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Abstract

In this paper, the performance of the second and forth order accurate Castillo-Grone’s
Mimetic Gradient and Divergence operator for solving the advection equation along
with RK3 time discretization scheme is investigated. Also, the effect of interpolation
on these operators is studied. It was shown that in all cases the CGM operators
where stable for Courant number above 1 and in some cases upto Courant number
1.8.
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1. Introduction

Both hydrostatic and nonhydrostatic ocean and atmosphere models deal with
different scales of the motions and forces with wide range of frequencies. A shorter
time step is required for high-frequency features while a larger time step can be cho-
sen for low-frequency ones. Hence, in order to address the wide range of frequencies
with a single time step, it is very common to use a time-splitting method in these
models [1]. There are various explicit time-splitting scheme available. Klemp and
Wilhelmson combined leapfrog and a forward-backward scheme [2] to derive perhaps
one of the most commonly used scheme back in 1978 [3]. Crowley scheme is another
splitting method for time integration [4]. Wicker and Skamarock have introduced
several versions of their time-split scheme based on a two-step Runge-Kutta method
(RK2) [5] and third-order Runge-Kutta method (RK3). Wicker and Skamarock has
shown the superiority of their RK3 scheme in time integration [6]. The accuracy,
efficiency, and ease of implementation of their proposed RK3 scheme have motivated
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the authors in this paper to use the same time-splitting scheme in the Unified Curvi-
linear Ocean Atmosphere Model (UCOAM) [7]. It is note worthy to mention that
RK3 is also currently being used in the Weather Research & Forecasting (WRF)
Model, the most commonly used model in the field [8, 9].

However, time integration is only one side of the coin. Other factors that affect the
stability in elastic models and advective equations are (1) the spatial discretization
[10, 11, 12] and (2) the interpolation schemes [6]. Particularly, the combination of
the spatial discretization and the time integration is very important. Some spatial
discretization schemes become unstable with certain time discretization schemes,
while changing the time discretization and keeping the same spatial discretization
may alleviate the problem. As an example, a central spatial scheme is unconditionally
unstable with RK2 or Euler method [11]. It is also widely known that in general,
increasing the order of accuracy will limit the stability regions in many cases; hence,
a much smaller time step needs to be selected [11].

Interpolation also has the same effect. While higher order interpolation schemes
are more accurate, they will limit the stability region. As an example, Wicker and
Skamarock has shown that their RK3 scheme along with a second order accurate
central finite-volume scheme is sensitive to the interpolation scheme in use, as the
stable Courant number decreases from 1.61 to 1.08 by increasing the order of accuracy
of the interpolator function from three to six [6].

This paper extends the work of Wicker and Skamarock [6] by investigating the
performance of the Castillo-Grone’s Mimetic (CGM) difference operators with higher
order of accuracies. Mimetic schemes are a class of numerical schemes that satisfy the
physical properties of their continuous operator in discrete environment [13, 14, 15,
16, 17, 18, 19]. It has to be noted that the second order central finite-volume scheme
used in the paper by Wicker and Skamarock is also categorized as a mimetic scheme.
In this paper, 4th order CGM divergence and gradient operator along with first, forth
and sixth order accurate interpolation methods are tested and their performance is
reported. The reason to consider first order accurate linear interpolation comes from
the authors’ interest in using NVIDIA’s Graphical Processing Units (GPUs). GPUs
have special circuitry for one, two, and three dimensional linear/bilinear/ trilinear
interpolation. Therefore, the interpolation can be done very efficiently and fast at
the hardware level. Although, the same circuitry can be harnessed for higher order
interpolation schemes with a little bit of help on the software side.

Next section covers the governing equations, the test function, initial and bound-
ary conditions, RK3 scheme, CGMimetic operators, Kawamura approach, and the
interpolation schemes. Later the results of each method is presented and the region
of stability is discussed based on the stable Courant number.
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2. Numerical Approach

2.1. Governing Equation

The advection equation in the absence of any source or sink term can be formu-
lated in non-conservative form using the gradient operator, as follows:

∂q

∂t
+ u · 5(q) = 0 (1)

where q is a scalar quantity, which is advected by the velocity field, i.e. u. Remem-
bering that 5 · (uq) = u · 5(q) + q(5 · u) and using the continuity equation, which
for incompressible fluids can be written as 5 · u = 0, equation (1) can be written in
conservative form using the divergence operator as follows:

∂q

∂t
+5 · (uq) = 0 (2)

In this paper both forms of the equation are investigated. The CGM gradient op-
erator is used with equation (1) and CGM divergence operator is used with equation
(2).

2.2. Initial and Boundary Conditions

q is initialized with:

q(x, t = 0) =
1

1 + e|80(z−0.15)|
, (3)

where z = |x − 0.5| and x ∈ [0, 1]. A periodic boundary condition is selected and
the space discretization used dx = 0.02, dt is kept constant at 0.02, and u is chosen
based on the given Courant number as follows:

u =
Cr dx

dt
(4)

2.3. Spatial Discretization

2.3.1. KWM Scheme

Due to the nature of advective terms, it is widely believed that a forward or
backward step works better for advective terms. Kawamura et al. [20] combined
a forward and a backward scheme into a single equation in curvilinear coordinates.
This scheme, abbreviated here as KWM, is forth order accurate and does not require
any interpolation. Adapting the KWM scheme for the regularly spaced grids, the
KWM scheme will look like:
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(
u
∂q

∂x

)
i

= ui
−qi+2 + 8(qi+1 − qi−1) + qi−2

12dx

+ |ui|
qi+2 − 4qi+1 + 6qi − 4qi−1 + qi−2

4dx
(5)

2.3.2. Castillo-Grone’s Gradient and Divergence operators

The second order accurate Castillo-Grone’s Mimetic (CGM) gradient operator is:

G2 =
1

h


−8

3
3
−1

3
−1 1

−1 1
1

3
−3

8

3

 . (6)

Likewise, the second order accurate CGM divergence operator is:

D2 =
1

h


−1 1

−1 1
−1 1

−1 1

 . (7)

The forth order accurate CGM gradient and divergence operator are each part
of a three parameter family of operators. Here, we use only one member of each
families. The CGM divergence operator corresponding to the parameters, (α, β, γ) =

(0,
1

24
,
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) is:

D4=
1
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(8)
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Likewise, the chosen forth order CGM gradient operator is:

G4=
1
h
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(9)

2.4. RK3 Scheme

In this paper a three steps time-split scheme introduced by Wicker and Skamarock
[6] is used to integrate the equations provided in the form of:

∂u

∂t
= f(u, · · · ). (10)

To advance the solution for one step, i.e. integrating the equation to obtain un+1

knowing the un, the following steps must be taken:

u∗ = un − dt

3
f(un, · · · ) (11)

u∗∗ = un − dt

3
f(u∗, · · · )

un+1 = un − dt

3
f(u∗∗, · · · )
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2.5. Fourth and Sixth Order Interpolation

On a regularly spaced grid, with spacing h, the forth order interpolation scheme
can be written as follows:

qi− 1
2

=
7(qi + qi−1)− (qi+1 + qi−2)

12
, (12)

where qi is located at xi = x0 + i∗h. Likewise, the sixth order accurate interpolation
can be written as follows:

qi− 1
2

=
37(qi + qi−1)− 8(qi+1 − qi−2) + (qi+2 + qi−3)

60
. (13)

3. Results and Discussions

MATLAB was used to solve equation (1) and (2) numerically using the discretiza-
tion schemes shown in previous sections. Periodic boundary condition were applied
in all cases and the number of iterations were chosen in such a way that the initial
signal passes through the domain twice and reaches its original position. Since the
velocity is kept constant through out the space and time, in a perfect case one must
get exactly the same signal. However, in practice due to numerical errors this will
never happen. To measure the error the Root Mean Square Error (RMSE) was used.

The KWM scheme produced a very smooth and relatively accurate results. How-
ever, it was stable only upto a Courant number 0.6. Once Cr > 0.63 was chosen the
scheme became unstable. The RMSE for this method stays relatively constant and
does not change with increasing the Courant number. Hence, unlike other methods,
there is no sign that this scheme is becoming unstable and just suddenly by increas-
ing the Courant number the scheme is completely unstable. This is not a desirable
behavior. Figure (1) shows the solution using Kawamura scheme.

The second order accurate CGM divergence operator also provided smooth re-
sults. Once a forth order interpolation scheme was used, the scheme was stable upto
Courant number 1.3 and it was stable upto Courant number 1.1 for a sixth order in-
terpolation scheme. However, the sixth order interpolation scheme resulted in more
accuracy only at lower Courant numbers and once the Courant number reached 0.7
both methods were behaving more or less the same. In figure (2) and (3) the nu-
merical solution is compared with the analytic solution using the second order CGM
divergence operator with forth and sixth order interpolation scheme respectively.

Before discussing the results obtained using CGM gradient operator, it has to be
reminded that the CGM gradient operator is developed for staggered meshes. CGM
gradient operator requires the data to be in the middle of the cells and also on the
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Figure 1: Kawamura Scheme with Cr = 0.6.
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Figure 2: Second Order Accurate CGM Divergence Operator with Forth Order Interpolation
Scheme, Cr = 1.2.
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Figure 3: Second Order Accurate CGM Divergence Operator with Sixth Order Interpolation
Scheme, Cr = 1.1.

first and last node on the boundary. However, the gradient itself is calculated at the
nodes. For better understanding refer to figure (4). Now remember that in this paper,
the variable q is stored only at the cell centers and not on the nodes. Hence, to solve
equation (1) using CGM gradient one needs to calculate the gradient at the middle
of the cells where the data exists. This leaves us with different implementation.

In the first approach, denoted as V1, the data is first interpolated from the
cell centers to the boundary points using either linear or forth order interpolation
scheme. To do so, the periodic boundary condition is also used. Once the gradient is
calculated at the nodes using the CGM gradient operator, it is linearly interpolated to
the cell centers. For easier understanding refer to figure (5). Hence, in V1 approach
the calculated gradient is interpolated to the cell centers.

In the second approach, denoted as V2, it is assumed that the domain starts
from the middle of the first cell and ends at the middle of the last cell. Then the
data is interpolated from the cell centers to all the interior nodes. Hence, once the
CGM gradient operator is applied, the gradient is calculated at the cell centers of the
original grid and there is no need to interpolate the calculated gradient. For better
understanding refer to figure (6). It has to be noted that in this case only higher
order interpolation is possible, otherwise, the boundary conditions won’t affect the
solution.

The third approach, denoted as V3, is similar to V1, except that once the gradient
is calculated at the nodes, a forth order interpolator is used to obtain the gradient
at the cell centers. All methods produce a relatively smooth solution. V1’s solutions
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Figure 4: CGM Gradient, f denotes the locations that the data must be held and Gf shows the
location where the gradient is calculated using CGM Gradient operator.

Figure 5: V1 Approach: Data is located at the cell centers only. Using the boundary condition
data is interpolated at the boundary nodes to satisfy the grid requirements of the CGM gradient
operator. The gradient is calculated then at the nodes and linearly interpolated to the cell centers.

shown the most error; however, it was stable upto Courant number 1.8 for both linear
and forth order interpolation. V2 and V3 were both stable upto Courant number
1.3 and they were both more accurate than V1. V2 achieved less accuracy at lower
Courant numbers relative to V3. Firgure (7), (8), and (9) shows sample output of
different implementations.

By increasing the order of accuracy of the operators, the stable courant number
decreases. However, for the forth order accurate CGM operators, the lowest stable
Courant number was 1.1. Figure (10) shows the RMSE and the stable courant
number of all methods compared together.
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Figure 6: V2 Approach: Data is interpolated to all the interior nodes. CGM gradient operator is
used to calculate the gradient at the cell centers directly. Hence, there is no need to interpolate the
calculated gradient.
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Figure 7: Second Order Accurate CGM Gradient Operator with forth Order Interpolation Scheme
using V1 approach, Cr = 1.65.
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Figure 8: Second Order Accurate CGM Gradient Operator with forth Order Interpolation Scheme
using V2 approach, Cr = 1.2.
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Figure 9: Second Order Accurate CGM Gradient Operator with forth Order Interpolation Scheme
using V3 approach, Cr = 1.2.
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