, with the
default math pseudo-italicized font, using both lower and uppercase Latin letters and lowercase
Greek letters: a, ..., z, A, ...Z, α, ..., ω. Discretized instances shall be identified with a tilde
accent, and will be assumed to be implemented as row-wise-defined arrays.

2. We shall denote continuous vector-valued quantities using boldfaced lowercase Latin letters:
a, ..., z. Discretized instances shall be identified with a tilde accent.

3. We shall denote matrices using boldfaced uppercase Latin and Greek letters: A, ...,Z,Γ, ...,Ω.

4. We shall denote continuous tensor-valued quantities using scripture-styled uppercase Latin
letters: A , ...,Z . Discretized instances shall be identified with a tilde accent.

5. We shall denote continuous differential operators using standard notation from Calculus. When
it comes to their discrete matrix analog operators, we will use boldfaced uppercase Latin Letters
with a tilde accent, thus emphasizing the approximation to a continuous operator they intent
to. However, those operators built by means of the Castillo–Grone Method shall be identified
with a breve accent. As a side note, this notational convention is supported by the fact that,
on German cartography, a breve accent placed over two letters is often used in abbreviated
place names that end in “b̆g”, as a short for “burg”, a common suffix originally meaning
“Castle”, which is English for “Castillo”. This prevents misinterpretation since “berg” is
another common suffix in place names, which means “mountain”. Thus, for example, “Frei b̆g”
stands for “Freiburg”, not “Freiberg”. Furthermore, its is also mnemonic, since it resembles a
letter ‘C’.

6. We shall denote sets using italic uppercase Greek letters: A, ...,Ω. Discretized instances shall
be identified with a tilde accent. Numerical sets will be denoted with blackboard boldfaced
Latin uppercase letters: A, ...,Z.

Table 1 summarizes our notational conventions. An important thing to notice is that, when
accessed by means of indexing the elements they may contain, the objects shall not conserve their
typographical style, thus yielding a default math pseudo-italicized font. For example, notice that
tensors loose their typographical style, in this case, their scripture style, thus yielding a default
math pseudo-italicized font uppercase Latin letter. This can be depicted in columns three and four
of Table 1. However, when objects are indexed as being part of a enumerable set, they will preserve
their typographical style.

Object Continuous domain Discrete domain Indexed

Scalar a, ..., z, A, ...Z, α, ..., ω ã, ..., z̃, Ã, ..., Z̃, α̃, ..., ω̃ ai, ..., zi, Ai, ...Zi, αi, ..., ωi
Vector a, ..., z ã, ..., z̃ ai, ..., zi
Matrix A, ...,Z,Γ, ...,Ω A, ...,Z,Γ, ...,Ω aij , ..., zij , αij , ..., ωij
Tensor A , ...,Z Ã , ..., Z̃ Aij , ..., Zij
Operator ∇, ∇·,... Ã, ..., Z̃ or Ă, ..., Z̆ Ãij , ..., Z̃ij or Ăij , ..., Z̆ij
Set A, ...,Ω or A, ...,Z Ã, ..., Ω̃ Ãi, ..., Ω̃i

Table 1: Summary of the notational conventions adopted in this work.
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1 Introduction

Computational Science has emerged as a cutting edge field when it comes to advancing the knowledge
of diverse sciences. Its interdisciplinary nature has proven to be an efficient bridge towards the
understanding of the diverse physical phenomena that comprise nature. These physical phenomena
are typically modeled as a set of partial (or ordinary) differential (or integral) equations, which
usually correspond to a particular conservation law. Therefore, numerical methods used to discretize,
solve, and study these equations are of vital importance in the current paradigm of interdisciplinary
science. Particularly, in this work, we will be concerned with the use of Mimetic Discretization
Methods (MDMs) [1].

The field of MDMs has undergone research for a long time. An important work is [2], in where
the construction of high-order discrete differential operators is studied. Particularly, in [2], attention
is given to the importance of having these operators satisfying important properties that come from
their analogous continuous differential operators. Furthermore, in [2], the authors define difference
approximations that retain the properties of the continuum operators to be called mimetic. Also,
in [2], the authors state that Partial Differential Equations solved with these mimetic difference
approximations (or Mimetic Discretization Methods) often automatically satisfy discrete versions of
conservation laws and analogies to Stokes’1 Theorem, that are true in the continuum, and therefore
are more likely to produce physically valid numerical results.

In 2003, the work of Castillo and Grone [3] studied and solved an important drawback of the
MDMs at the time. In [3], the authors construct one-dimensional mimetic differential operators;
however, the authors state that creating second-order approximations away from the boundary is
simple, but obtaining appropriate behavior near the boundary is difficult, even in a one-dimensional
uniform grid. Considering this, in [3], the authors introduce the Castillo–Grone Method (CGM)
that allows for the construction of mimetic differential operators that yield approximations with the
same order of accuracy at the boundary, as well as in the interior of the discretized domain.

Subsequently, diverse works focusing on several theoretical and computational aspects of the
CGM-based MDMs have been published. Specifically, in [4], the authors implement the CGM in
constructing a second-order discretization, and compare the results with other second-order dis-
cretization methods, by applying the CGM to an elliptic boundary value problem in one dimension.

The extension to nonuniform staggered grids of the CGM is presented in a work [5] from the Facul-
tad Experimental de Ciencias y Tecnoloǵıa (FACYT) at the Universidad de Carabobo, in Carabobo,
Venezuela. In [5], the authors extent the CGM and present this extension on second-order mimetic
operators, although the method works for any order of accuracy. Later, the work was extended in [6],
where the authors propose a technique for implementing second- and fourth-order mimetic opera-
tors over nonuniform, structured one-dimensional meshes. Analogously, researchers from the Centro
Multidisciplinario de Visualización y Computo Cient́ıfico (CEMVICC), a research laboratory within
the FACYT, at the Universidad de Carabobo, in Carabobo, Venezuela, studied [7] the computational
implications of solving the large sparse linear systems arising from CGM-based MDMs. Specifically,
in [7], the authors perform an experimental study of iterative methods for solving large sparse linear
systems arising from second-order mimetic discretizations.

Given the diverse nature of the research work that has been conducted in the field of MDMs,
Castillo and Miranda authored a book [1] that summarizes most of the research efforts, while con-
tributing with new ideas in the field of CGM-based MDMs.

In this work, we introduce the Mimetic Methods Toolkit, as an effort to provide a robust compu-
tational framework to assist in the intuitive and successful application of the MDMs. The Mimetic
Methods Toolkit is written as an Application Programming Interface (API). Because of this, a pro-
cess of computational modeling had to be performed. Such a process assisted in achieving uniformity
and consistency within the extensive and diverse pool of research work that the MDMs have been
undergoing.

1Sir George Gabriel Stokes, 1st Baronet - Born in Skreen, County Sligo, Ireland on August 13, 1819 - Perished in
Cambridge, England on February 1, 1903 (aged 83).
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1.1 Application Programming Interfaces (APIs)

Several works aim towards the effort of creating numerical Application Programming Interfaces,
which allow users to implement the solution to a particular problem in an intuitive way. API
development is an ubiquitous discipline in modern software development and in fact, it is quite
likely that for every programmer, a reference to an API has been his or her first line of written
code. An Application Programming Interface (API) provides an abstraction for a problem
and specifies how its clients should interact with software components that implement a solution to
that problem. Therefore, it can be said that the purpose of an API is to provide a logical interface to
the functionality of a software component, while also hiding any of the component’s implementation
details [8].

Well-known examples of API development projects are given in [9, 10, 11, 12], and [13]; the
latter being an important step toward the understanding of portable computational performance
and empirical tuning. Furthermore, as computational frameworks are developed to explore new
boundaries in High-Performance Computing, the accompanying efforts in API development go along,
as exemplified in both [8] and [14].

In the field of numerically solving Ordinary and/or Partial Differential Equations (ODEs and/or
PDEs), important theoretical work has been done, ranging from the study of data structures [15],
[16], and the development of algorithms [17], to the construction of APIs assisting in the implemen-
tation of numerical schemes to write computer applications of a scientific nature [18].

Generally speaking, if we consider a particular programming paradigm, implemented through a
specific programming language, as for example, C++, an API will generally include the following
elements [8]:

• Headers: A collection of .h header files that define the interface and allow client code to be
compiled against that interface. Open source APIs also include the source code (.cpp or .cc

files) for the API implementation.

• Libraries: One or more static (or dynamic) library files that provide an implementation for
the API. Clients can link their code against these library files in order to add any required
functionality the API will provide to their applications. The reader should be aware of the
important (and sometimes neglected) difference between the terms “API” and “library”.

• Documentation: Overview information that describes how to use the API, often including
automatically generated documentation for all classes and functions in the API.

A correct design of the APIs to be used in Computational Science is important, since a balance
should be attained between achieving a satisfactory computational performance, and intuitively
educating the user; not only in utilizing the API, but also in the theoretical aspects that underlie its
design. Notice though that educating the user with respect to the underlying theory that sustains
the API, is not the same as unveiling the details regarding the implementation of such theoretical
framework, which is not desirable. Particularly, in the field of MDMs, such a balance is necessary,
because no library has yet been developed to assist in using these methods, when constructing
scientific and industrial computer applications, for which the simulation of some physical phenomena
is of interest. For this purpose, we present the “Mimetic Methods Toolkit”.

The Mimetic Methods Toolkit (MTK) is an API which allows for an intuitive implementa-
tion of CGM-based MDMs for the resolution of PDEs, yielding numerical solutions that guarantee
uniform order of accuracy, all along the modeled physical domain, while ensuring the satisfaction of
conservation laws, thus remaining faithful to the underlying physics of the problem. The MTK is
fully developed in C++; therefore, it exploits all the well-known advantages of both object-oriented
application models, and the extensive collection of data structure capabilities of this language. Ex-
amples of APIs fully developed in C++ are [18, 19, 20], and [21], whereas [22] describes how to
write efficient and portable (serial and/or parallel) C++ programs to solve PDEs on a single, or in
multiple curvilinear grids, that form an overlapping grid.
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2 Organization of the Article

This work is organized as follows: We present a summarized introduction to Mimetic Discretization
Methods (§3), and we discuss the computational modeling of the related concepts (§4); in this way,
we explain how does the MTK implement these methods.

In order to depict how can the MTK be used to solve arising problems in developing scientific
computational models or applications, as for example, [23, 24] and [25], we will present usage ex-
amples in the context of general elliptic PDEs in one dimension, in order to remain consistent with
the extensive amount of work that has been done with these. When analyzing the results, we will
compare the attained numerical solutions with those attained by a reference solution already known,
in order to conclude the correctitude of the implementation presented in the MTK (§5). Finally, in
§6, we present concluding remarks, as well as important directions of future work.

3 Mimetic Discretization Methods

Mimetic Discretization Methods are methods for the numerical solution of differential equa-
tions that begin by discretizing the underlying continuum theory of the problem of interest, instead
of discretizing the proposed equation or system of equations directly [4]. With “discretizing the
underlying continuum theory of a problem”, we mean that they start by constructing matrix ope-
rators, which are discrete analogs to the well-known differential operators for gradient, divergence,
Laplacian and curl. This is done in such a way that these operators satisfy important properties of
their continuous counterparts, as for example ∇2f = ∇ · (∇f), for a given scalar-valued quantity2

f . This allows for the discretization scheme to replicate (or mimic) much of the behavior found in
the actual continuous problem [3].

Consider an arbitrary solid3 Ω of surface Σ, with a given normal component4 n, through which
a given flux v(x, t), x ∈ Ω, t ∈ [t0, t1] ⊂ R, goes through5. We can write an extended version of
Gauß’6 Divergence Theorem, for a given scalar-valued quantity f(x, t) of interest, as follows [1]:

˚

Ω

〈∇f,v〉dΩ +

˚

Ω

f(∇ · v)dΩ =

¨

Σ

f〈v,n〉dΣ. (1)

The details concerning the nature of (1) are given in [1]. The creation of discrete differential operators
results from considering a discrete version of (1), which for discretized quantities f̃ and ṽ of interest
reads [1]:

∆x〈Ğf̃ , ṽ〉P + ∆x〈f̃ , D̆ṽ〉Q = 〈f̃ , B̆ṽ〉, (2)

where Ğ7, D̆ and B̆ stand for the discrete (or mimetic) CGM-based gradient, divergence and boun-
dary operators, respectively, and ∆x is the chosen step size for the discretization.

2We shall denote continuous scalar-valued quantities, say temperature or pressure, with the default math pseudo-
italicized font, using both lower and uppercase Latin letters and lowercase Greek letters. Discretized instances shall
be identified with a tilde accent, and will be assumed to be implemented as row-wise-defined arrays.

3We shall denote sets using italic uppercase Greek letters.
4 We shall denote continuous vector-valued quantities using boldfaced lowercase Latin letters. Discretized instances

shall be identified with a tilde accent.
5Numerical sets will be denoted with blackboard boldfaced Latin uppercase letter.
6Johann Carl Friedrich Gauß - Born in Braunschweig, Principality of Brunswick-Wolfenbüttel, Holy Roman Empire

on April 30, 1777 - Perished in Göttingen, Kingdom of Hanover on February 23, 1855 (aged 77).
7We shall denote discrete matrix operators using boldfaced uppercase Latin Letters with a tilde accent, thus

emphasizing the approximation to a continuous operator, which they intent. However, those operators built by means
of the Castillo–Grone Method shall be identified with a breve accent. As a side note, this notational convention is
supported by the fact that, on German cartography, a breve accent placed over two letters is often used in abbreviated
place names that end in “b̆g”, as a short for “burg”, a common suffix originally meaning “Castle”, which is English
for “Castillo”. This prevents misinterpretation since “berg” is another common suffix in place names, which means
“mountain”. Thus, for example, “Frei b̆g” stands for “Freiburg”, not “Freiberg”. Furthermore, its is also mnemonic,
since it resembles a letter ‘C’.
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The reader should compare both (1) and (2). For example, the chevrons in (1) denote the
standard continuous inner product, whereas the chevrons in (2) denote a generalized discrete inner
product with weight matrices8 Q and P, as described in both [1] and [3].

In this work, we will be concerned with the Castillo–Grone Method (CGM) [1], [3], which
is the method used to construct the mimetic operators that are implemented in the MTK. One of
the advantages of the CGM over other MDMs is that it allows to achieve uniform order of accuracy,
not only through the interior of the attained discretized domain, but also at its boundaries, without
the necessity of ghost points or any other numerical artifact, as it could be the case with standard
Finite Difference Methods (FDMs) [1], [3], [4]. Comparisons of the CGM against other well-known
methods as for example the FDM, as well as with another MDMs, is presented in [4].

The readers interested in the theoretical aspects of both the Mimetic Discretization Methods and
the CGM, can consult [1]; nonetheless, in order for this to be a self-contained work, in the following
sections, we will present a brief introduction to important concepts in MDMs; specifically, we will
present an overview of the details concerning the discretization of the physical domain by means of
a staggered grid (§3.1) and the details concerning the mimetic differential operators (§3.2).

3.1 One-dimensional staggered grids

Approximations (for the one-dimensional case) are performed on a uniform, one-dimensional mesh,
which yields a staggered grid, thus binding the numerical results from the mimetic operators to
the discretized domain, as depicted in Figures 1, 2 and 3.

Specifically, Figure 1 shows that, for a given step size, ∆x, separating the nodes within the nodal
grid (soon to be staggered), approximations for the discretized vector-valued quantities of interest

(as for example, the discrete gradient Ğf̃ of a discrete scalar-valued quantity f̃) shall be performed
on these nodes, which are nothing else but projected faces of three-dimensional cells [1]. Given
their nature, these nodes are denoted (see Figure 1) with vertical lines. Figure 1 also shows that the
value of the scalar-valued quantities under consideration should also be available at the boundary
nodes, which, in this figure, are denoted as circles.

For every i-th node, the cell defined by the two nodes xi and xi+1, will be said to have a center
located at the coordinate xi+1/2, as depicted in Figure 2. Therefore, the first center will be located at
a distance of ∆x/2 from the west boundary node. Cell centers, on the other hand, are also denoted
as circles (because they correspond to the projection of the centers of the three-dimensional cells).
Figure 2 indicates that the values for all the scalar-valued quantities of interest (as for example, the

discrete divergence D̆ṽ of a discrete vector-valued quantity ṽ) will be computed at these centers.
Figure 3 suggests that the boundary nodes are different from the centers, which is true. The

reason is that, the centers will hold the divergence of any discretized vector-valued quantity of
interest; in particular, the discrete gradient of any discretized scalar-valued quantity of interest.
That is, the centers will hold the computation of the discrete Laplacian L̆f̃ of any discretized scalar-
valued quantity f̃ . Therefore, Figure 3 suggests that we should now denote the centers with triangles
instead. We believe that these notational conventions are quite mnemonic, since, for example, a
triangle resembles the Nabla operator. Furthermore, given its geometry, the triangle allows for
a circumscribed circumference to lie inside of it, which will represent the center upon which the
computation of the discrete Laplacian is being performed. Clearly, this eliminates the apparent
ambiguity among the notation for centers and boundary nodes, temporarily introduced in Figure 2.

3.2 Mimetic Differential Operators

In this section, we will briefly summarize the most important aspects of the mimetic operators.
As it was mentioned in §3, the interested reader in the intrinsic details of the mimetic differential
operators, computed by the CGM, can refer to [1]; however, it is worth mentioning that (as in
the case of standard FDMs) knowledge on the derivation of the operators is not required for the
application of the CGM-based MDMs.

8We shall denote matrices using boldfaced uppercase Latin letters.
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Figure 1: A one-dimensional uniform nodal grid with N cells and step-size ∆x = 0.5. This Figure
depicts how are the approximations for the discrete gradient bound to the staggered grid, as well as
the importance of the boundary nodes, as explained in §3.1.

Figure 2: A one-dimensional uniform staggered grid with N cells and step-size ∆x = 0.5. This
Figure depicts how are the approximations for the discrete gradient and divergence bound to the
staggered grid, as explained in §3.1.

Figure 3: A one-dimensional uniform staggered grid with N cells and step-size ∆x = 0.5. This
Figure depicts how are the approximations for the discrete Laplacian bound to the staggered grid,
as explained in §3.1. Notice how this binding accords to how the operators mimic the important
property: L̆ = D̆Ğ.
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Discrete differential operators can be built following different methodologies, which arise from
different manipulations of (2). Specifically, if we let Q be the identity matrix in R(N+2)×(N+2), and
if we let P ∈ R(N+1)×(N+1) to satisfy

P =



1
2 0 · · · · · · 0

0 1
...

...
. . .

...
... 1 0
0 · · · · · · 0 1

2


, (3)

then, we can obtain the operators as defined by the Support Operators Method [26]. That is, for
the case of one-dimensional approximations, we will obtain the following discrete gradient operator:

G̃ =
1

∆x


−2 2 0 · · · · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · · · · 0 −2 2

 ∈ R(N+1)×(N+2). (4)

On the other hand, MTK’s operators has been built based upon the CGM, since these yield
second-order approximations, in the interior of the grid (discretized with N cells), as well as in the
boundaries. For the CGM, we consider (2) one more time. In this case, Q is the identity, and

P =



3
8 0 0 · · · · · · 0
0 9

8 0 · · · · · · 0
...

. . . 1
. . .

...
. . .

. . .
. . .

...
. . . 1

. . .
...

0 · · · · · · 0 9
8 0

0 · · · · · · 0 0 3
8


. (5)

Similarly, the discrete CGM-based gradient is defined as follows:

Ğ =
1

∆x


− 8

3 3 − 1
3 · · · · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · · · · 1

3 −3 8
3

 ∈ R(N+1)×(N+2). (6)

The discrete CGM-based divergence operator is defined as follows:

D̆ =
1

∆x


−1 1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 −1 1

 ∈ RN×(N+1). (7)

The definitions in (4) and in (6) should be compared. Specifically, the treatment at the boundaries
should be pointed out, as depicted in the top and bottom rows of (6).

It is worth mentioning that the definition of the boundary operator, in the case of the GCM, is
a consequence of the definition of both the gradient and the divergence operators, as it is described
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in [1]. In this train of thought, the CGM-based boundary operator (or, as it will be named later,
the CGM-based Neumann operator) has the following form:

B̆ =



−1 0 0 ... 0

1/8 −1/8 0
...

−1/8 1/8 0
...

0 0 0
. . . 0 0 0

... 0 −1/8 1/8

... 0 1/8 −1/8
0 ... 0 0 1


∈ R(N+2)×(N+1). (8)

Similarly, we define the Dirichlet operator, as follows:

Ă =


1 0 · · · · · · 0
0 0 · · · · · · 0
...

. . .
...

0 · · · · · · 0 0
0 · · · · · · 0 1

 ∈ R(N+2)×(N+2). (9)

Considering the nature of the examples to be considered (§5), it is important to understand that,
the definition for the CGM-based mimetic Laplacian operator is:

L̆ = D̆Ğ. (10)

In §5, we will understand how can these be applied to solve an specific example problem. In the next
section (§4), we will present details on the computational modeling that gave rise to the collection
of classes within MTK. We will explain the classes modeling the concepts presented in this section.

4 Mimetic Methods Toolkit

As it was mentioned in §1.1, the Mimetic Methods Toolkit (MTK) is an object-oriented Application
Programming Interface that allows the intuitive implementation of Mimetic Discretization Methods
for the resolution of PDEs, yielding numerical solutions that guarantee uniform order of accuracy
all along the modeled physical domain, while ensuring the satisfaction of conservation laws, thereby
remaining faithful to the underlying physics of the problem.

We have divided the source code according to the designated purpose the classes possess within
the API. These divisions (or concerns) are grouped by layers, and are hierarchically related by
the dependence they have among them (see Figure 4). One concern is said to depend on another
one, if the classes it includes, rely on the classes the latter includes. Note that this relation can be
symmetrical, since two concerns may depend upon each other. Figure 4 depicts the interdependence
between these concerns, which deal with the following computational issues:

• In the first layer, the collection of classes containing information about fundamental constants
and functioning parameters, as for example, the amount of memory required per each reallo-
cation within dynamics data structures, are grouped in the “Roots” concern.

• The second layer contains information on the classes that provide a computational representa-
tion of instrumental data structures, as well as the enumerations these rely on. These concerns
are called “Enumerations” and “Data structures”. Some basic and common computations,
as well as the classes providing basic debugging and profiling, are contained in the “Execution
tools” concern.

15



Figure 4: Summary of the MTK Concerns, grouped by layers, showing the existing interdependence
among them. These are explained in §4.

• The third layer contains all the core classes of MTK, which implement the most important
concepts in MDMs. Specifically, the classes in the “Meshes and grids” concerns, deal with
the manipulation of the discretization of the physical domains users may need to consider, and
the classes in the “Mimetic operators” concern, provide the mechanisms for the definition
of the mimetic operators to be used in solving any given problem of interest.

• The fourth layer contains classes that provide auxiliary numerical methods, which are necessary
for the API to provide the solution to any problem of interest. These are grouped in the
“Numerical methods” concern. For example, the MTK provides several methods for solving
the systems of equation that might arise when solving an specific Boundary Value Problem
(BVP). We will mention the available methods in §5.1.2.

• The fifth layer contains all the classes that are necessary for describing problems to be solved
by the MTK, as well as for the visualization of the attained solutions. Specifically, the “Input”
concern, contains classes that are intended to gather data regarding an specific problem so that
it can be solved. The “Solvers” concern, contains all the classes that implement the CGM
(implemented by means of the classes in the previous layers), in order to solve the problem.
Finally, the “Output and visualization” concern, contains all the classes that interface with
visualization frameworks, so that the users can have an intuitive interaction with the attained
solution to the problem they are interested in.

In this section, and for the sake of presenting a concise explanation of the computational modeling
of the most important concept in MDMs, we will discuss the core concerns of the MTK. We will
present, when considered necessary, examples of source code that clearly depict the intended usage of
a particular class. In these snippets of code, we will omit most of the technicalities that are inherent
of implementing the ideas in a low-level programming language, but this will hopefully increase the
readability and the chances of transmitting the correct message. Furthermore, the reader interested
in any of the details pertaining any of the classes, for the sake of their application towards solving
an specific problem, can refer to the online documentation [27] for the broadest extent of each of
the classes.
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Figure 5: Simplified UML class diagram for the implemented data-structures within the MTK’s
“Data structures” concern, located in the second layer (see Figure 4). These are explained in §4.1.

4.1 Data Structures and Meshes within the MTK

Meshes within the MTK are one of the most important classes, since these contain the information
regarding the discretization of the physical domain of interest. As it can be seen in Figure 4, meshes
and grids rely strongly in the defined data structures, which posses their own concern. So far, the
MTK posses the implementation of the data structures depicted in Figure 5.

We have decided to worry about developing those specific data structures, given the diverse
computational tools we want the MTK to be compatible with. For example, the Compressed Row
(CRS) and the Compressed Column Storage (CCS) sparse matrix format, are fully compatible with
both [11] and [12]. Similarly, the Dictionary of Keys (DOK) Sparse Matrix Format is fully compatible
with [28]. Finally, the one-dimensional array dense matrix formats are fully compatible with both
[10] and [13].

Figure 6, depicts all the classes modeling meshes and grids, that have been implemented thus far.
In the MTK, all the grids are thought as being “Logically Rectangular”, following the ideas presented
in [29]. Logically rectangular (LR) means that, despite of the fact that they may be implementing
different coordinate systems, in the physical domain, these still allow for a rectangular representation
within the logical, or computational domain. Similarly, Figure 6 shows that LR one-, two and three-
dimensional grids inherit from the general concept of a grid. Particularly, the classes MTK 2DGrid

and MTK 3DGrid have not yet been implemented, thus are depicted without a border line.
For one-dimensional grids, we have done most of the implementation focusing on uniform grids.

Specifically, we have implemented nodal grids (see Figure 1), which intent to perform a non-staggered
discretization of the physical domain of interest. These are provided solely for the use of auxiliary
numerical methods that are provided within the MTK, for the purpose of comparing results (see
Figure 4). Similarly, we provide support for staggered grids, grids containing the discretization
of the source terms of the equations to solve, as well as grids intended to hold any analytical,
or “known” solution, which can be also used for comparison purposes. Algorithm 1, presents an
example on how can the user define a one-dimensional uniform nodal and known-solution-holder
grids. Analogously, some work is being done to implement non-uniform grids that can represent
information in curvilinear coordinates.

Finally, all of the grids contain instances of nodes, which hold the data of interest, modeled as
an MTK Number. This generic data type, intents to allow the user for a selective installation of the
MTK in single or double precision arithmetic, that is MTK Number ∈ {float, double}. In §5 we will
present examples of how can these different grids be used in solving an specific problem of interest.
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Figure 6: Simplified UML class diagram for the implemented meshes- and grids-related mechanisms
within the MTK’s “Meshes and grids” concern, located in the third layer (see Figure 4). These are
explained in §4.1.

Algorithm 1 Defining 1-D uniform grids in the MTK, as explained in §4.1.

1 MTK Number aa ; // West boundary .
2 MTK Number bb ; // East boundary .
3 MTK Number s t e p s i z e ;
4 MTK LR1DUniformNodalGridDouble ∗ n od a l g r i d ;
5 MTK LR1DUniformKnownSolutionHolderGrid ∗ s o l u t i o n g r i d ;
6

7 aa = 0 . 0 ;
8 bb = 5 . 0 ;
9 s t e p s i z e = 0 . 0 0 0 1 ;

10

11 n od a l g r i d =
12 new MTK LR1DUniformNodalGrid ( aa , bb , s t e p s i z e ) ;
13

14 cout << ”Nodal g r id : ” << endl ;
15 // Pr int in the format o f a one−dimens iona l array :
16 noda l g r id−>Print1DArray ( ) ;
17

18 s o l u t i o n g r i d = new MTK LR1DUniformKnownSolutionHolderGrid ( aa , bb , s t e p s i z e ,
19 &known so l func t i on ) ;
20 cout << ” So lu t i on ho lder g r id : ” << endl ;
21 s o l u t i o n g r i d−>Print1DArray ( ) ;
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4.2 Mimetic Operators within the MTK

Mimetic operators within the MTK, as it was previously mentioned, are built based on the Castillo–
Grone Method [1], [3]. The mimetic operators posses their development concern (Figure 4), and are
implemented (for now) as instances of dense matrices, as it can be seen in Figure 7.

Specifically, we have developed instances of the CGM-based gradient, Ğ, as well as operators
for the boundaries. For the sake of developing a theoretically consistent API, we have differentiated
the boundary operators into the Dirichlet9 and the Neumann10 boundary operators. If we consider
the generalized form of the Robin11 boundary conditions, in a one-dimensional scenario, for a one-
dimensional domain Ω = [a, b] ⊂ R, we have:

αf(a)− βf ′(a) = ω, (11)

γf(b) + δf ′(b) = ε, (12)

where the values α and β, are called (within the MTK) the Dirichlet and Neumann coefficients for
the west boundary, respectively. Similarly, the value ω denotes the value of the boundary condition
at the west boundary. Analogously, the values γ and δ, are called (within the MTK) the Dirichlet
and Neumann coefficients for the east boundary, respectively, and the value ε denotes the value of
the boundary condition at the east boundary.

The identification of these quantities and their role within the resolution of an specific problem
is very important within the MTK, as it can be seen in §4.3. When it comes to defining discrete
boundary operators, it is clear that the generalized Robin boundary conditions can be written, in a
discrete form, and for a discrete scalar-valued quantity f̃ , as follows:

(dĂ + nB̆Ğ)f̃T = z̃T , (13)

where d is the vector of Dirichlet coefficients, defined as d , [α, 0, ..., 0, γ]T , n is the vector of

Neumann coefficients, defined as n , [β, 0, ..., 0, δ]T , z̃T = [ω, 0, ..., 0, ε]T , and where Ă and B̆
denote the Dirichlet boundary operator and the Neumann operator, respectively. Notice that if
α = γ or β = δ, then we will have that d = α or n = β, respectively. In §5.1.1, we will explain the
role of (13) in conjunction with other mimetic operators, in solving an example problem. Similarly,
in §5.1, we will pragmatically explain how is this problem description implemented within the MTK,
and how should it be manipulated by a client code.

Finally, Figure 7 shows that we support the definition of the CGM-based divergence, D̆, and the
CGM-based Laplacian, L̆ operators. Thus far, we have only implemented second-order operators
within the MTK, nonetheless, research works, as for example [1] and [3], have successfully achieved
definitions for higher-order operators.

4.3 Input, Problem Solvers and Output within the MTK

As we have mentioned in the previous section, an important layer of development concerns within
the MTK, is the fifth layer, which contains all the classes that model data input, problem solvers
and data output. So far, we have implemented input methods for solving general elliptic equations
of the form:

−∇ · (K (x)∇f) = F (x), (14)

where

K (x) =

[
1 0
0 1

]
; (15)

however, the classes can be combined with the user’s own client algorithm to allow for the solution
of different equations.

9Johann Peter Gustav Lejeune Dirichlet - Born in Düren, French Empire on February 13, 1805 - Perished in
Göttingen, Kingdom of Hanover on May 5, 1859 (aged 54).

10 Carl Gottfried Neumann - Born in Königsberg, Prussia on May 7, 1832 - Perished in Leipzig, Saxony, Germany
on March 27, 1925 (aged 92).

11 Victor Gustave Robin - Born in Paris, France on May 17, 1855 - Perished in 1897 (aged 42).
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Figure 7: Simplified UML class diagram for the modeling of mimetic operators, as explained in §4.2.

The most important class in terms of data input, is the MTK Steady1DProblem. This class allows
to specify all the parameters that describe an steady-state one- dimensional problem to be solved
by means of the CGM. Any client code, can specify a problem by instantiating the related class:

1 prob l em to so lv e = new MTK Steady1DProblem ( alpha , beta , west bndy value ,
2 gamma, de l ta , ea s t bndy va lue ) ;

The MTK implements other ways of providing the information for the solution of Initial Value
Problems (IVPs), as well, simply for the purpose of comparison. For example, Algorithm 2, shows
how can a client code, provide the information for an IVP of interest. Similarly, the MTK interfaces
with [30], to provide classes assisting in visualization of the elements being used. For example,
in Algorithm 2 the class MTK 1DPlotter, is used to graphically depict the solution of the problem
under consideration. Section 5 will present the usages of the previously mentioned classes, within
the context of implementing the solution based on the CGM, for an specific problem of interest.

4.4 Memory Usage in the MTK

In this section, we provide some estimates for the memory usage of the most important classes within
the MTK. Our intention is to try to understand the memory requirements of the objects of theses
classes, as a function of the required number of cells used in discretizing the physical domain.

We present the tabulated results in Tables 2, 3, and 4, for which we have expressed such results in
terms of the MTK Number data type. In the upcoming discussion, we will denote the number of rows
and columns in the considered data structures, as r and c, respectively. Similarly, we will denote
the number of nonzero elements as η, and the number of cells describing the discretized domain, as
N .

We also pay attention to the memory requirements of the linear system of equations that arise
when solving BVPs by means of the CGM.

4.4.1 Estimating memory usage of the MTK System objects

A particularly important class is MTK System. This class, takes an stencil matrix, of size (N + 2)2,
where N is the number of cells based on which we have chosen to discretize our physical domain, and
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Algorithm 2 Use of an additional provided method to solve a sample problem while customizing
a visual output with the MTK, as explained in §4.3.

1 MTK Number aa = 0 . 0 , bb = 5 . 0 , t ime s t ep = 0 . 1 , i n i t i a l v a l u e = 1 . 0 ;
2

3 n od a l g r i d = new MTK LR1DUniformNodalGrid ( aa , bb , t ime s t ep ) ;
4 cout << ”Nodal g r id : ” << endl ;
5 noda l g r id−>Print1DArray ( ) ;
6

7 s o l u t i o n g r i d =
8 new MTK LR1DUniformKnownSolutionHolderGrid ( aa , bb , t ime s t ep ) ;
9 cout << ” So lu t i on ho lder g r id : ” << endl ;

10 s o l u t i o n g r i d−>Print1DArray ( ) ;
11

12 converge = s o l u t i o n g r i d−>S o l v e I n i t i a l V a l u e (MTK HEUN, i n i t i a l v a l u e , &rhs ) ;
13

14 i f ( converge ) {
15 p l o t t e r = new MTK 1DPlotter ( s o l u t i o n g r i d−>independent ( ) , s o l u t i o n g r i d−>

dependent ( ) , s o l u t i o n g r i d−>number of nodes ( ) ) ;
16 s a v e p l o t = f a l s e ;
17 props = new MTK 1DPlotProperties ( ” t ” , ” f ( t ) ” , ” Attained s o l u t i o n ” , ” l i n e s p o i n t s ” ,
18 ” red ” ) ;
19 p l o t t e r−>s e t p l o t p r o p e r t i e s ( props , save p lo t , MTK PNG) ;
20 p l o t t e r−>See ( ) ;
21 } e l s e {
22 cout << ”No converge was achieved . ” << endl ;
23 }

Object Allocated memory (in bytes)
MTK 1DArrayDenseMatrix r × c×sizeof(MTK Number)

MTK 2DArrayDenseMatrix r × c×sizeof(MTK Number)+r × c×sizeof(int)
MTK 1DArrayDenseStencilMatrix (N + 2)× (N + 2)×sizeof(MTK Number), with N = r = c
MTK DOKSparseMatrix η×sizeof(MTK Number)+2× η×sizeof(int)
MTK CRSSparseMatrix η×sizeof(MTK Number)+(η + r + 1)×sizeof(int)
MTK CCSSparseMatrix η×sizeof(MTK Number)+(η + c+ 1)×sizeof(int)

Table 2: Memory used per instance of the classes in the “Data structures” concern, described in
§4.1. See §4.4.

Object Allocated memory (in bytes)
MTK Node O(sizeof(MTK Number))
MTK LR1DUniformNodalGrid (N + 2)×sizeof(MTK Node)

MTK LR1DUniformSourceGrid (N + 2)×sizeof(MTK Number)

MTK LR1DUniformKnownSolutionHolderGrid (N + 2)×sizeof(MTK Number)

MTK LR1DUniformStaggeredGrid (N + 2)×sizeof(MTK Node)

MTK LR1DNonUniformCurvilinearStaggeredGrid (N + 2)×sizeof(MTK Node)

+(N + 2)×sizeof(MTK Number)

Table 3: Memory used per instance of the classes in the “Meshes and grids” concern, described in
§4.1. See §4.4.
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Object Allocated memory (in bytes)
MTK 1DCGMGradient (N + 1)× (N + 2)×sizeof(MTK Number)

MTK 1DCGMDirichletOperator (N + 2)× (N + 2)×sizeof(MTK Number)

MTK 1DCGMNeumannOperator (N + 2)× (N + 1)×sizeof(MTK Number)

MTK 1DCGMDivergence (N + 2)× (N + 1)×sizeof(MTK Number)

MTK 1DCGMLaplacian (N + 2)× (N + 2)×sizeof(MTK Number)

Table 4: Memory used per instance of the classes in the “Mimetic operators” concern, described in
§4.2. See §4.4.

N Used memory (in kB)
1,000 55,364
1,500 123,852
2,000 219,624
2,500 342,832
3,000 493,324
3,500 671,336
4,000 876,520
4,500 1,109,036
5,000 1,368,904
5,500 1,656,148
6,500 2,312,740
7,500 3,078,692
8,000 3,502,536
10,000 5,471,900

Table 5: Memory used per instance of the MTK System class. See §4.4.1.

constructed in terms of the mimetic operators, a discrete collection of the source term evaluations (i.e.
a MTK LR1DUniformSourceGrid object), and a solution-holder grid (see Figure 6), both implemented
as a one- dimensional array of size (N +2). This class computes the final solution to the BVP, using
any specified solver algorithm. Considering the input parameters, it is expected that the required
amount of memory (in Bytes) should be described by a second-degree polynomial, as follows:

sizeof(MTK Number)× ((N + 2)2 + 2(N + 2)) = sizeof(MTK Number)× (N2 + 6N + 8), (16)

where MTK Number∈ {float, double} (see Figure 6). We performed an empirical study of memory
usage by the MTK System class and the results are given in Table 5 and in Figure 8.

MTK tests were performed in a 1.73 GHz Intel R© Pentium R© M processor with 0.99 GB of RAM,
running Linux Kubuntu 12.04, the Precise Pangolin release, and running Microsoft Windows XP
Home Edition, Version 2002, Service Pack 3 using MATLAB R2010b, for the data-fitting study,
which reported a fitting polynomial of:

p(N) = k(N2 + 4.991N + 6, 848.892), (17)

where k = 0.0547, and depends on both the definition of the MTK Number and the architecture. In
these tests, we used MTK Number = double.

5 Application examples and MTK’s usage philosophy

In this section, by means of examples, we present the details on how to use the MTK.
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Figure 8: Second-order polynomial fitting for the memory usage estimate for objects of the class
MTK System. See §4.4.1.

5.1 A one-dimensional example on a uniform staggered mesh with Robin’s
boundary conditions

Consider:
−∇ · (K (x, λ)∇p) = F (x, λ). (18)

Let

K (x, λ) = K (x, λ) =

[
1 0
0 1

]
. (19)

Similarly, let [4]

F (x, λ) = F (x, λ) = −λ
2 exp(λx)

exp(λ)− 1
. (20)

Equation (18) now takes the form:

−∇ · ∇p = −λ
2 exp(λx)

exp(λ)− 1
= F (x, λ); (21)

therefore, yielding the following instance of a one-dimensional Poisson’s Equation [4]:

−∇2p(x) = F (x, λ), (22)

where

F (x, λ) = − λ exp(λx)

exp(x)− 1
, (23)

will stand for our source term. Consider the following BVP, with Robin boundary conditions defined
over Ω = [a, b]:

αp(a)− βp′(a) = ω (24)

αp(b) + βp′(b) = ε, (25)

where ω = −1, ε = 0, α = − exp(λ) and β = (exp(λ)− 1)/λ.
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Figure 9: Known analytical solution for example problem number one. A uniform nodal grid with
102 cells was used to generate this plot, be means of the MTK’s visualization mechanisms. The
context is explained in §5.1.

If we take Ω = [0, 1] ⊂ R and λ = −1, the problem has known analytical solution [4] given by
(See Figure 9):

p(x) =
eλx − 1

eλ − 1
=
e−x − 1

e−1 − 1
. (26)

5.1.1 Reference solution attained by means of the CGM

Before presenting the solution to this problem by means of the MTK, we will present a reference
solution, which will also assist in explaining the discretization procedure through a CGM- based
MDM. We are interested in solving the following continuous problem:

−∇2p(x) = F (x, λ), (27)

by means of using CGM-based mimetic operators. Specifically, we are interested in implementing
a CGM-based Laplacian operator. If we mimic the continuous problem presented in (27), we will
obtain the following mimetic analog:

−L̆p̃T = F̃T . (28)

Notice that we have only replaced the continuous operators by their mimetic counterparts. However
we are interested in including the information of the discretization at the boundaries, which we can
do by means of adapting (13) to our problem of interest. For our problem, letting α = γ and β = δ,
we will have that d = α and n = β, respectively; therefore, (13) will now read:

(αĂ + βB̆Ğ)p̃T = F̃T . (29)

In order for us to combine the information in both (28) and (29), given the dimension of the

involved discrete operators, we need to define the following augmented form for L̆:

ˆ̆
L =

 0 · · · 0
... L̆

...
0 · · · 0

 ∈ R(N+2)×(N+2), (30)
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(a) 10 cells. (b) 500 cells.

Figure 10: MATLAB R2010b reference solution mentioned in §5.1.1, using a second- order CGM-
based MDM. In Figure (a) only 10 cells were used, and it shows how is the solution bound to the
cell centers, as it is expected from Figure 3. In Figure (b), 500 cells were used, thus yielding a more
accurate solution.

where L̆ has been previously defined in (10). Given this augmented operator, dimensions now allow
us to define the stencil matrix, for generalized Robin boundary conditions, based on the CGM, S,
as follows:

S , αĂ + βB̆Ğ− ˆ̆
L (31)

therefore, the solution to our problem lies in solving the following system of linear equations, of rank
(N + 2):

Sp̃T = F̃T , (32)

where F̃ = [ω, F (x1/2), ..., F (xi+1/2), ..., F (xN−1/2), ε], is the discretized collection of values for our
source term. The reader may refer to [1] and [4], for a more detailed description of the arising
systems of equation, such as (32).

As a reference solution, we have implemented the scheme in MATLAB R2010b, yielding the
reference solution depicted in Figure 10. Figure 11 summarizes the results of a grid refinement
study which was performed with the intention of analyzing the actual order of accuracy that we
obtained by means of the CGM. We have performed this study not only along the entire grid,
but also at the boundaries, thus depicting the uniformity of the achieved accuracy, all along the
discretized domain. In each case, we present results in terms of the number of cells, N , as well as in
terms of the grid step size ∆x.

For this study, we have computed the attained order of accuracy by computing the slope of the
attained linear relationship defined by the computed relative 2-norm errors in the log-log space. By
solving the sample problem for several grid step sizes, we were able to collect the attained relative
2-norm of the error with respect to the known solution:

||p̃k − p̃c||2
||p̃k||2

, (33)

where p̃k and p̃c denote the discretized known analytical solution and the computed reference solution
from the CGM, respectively. We also used th inifinity norm as implemented in MATLAB R2010b.
The slopes were computed using the first and the last sample.

5.1.2 CGM-based solution implemented with the MTK

In order to be as concise as possible, we will present the algorithmic approach for solving the first
example problem, as we describe the proposed algorithm as implemented by the MTK.
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(a) Entire grid, in terms of N . (b) Entire grid, in terms of ∆x.

(c) Boundary, in terms of N . (d) Boundary, in terms of ∆x.

Figure 11: Grid refinement study described in §5.1.1, depicting the attained order achieved by
the CGM-based MDM reference solution, computed using MATLAB R2010b. Figures (a) and (b),
present the behavior of the error all along the entire grid, whereas Figures (c) and (d) present the
behavior of the error at the boundary. As it can be seen, an uniform accuracy prevails at both the
interior nodes and the boundary.
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The first step is to define the functions implementing the source function of the equation and
the analytic solution (if known), for comparison purposes. Then, in cases like the example currently
under consideration, we proceed as follows:

1 MTK Number source term (MTK Number xx ) {
2

3 MTK Number lambda ;
4

5 lambda = −1.0;
6 r e turn −(lambda∗ lambda ) ∗exp ( lambda∗xx ) /( exp ( lambda ) − 1 . 0 ) ;
7 }
8

9 MTK Number known solut ion (MTK Number xx ) {
10

11 MTK Number lambda ;
12

13 lambda = −1.0;
14 r e turn ( exp ( lambda∗xx ) − 1 . 0 ) /( exp ( lambda ) − 1 . 0 ) ;
15 }

These should be compared with (23) and (26). For the example of interest, the following classes
from MTK should be used:

1 MTK ToolManager ∗ t o o l s ;
2 MTK LR1DUniformStaggeredGridDouble ∗ space ;
3 MTK LR1DUniformSourceGrid ∗ source ;
4 MTK 1DCGDirichletOperator ∗dir comp ;
5 MTK 1DCGNeumannOperator ∗neu comp ;
6 MTK 1DCGGradient ∗grad ;
7 MTK 1DCGLaplacian ∗ l ap ;
8 MTK Steady1DProblem ∗ prob l em to so lv e ;
9 MTK 1DStencilMatrix ∗ s t e n c i l m a t r i x ;

10 MTK LR1DUniformKnownSolutionHolderGridDouble ∗ s o l u t i o n g r i d ;
11 MTK 1DPlotProperties ∗props ;
12 MTK 1DPlotterDouble ∗ p l o t t e r ;

The following auxiliary variables are subsequently considered in order to help define the problem
of interest:

1 n u m b e r o f c e l l c e n t e r s = 50 ;
2 d e s i r e d o r d e r = 2 ;
3 lambda = −1.0;
4 west bndy = 0 . 0 ;
5 east bndy = 1 . 0 ;
6 alpha = −exp ( lambda ) ;
7 beta = ( exp ( lambda ) − 1 . 0 ) /( lambda ) ;
8 west bndy value = −1.0;
9 gamma = alpha ;

10 d e l t a = beta ;
11 eas t bndy va lue = 0 . 0 ;

We are now able to create the required mimetic operators, as follows:

1 dir comp = new MTK 1DCGDirichletOperator ( d e s i r e d o r d e r ,
2 n u m b e r o f c e l l c e n t e r s ,
3 MTK DENSE) ;
4 neu comp = new MTK 1DCGNeumannOperator( d e s i r e d o r d e r ,
5 n u m b e r o f c e l l c e n t e r s ,
6 MTK DENSE) ;
7 grad = new MTK 1DCGGradient( d e s i r e d o r d e r ,
8 n u m b e r o f c e l l c e n t e r s ,
9 MTK DENSE) ;

10 l ap = new MTK 1DCGLaplacian( d e s i r e d o r d e r ,
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11 n u m b e r o f c e l l c e n t e r s ,
12 MTK DENSE) ;

Similarly, we can define the problem of interest, as follows:

1 prob l em to so lv e = new MTK Steady1DProblem ( alpha , beta , west bndy value ,
2 gamma, de l ta , ea s t bndy va lue ) ;

For the case of N = 6, MTK yields the following numerical instance of the problem to solve:

Problem of interest:

-0.367879 f(a) - 0.632121 f’(a) = -1.0

-0.367879 f(b) + 0.632121 f’(b) = 0.0

We are now able to proceed with the creation of the required grids:

1 space = new MTK LR1DUniformStaggeredGridDouble ( west bndy , east bndy ,
2 n u m b e r o f c e l l c e n t e r s ) ;
3 source = new MTK LR1DUniformSourceGrid ( space , west bndy value ,
4 east bndy va lue , source term ) ;

Note that the values of the source function (23) are provided, as well as the values for the discretized
spatial coordinates. At this point, the MTK can now proceed with the creation of the stencil matrix
and the system, which solution represents our desired solution for (22). This is easily done by
instructing:

1 s t e n c i l m a t r i x = new MTK 1DStencilMatrix ( alpha , dir comp ,
2 beta , neu comp ,
3 grad , lap ) ;
4 MTKSystem system ( s t e n c i l m a t r i x , source ) ;
5 system . Solve ( ) ;

For the case of N = 6, MTK allows us to obtain the following numerical instance for the system of
equations to solve:

Arising system of equation:

| 8.1 -9.5 1.1 -0 -0 -0 -0 | | -1.00 |

|-66.67 100.00 -33.33 -0.00 -0.00 -0.00 -0.00 | | 1.43 |

| -0.00 -25.00 50.00 -25.00 -0.00 -0.00 -0.00 | | 1.17 |

| -0.00 -0.00 -25.00 50.00 -25.00 -0.00 -0.00 | x = | 0.96 |

| -0.00 -0.00 -0.00 -25.00 50.00 -25.00 -0.00 | | 0.79 |

| -0.00 -0.00 -0.00 -0.00 -33.33 100.00 -66.67 | | 0.64 |

| 0.00 0.00 0.00 0.00 1.05 -9.48 8.06 | | 0.00 |

The Solve member function implements a numerical method for solving the system. Since
the operators were created using a dense representation for the storage format, a simple Gaussian
elimination with backward substitution was utilized to solve the system [31]. However, full com-
patibility with known numerical linear algebra libraries is provided by the MTK. In fact, if we
analyze the implementation of the constructor for the MTK 1DStencilMatrix class, we can see that
an ATLAS-optimized CBLAS [13] is used to perform all the required matrix operations, according
to the definition of the stencil matrix S, which is a function of the mimetic matrix operators [4].
The user can then visualize the required results graphically:

1 p l o t t e r = new MTK 1DPlotterDouble ( s o l u t i o n g r i d−>independent ( ) ,
2 system . So lu t i on ( ) ,
3 s o l u t i o n g r i d−>number of nodes ( ) ) ;
4 s a v e p l o t = f a l s e ;
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5 l o g l o g = f a l s e ;
6 props = new MTK 1DPlotProperties ( ”x” ,
7 ”u( x ) ” ,
8 ”Computed s o l u t i o n ” ,
9 ” po in t s ” ,

10 ” blue ” ) ;
11 p l o t t e r−>s e t p l o t p r o p e r t i e s ( props , save p lo t , l og l og , MTK PNG) ;
12 p l o t t e r−>See ( ) ;

Furthermore, in order to visualize the known solution to this problem (for comparison purposes),
we can now create a solution holder grid, as follows (see Figure 9):

1 s o l u t i o n g r i d =
2 new MTK LR1DUniformKnownSolutionHolderGridDouble ( space ,
3 &known solut ion ) ;
4 p l o t t e r = new MTK 1DPlotterDouble ( s o l u t i o n g r i d−>independent ( ) ,
5 s o l u t i o n g r i d−>dependent ( ) ,
6 s o l u t i o n g r i d−>number of nodes ( ) ) ;
7 s a v e p l o t = f a l s e ;
8 props =
9 new MTK 1DPlotProperties ( ”x” , ”u( x ) ” , ”Known s o l u t i o n ” , ” l i n e s ” , ” red ” ) ;

10 p l o t t e r−>s e t p l o t p r o p e r t i e s ( props , save p lo t ,MTK PNG) ;
11 p l o t t e r−>See ( ) ;

Finally, thanks to the tools within the MTK, we are able to numerically compare the error among
the two solutions at hand:

1 t o o l s = new MTK ToolManager ( ) ;
2 n o r m d i f f s o l =
3 t oo l s−>Relat iveNorm2Di f fe rence ( s o l u t i o n g r i d−>dependent ( ) ,
4 system . So lu t i on ( ) ,
5 s o l u t i o n g r i d−>number of nodes ( ) ) ;
6 cout << ” Re la t i v e 2−norm of the d i f f e r e n c e = ” << n o r m d i f f s o l << endl ;
7 r e turn EXIT SUCCESS ;

Using MTK to solve this problem yields a computed solution depicted in Figure 12, which show
that the computed solution is indeed bound to the cell centers, as it is to be expected given the
nature of the mimetic Laplacian that was approximated by the operators provided within the MTK.
This already shows the correctitude of the implementation of these methods by the MTK. However,
we will support this conclusion by means of a grid refinement study, presented in the next section
(§5.1.3).

5.1.3 The Accuracy of the CGM-based MDM as implemented by the MTK

In this section, we present a grid refinement study to show that the implement solution by means
of the MTK, also provides the same order of accuracy as the reference solution, previously studied.

We discretized the known solution using an MTK KnownSolutionHolderGrid. Tables 6 and 7,
shows the results of the accuracy study by means of a grid refinement process.

Specifically, Figure 13, depicts the results summarized in Table 6. Specifically, Figure 13 shows
the attained accuracy of the numerical solution implemented via the MTK. As in the case of our
reference solution, we present these results in terms of both the number of cells, N , and the grid
step size, ∆x, that were used to compute the solution. Analogously, Figure 14 depicts the results
summarized in Table 7.

5.2 A second example

In this example, we consider:
−∇2f(x) = F (x), (34)
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(a) Solution with N = 5.

(b) Solution with N = 102.

Figure 12: Computed numerical solution for example problem number one, using a one-dimensional
uniform staggered grid with only 5 cells (Figure (a)) and 102 cells (Figure (b)), as well as second-
order mimetic operators attained by means of the Castillo–Grone Method, as described in §5.1.2.
Figure (a) shows how is the Laplacian bound to the centers of the cells in the numerical solution
as it can be seen in Figure 3. These plots (as well as the plot shown in Figure 9) were attained by
means of MTK’s visualization mechanisms.

30



(a) Entire grid, in terms of N .

(b) Entire grid, in terms of ∆x.

Figure 13: Grid refinement study all along the entire grid, with emphasis in the interior nodes,
depicting the behavior of the error achieved by the MTK-based solution, as explained in §5.1.3.
Figure (a) shows the behavior in terms of the number of cells, and Figure (b) shows the behavior in
terms of the grid step size.
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(a) West boundary

(b) East boundary

Figure 14: Grid refinement study: for example problem number one. Figure (a) shows the behavior
of the error at the west boundary node, and Figure (b) does it for the east boundary node. See
§5.1.3.
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N ∆x Error interior Order
5 2.00000e-01 2.18379e-03 -
10 1.00000e-01 5.40628e-04 2.01413e+00
20 5.00000e-02 1.32439e-04 2.02931e+00
50 2.00000e-02 2.07112e-05 2.02495e+00
100 1.00000e-02 5.12492e-06 2.01481e+00
200 5.00000e-03 1.27389e-06 2.00829e+00
250 4.00000e-03 8.14309e-07 2.00539e+00
500 2.00000e-03 2.03078e-07 2.00355e+00

Table 6: Calculation of the attained error using MTK objects for the entire grid, as explained in
§5.1.3.

N ∆x Error west Order west Error east Order east
5 2.00000e-01 1.76817e-03 - 1.09230e-03 -
10 1.00000e-01 5.33654e-04 1.72828e+00 1.82088e-04 2.58466e+00
20 5.00000e-02 1.45092e-04 1.87894e+00 3.38828e-05 2.42601e+00
50 2.00000e-02 2.43481e-05 1.94798e+00 4.28961e-06 2.25552e+00
100 1.00000e-02 6.18200e-06 1.97766e+00 9.77490e-07 2.13369e+00
200 5.00000e-03 1.55740e-06 1.98894e+00 2.32480e-07 2.07198e+00
250 4.00000e-03 9.98258e-07 1.99315e+00 1.47263e-07 2.04613e+00
500 2.00000e-03 2.50327e-07 1.99560e+00 3.60538e-08 2.03017e+00

Table 7: Calculation of the attained error using MTK objects for the west and east boundaries, as
explained in §5.1.3.

but this time, for x ∈ Ω = [0, 1] ⊂ R, we let [6]:

F (x) =
2× 106x

arctan(100)(1 + 1× 104x2)2
. (35)

We consider generalized Robin boundary conditions of the form:

f(0) + f ′(0) = − 100

arctan(100)
, (36)

f(1) + f ′(1) = 1 +
100

arctan(100)(1 + 1× 104)
, (37)

for which, the following analytical solution is known:

f(x) =
arctan(100x)

arctan(100)
. (38)

Figure 15 depicts the reference results, which were computed in MATLAB R2010b.
Analogoulsy, Figure 16 contains the solution attained by using the MTK, and Figures 17 and

18 contain the result of the grid refinement study, also using the MTK. Tables 8 and 9 present the
related numerical results.

6 Concluding remarks and directions of future work

In this work, we introduced the Mimetic Methods Toolkit, or MTK, with the intention of providing
an API assisting with the implementation of Mimetic Discretization Methods, when developing com-
puter applications for the simulation and consequent study of any physical phenomenon of interest.
We have presented a few important details on Mimetic Discretization Methods; specifically, we in-
troduced the Castillo–Grone Method, which allows for the construction of the Mimetic Differential
Operators used to discretize the problems of interest.
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(a) Attained and known solution. (b) Error in the entire grid, in terms of N .

(c) Error in the entire grid, in terms of ∆x. (d) Boundary, in terms of ∆x.

Figure 15: Grid refinement study, depicting the attained order achieved by the CGM-based MDM
reference solution for the second example problem (§5.2), computed using MATLAB R2010b. Figure
(a) present the attained and the known solution. Figures (b) and (c) present the behavior of the
error all along the entire grid, whereas Figure (d) present the behavior of the error at the boundary.
As it can be seen, an uniform accuracy prevails at both the interior nodes and the boundary.

N ∆x Error interior Order
100 1.00000e-02 3.92520e+00 -
200 5.00000e-03 7.75892e-01 2.33884e+00
250 4.00000e-03 4.74483e-01 2.20391e+00
500 2.00000e-03 1.13039e-01 2.06954e+00
550 1.81818e-03 9.31962e-02 2.02519e+00
700 1.42857e-03 5.72903e-02 2.01763e+00
750 1.33333e-03 4.98634e-02 2.01246e+00
1000 1.00000e-03 2.79789e-02 2.00859e+00

Table 8: Calculation of the attained error using MTK objects for the entire grid, as explained in
§5.1.3, for example problem number two, presented in §5.2.
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(a) Solution with N = 1, 002.

(b) Solution with N = 1, 002.

Figure 16: Attained solutions for example problem number two, using the MTK. Figure (a) shows a
plot of the known solution generated with the MTK, and Figure (b) shows the computed solution.
Both plots were generated using 1,002 cells.
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(a) Entire grid, in terms of N .

(b) Entire grid, in terms of ∆x.

Figure 17: Grid refinement study for the example problem number two, presented in §5.2. Figure
(a) shows the behavior of the error in the entire grid in terms of N , and Figure (b) shows it in terms
of the step size ∆x.
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(a) West boundary

(b) East boundary

Figure 18: Grid refinement study for the example problem number two, presented in §5.2. Figure
(a) shows the behavior of the error in the west boundary in terms of N , and Figure (b) shows it in
the east boundary, also in terms of N .
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N ∆x Error west Order west Error east Order east
100 1.00000e-02 5.01087e+00 - 2.48970e+00 -
200 5.00000e-03 9.95683e-01 2.33130e+00 4.93448e-01 2.33500e+00
250 4.00000e-03 6.08587e-01 2.20615e+00 3.01926e-01 2.20143e+00
500 2.00000e-03 1.44647e-01 2.07293e+00 7.20095e-02 2.06794e+00
550 1.81818e-03 1.19224e-01 2.02804e+00 5.93753e-02 2.02414e+00
700 1.42857e-03 7.32461e-02 2.02013e+00 3.65075e-02 2.01674e+00
750 1.33333e-03 6.37410e-02 2.01466e+00 3.17764e-02 2.01170e+00
1000 1.00000e-03 3.57465e-02 2.01047e+00 1.78334e-02 2.00795e+00

Table 9: Calculation of the attained error using MTK objects for the west and east boundaries, as
explained in §5.1.3, for example problem number two, presented in §5.2.

We discussed how is the MTK conformed in terms of the classes modeling the most important
concepts of the theory of MDMs. Specifically, we discussed the defined data structures and their
compatibility with external packages. Similarly, we discussed the mechanisms managing the meshes
and grids withing the MTK, and those managing the implementation of the CGM-based mimetic
operators.

We presented two examples, which allowed us to pragmatically introduce the MTK’s usage
philosophy. These examples yielded numerical results which were compared with references solutions.
We could see that the solutions attained by means of the MTK not only are correct, but also depict
the desired behavior in terms of an uniform order of accuracy all along the discrete domain.

In terms of upcoming work for the MTK, we will focus our attention to several issues within the
implementation of each of the concerns. Some directions of upcoming work are:

• Determine the level at which we are interested in making the MTK compatible with external
tools, such as for example [13] and [12], so that we can make sure that the concerns are
minimally complete, as it is desirable for an API [8].

• To complete an appropriate modeling of meshes and grids, we are interested in modeling the
entire context in one, two and three dimensions. Furthermore, we are interested in accounting
for different elements that arise when considering higher-dimensional scenarios. For example,
in §3.1, we mentioned that the centers of the cells, in one dimension, are nothing but projection
of three-dimensional cell centers. Considering a three-dimensional scenario, thus implies the
need for differentiating between edges, vertices and centers of a three-dimensional cell, since we
intent to develop appropriate visualization mechanisms for three-, two- and one-dimensional
grids.

• To implement support for higher-order mimetic operators, as well as for their higher-dimensional
counterparts.

• We are also interested in developing a more general system for describing problems, i.e., PDEs
of any general type, that can be described in terms of differential operators.

6.1 Collaborative development and MTK Flavors

Another important aspect of our upcoming work is the collaborative development of MTK. Since
MTK’s numerical core is written in C++, but the toolkit is intended to keep growing, diverse
computational needs have to be taken into account; the result being the following “flavors” or APIs
related to MTK. We intent to develop the following related APIs:

1. CMTK: C wrappers collection for MTK; intended for sequential computations.

2. FMTK: Fortran 95 wrappers collection for MTK; intended for sequential computations.

3. MMTK: MATLAB wrappers collection for MTK; intended for sequential computations.
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4. RMTK: R wrappers collection for MTK; intended for sequential computations.

5. PyMTK: Python wrappers collection for MTK; intended for sequential computations.

6. DistMTK: Parallel extension for MTK for distributed computing, implemented using MPI and
OpenMP.

7. CuMTK: CUDA compatible extension for MTK, implemented using MPI and CUDA.
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