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Abstract

A computational package has been developed to solve the bounded vibrational Schrödinger equation for up to three
coupled coordinates on any given effective potential energy surface (PES) [1]. This article presents a new and improved
version of the package with a fully automated point-wise PES evaluation as well as a revised routine for the computation
of the Wilson G-matrix on scattered surfaces. Since the PES is given as a discrete set of points an interpolation
scheme is required to automate the process of stiffnes matrix and global matrix assembly within the finite element
paradigm. The recent development of automatic PES generation [4] resulted in two different interpolation schemes
available in the package, namely interpolating moving least squares (IMLS)[5] and Kriging interpolation [12], with
parameter tuning. A significant improvement has been made to the Wilson G-matrix evaluation in terms of removing
rotational discrepancies for small molecules before imposing Eckart conditions and allowing scattered surface calculations
during the transformation from Cartesian to internal coordinates. Lastly, the package has been fully automated and
made publicly available through the world wide web, thus enabling research groups around the world to analyze their
vibrational spectra using our finite element method based approach.
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1. Introduction

Many different approaches have been developed over
the past thirty years for solving the vibrational Schödinger
equation. One of the first attempts using perturbation the-
ory and variational computation was introduced by Handy
and co-workers [13, 14] in the late 1970s. These attempts
were followed by the introduction of exact Hamiltonians by
Watson for nonlinear [15] and linear [16] molecules, based
on the use of regular rectilinear normal coordinates. Many
important developments in theoretical molecular spectrosc-
opy came after these groundbreaking studies which used
exact kinetic energy operators in (nearly) variational com-
putations. These investigations [17, 18, 19, 20, 21, 22, 23,
24, 25] were aimed at determining a large number of ac-
curate rotational-vibrational energy levels of polyatomic
species of increasing size and complexity. This goal has
been achieved for triatomic molecules [26, 27], for which
exceedingly accurate PESs can be developed. For larger
systems, it has been computationally very difficult to pre-
dict the spectra, especially near the dissociation limits.
Our goal when developing FEMVib package has been to

solve the vibrational Schrödinger equation (VSE) for a
polyatomic molecule, starting from an arbitrary PES of
up to three dimensions, without requiring the selection of
specific coordinates or basis functions. The wavefunctions
and energies obtained from these calculations may then be
used to predict vibrational spectra involving strongly cou-
pled and anharmonic modes. FEMVib has been tested to
resolve the eigenvalues and wavefunctions of hundreds of
vibrational energy states to high accuracy and precision. It
may be used to calculate the complete vibrational spectra
of triatomic molecules or to approximate larger systems
through a “relaxed” model that allows complete coupling
of up to three selected vibrational coordinates. FEMVib
provides physical chemists with a general, robust and accu-
rate computational tool for molecular vibrational analysis.

The analytical representation of potential energy sur-
faces for reactive systems has been a challenge in the field
of quantum chemistry for the past few decades [28, 29].
With the improvement of ab-initio methods the task be-
came even more intricate because of their high accuracy
and expense of computation. The PES is a crucial step to-
wards analysis of vibrational energies [1], chemical reaction
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modeling, and transition states analysis [2, 3]. There have
been several methods used for fitting the PES, in particular
Shepard interpolation [30], spline interpolation [31, 34, 35],
Bayesian approach [36], Voronoi-step representation intro-
duced by Suhm [42], tesselation using Clough-Tocher in-
terpolant [43] and Distributed Approximating Functionals
[44]. One of the most recent and most successful devel-
opments of PES construction using Interpolating Moving
Least Squares (IMLS) [4, 5, 6, 7, 8] utilizes two different
basis set functions and compares the first derivative devia-
tions. This is done dynamically during the PES construc-
tion, hence the choice of points is controlled by the largest
value of gradient at a given location. This scheme is imple-
mented in our FEMVib package for users who used IMLS
for their PES construction. We have investigated several
interpolation schemes for PESs that have been generated
randomly or using regular grid expansions but without dy-
namic corrections - namely Kriging Interpolation, Radial
Basis Function (RBF) Interpolation, Shepard Interpola-
tion, Distributed Approximating Functionals and Multi-
level B-splines. Six different functions have been used in
2D and 3D for optimization testing of the above mentioned
interpolation schemes. The interpolation method that we
found to be the most suitable and among the most accurate
was the Kriging interpolation. It has been implemented
into FEMVib as an alternative in case the PES has not
been constructed using IMLS, along with a parameter tun-
ing. We will present the tests performed when tuning the
”shape” parameter for these interpolation schemes, chang-
ing the grid density and using different analytical testing
surfaces.

The PES represents the potential energy term in the
Hamiltonian for the VSE. Its kinetic energy term, which
is of equal importance, can be expressed in various coor-
dinate representations [45]. When coordinates other than
Cartesian or Normal are used the kinetic energy term be-
comes very complicated. Moreover, if anharmonic and
coupled vibrational motions are present the quantum me-
chanical treatment of higher vibrational states becomes
increasingly difficult. It is therefore convenient to formu-
late and solve the VSE in internal coordinates, which rep-
resent bond distances, valence angles, torsions, etc. and
which allow the computational treatment of anharmonic
vibrations [46, 49]. The main property of the internal co-
ordinate set is that it remains unaffected by translations or
rotations of the molecule as a whole by applying the Eckart
conditions [50]. Internal coordinates can describe the sys-
tem from a chemically relevant point of view and extend
well beyond the simple bond distances and angles. One of
the major problems with internal coordinates is associated
with their formulation of masses. This becomes an issue
when transforming the motion from Cartesian to the in-
ternal coordinate system, which introduces the concept of
reduced masses. Despite the fact that the exact formula-
tion of reduced masses has been known for decades, little
has been published in this area. The first-principle ap-
proach for the determination of reduced masses was used

in a few cases [51, 52, 53] and only recently a package has
been developed [57] for the computation of reduced masses
in a generalized internal coordinates set. This package
has been previously implemented in the former version of
FEMVib. There were two main problems with this for-
mulation: (i) the calculation assumed structured grid and
(ii) small symmetrical molecules were not rotated into the
same reference frame and compared to the reference struc-
ture hence the Wilsons G-Matrix elements representing the
transformation between the two coordinate sets were in-
correct. We have addressed this problem by developing a
general G-matrix calculator (GCAL) for up to three inter-
nal vibrational coordinates that works on scattered data
sets and accounts for pre-rotation of small symmetrical
structures (e.g. H2O, FHF−, etc.). GCAL has been suc-
cessfully implemented and serves as a part of the FEMVib
package.

The FEMVib package is implemented mostly in the
C++ programming language, where the Libmesh library
[59] has been used to produce sparse, structured Hamil-
tonian matrices. The GCAL routine is also implemented
using C++ programming language, while a Perl script is
used to sort out the singular values which correspond to
similar molecular structures with different sets of internal
coordinates. The generalized eigenvalue problem is solved
using the Jacobi-Davidson algorithm [11] obtained from
PySPARSE [65] an open source Python library. The en-
tire package has been fully automated and is being offered
as a web-service. The application interface was developed
using OPAL Toolkit [66], a JAVA [67] based web-engine
which runs under ANT[68] and TOMCAT [69]. Details
regarding the installation, user interface and input param-
eters are given in Appendix B.

2. Methods

2.1. IMLS

Consider a scattered data set of N + 1 points {xi; i =
0, 1, ..., N} with corresponding functional values {fi; i =
0, 1, ..., N}. The standard formulation of the least-square
problem is given as:

Sx(p) =

N∑
i=0

[p(xi)− fi]2 (1)

where p(x) represents a polynomial of the form p(x) =∑m
i=0 aix

i and Sx is to be minimized. Note, m ≤ N .
The weighted least-square method has a similar ana-

lytical representation, except every deviation p(xi)− fi in
equation 1 is weighted depending on the distance from the
interpolated point | x − xi |. Therefore, we minimize Sx
in:

Sx(p) =

N∑
i=0

wi[p(xi)− fi]2 (2)

where wi(x) are positive weight functions. They behave
asymptotically, where wi(x) → ∞ as x → xi. Commonly

2



used weight functions include:

wi(x) =
1

(x− xi)2n
(3)

and

wi(x) =
exp[−(x− xi)2]

(x− xi)2n
(4)

here n is a small positive integer [5]. To find the coefficients
of the polynomial p(x) =

∑m
i=0 aix

i we have to solve a
system of m + 1 normal equations, given the conditions
∂Sx/∂ai = 0; i = 0, 1, ...,m:

(
∑
wi(x)x

0
i )a0+ · · · +(

∑
wi(x)x

m
i )am

...
. . .

...
(
∑
wi(x)x

m
i )a0+ · · · +(

∑
wi(x)x

2m
i )am

=
...
=

∑
wi(x)fi
...∑

wi(x)x
m
i fi

(5)

Using a matrix-vector notation for equation 5:

BT ·W ·B · a = BT ·W · f (6)

where:

B =


1 x0 · · · xm0
1 x1 · · · xm1
...

...
...

...
1 xN · · · xmN

a =


a0
a1
...
am

 f =


f0
f1
...
fN


and

W = diag[w0(x), w1(x), · · · , wN (x)]

These are the standard formulations for least-squares and
weighted least squares methods. If m = 0 we obtain:

a0(x) =

∑N
i=0 wi(x)fi∑N
i=0 wi(x)

(7)

This formulation is known as the Shepard interpolation
[41]. Since the weight function, for the Shepard interpola-
tion, is not defined at the data points, modification of the
form:

wi(x) =
exp[−(x− xi)2]

(x− xi)2n + ε
(8)

was suggested [9], where ε is a small positive number. This
form of weight function has been implemented into our
algorithm. Details about the choice of ε can be found in
[5]. We have used a value of ε = 10−12. For such choice
of ε no further improvement of accuracy was found for
first degree and second degree IMLS discussed later in this
article.

For m = 1, equation 5 becomes:

(
∑
wi(x))a0 + (

∑
wi(x)xi)a1

(
∑
wi(x)xi)a0 + (

∑
wi(x)x2i )a1

=
=

∑
wi(x)fi∑
wi(x)xifi

(9)
The interpolation function has the form

g(x) = a1(x)x+ a0(x) (10)

where a1(x) and a0(x) can be obtained from equation 9.
This is the so called first-degree (FD-IMLS) aplied to a
one-dimensional problem. The IMLS method requires a
basis function, that depends on the dimensionality of the
problem and accuracy of the interpolation. Here, a trade-
off exists between computational ease and the desired ac-
curacy. The higher the degree of the basis set the more co-
efficients has to be computed. An example of three classes
of polynomials for a three-dimensional surface are given
below [8]:

g(x, y, z)
g(x, y, z)
g(x, y, z)

1
1 x y z

1 x y z x2 y2 z2 xy xz yz
(11)

The first line in equation 11 represents the m = 0 case,
second and third lines represent the FD-IMLS and SD-
IMLS respectively. An abbreviation is often used for the
n-dimensional case: h = (x1, x2, ..., xn). For such a case
our polynomial g(x) can be expressed:

g(h) =

n∑
j=1

aj(h)bj(h) (12)

The weight function can also be simplified using an Eu-
clidian distance between points h = (x1, x2, ..., xn) and
hi = (xi1, x

i
2, ..., x

i
n):

d(h,hi) =
√

(x1 − xi1)2 + (x2 − xi2)2 + ...+ (xn − xin)2

(13)
as

w(d) =
exp[−d2]

(d2n + ε)
(14)

The problem associated with IMLS is that with in-
creasing number of points the complexity of the computa-
tion rapidly increases. This can be particularly demanding
when large set of points (e.g. 100 000) have to be evalu-
ated along a PES. Since every point on the surface is eval-
uated separately, all the steps in the IMLS routine have to
be repeated for each new interpolated point. This prob-
lem can be solved using a ”cut-off” strategy outlined in
[7]. We have used a similiar approach, where before every
evaluation a selection algorithm takes place and only the
20 closest points to the interpolated point are considered.
Hence, the size of the matrices is significantly reduced as
well as the computational time. The IMLS are used in two
different ways in our application.

First IMLS has been implemented as a part of our in-
terpolation scheme in FEMVib. Therefore, if users have
utilized the automated IMLS PES construction, they have
the option of choosing SD-IMLS as their default interpo-
lation scheme. Second, the versatility of IMLS has been
used in our GCAL routine when estimating the derivatives
on Cartesian coordinate surfaces.
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2.2. Kriging and RBF Interpolation

Radial basis function interpolation at a point xm on a
grid of scattered data denoted xi (called the “enters”) has
the functional form F (x) given by:

F (xm) =

N∑
i

ai × Φ (‖ xm − xi ‖) , (15)

where ‖· ‖ represents the Euclidean norm, ai are the weights
to be optimized and Φ (‖ xm − xi ‖) are the radial basis
functions. The value at each interpolated point on the
grid is given as a weighted sum of the distance basis func-
tions. To determine the weights in equation 15 we need to
solve the linear system given in vector form:

A× ~a = ~f, (16)

where f is the vector of functional values and A is the collo-
cation matrix with elements Φ (‖ xi − xj ‖), 1 ≤ i, j,≤ N .
For the system in equation 16 to be solvable we need the
A matrix to be invertible. The non-singularity of this ma-
trix depends on the choice of Φ and can be guaranteed for
multiquadric and inverse multiquadric of RBFs [37]. The
form of RBFs used in our study are well known and are
listed with their analytical representation in Table 1.

Function Name Function Form

multiquadric (r2 + r20)1/2

inverse multiquadric (r2 + r20)−1/2

thinplate r2 × log (r/r0)

Table 1: Radial basis functions. Here r is the radial dis-
tance and r0 represents the “shape” parameter which is
chosen by the user.

Here it becomes clear that the error of the interpolation
using RBF depends on the choice of the r0 parameter and
thus the choice is very important for further applications
that require high accuracy. More sophisticated methods
than [32, 33] for selecting the optimal value of this param-
eter were developed by Rippa [38] and further improved by
[39], where a “cost functional” is minimized with respect
to the RMS.

Ordinary Kriging interpolation is often associated with
the acronym B.L.U.E. for “best linear unbiased estima-
tor.” Ordinary Kriging is “linear” because its estimates
are weighted linear combinations of the available data; it
is “unbiased” because it tries to have the mean residual
mR equal to zero; and it is “best” because it aims at min-
imizing the variance of the errors σ2

R. The RBFs are also
linear and unbiased methods; however the distinguishing
feature of ordinary Kriging is its aim of minimizing the
error variance [12]. The goals of ordinary Kriging are in a
practical sense unattainable because mR and σ2

R are not
known and therefore cannot be minimized. The best that
can be done is build a model or “variogram” of the data

and work with the average error and error variance for
this model. Ordinary Kriging uses a probabilistic model
in which the bias and the error variance can both be cal-
culated and then weights chosen for the nearby samples
that ensure that the average error for the modeled mR

is exactly zero and that the modeled error variance σ2
R is

minimized.
At a given point, assuming it is one that does not corre-
spond to the data, the unknown functional value will be
estimated as a weighted linear combination of the known
values:

F (xm) =

N∑
j=1

aj × f(xj), (17)

where f(xj) are functional values at each grid point. For
any point at which we attempt to estimate the unknown
value; our model is a stationary random function that con-
sists of several random variables, one for the values at the
known grid points and one for the unknown value we are
trying to estimate. If the random function is denoted as
V (xj) then the estimation model error is also a random
variable and is given by [12]:

R(xm) =

N∑
j=1

aj × V (xj)− V (xm). (18)

Here V (xm) is the random function at the point which
value we are trying to estimate. The modeled error vari-
ance is

σ2
R = σ2 +

N∑
i=1

N∑
j=1

aiajCij − 2

N∑
i=1

aiCi0, (19)

where σ2 is a random function model variance parameter,
aj represent the weights, and Cij are all the covariances
between every two random variables. The minimization of
σ2
R is accomplished by setting N partial derivatives to 0.

However, as was mentioned before, the ordinary Kriging
is unbiased. Therefore the only set of weights that can
be chosen are those that satisfy

∑N
j=0 aj = 1. This in-

troduces a constraint into the minimization. To convert
a constrained minimization into unconstrained, the La-
grange parameter [40] is introduced, which changes equa-
tion 19 to

σ2
R = σ2 +

N∑
i=1

N∑
j=1

aiajCij − 2

N∑
i=1

aiCi0 + 2µ(

N∑
i=1

ai − 1),

(20)
where µ is the Lagrange parameter. Taking the N partial
derivatives with respect to the weights aj and setting them
to zero will result in the following linear system:


C11 · · · C1N 1

...
. . .

...
...

CN1 · · · CNN 1
1 · · · 1 0

 .


a1
...
aN
µ

 =


C10

...
CN0

1

 (21)
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or in vector form:
C× ~a = ~D (22)

Solving this linear system by inverting the C matrix gives
us the weights aj which are used to estimate our functional
value equation 17. The covariance function or variogram
used in this paper has the simple exponential form:

υ(r) = α× rr0 , (23)

where r is the magnitude of the distance between any two
points on the grid, α is estimated from the data and r0
is the parameter chosen by the user. In our case r0 again
represents the unknown parameter we changed for every
grid density.

2.3. Wilson G-Matrix

PES represents the potential energy term V in the nu-
clear Hamiltonian:

Ĥ = T̂ + V (24)

where T̂ represents the kinetic energy operator. In con-
trast to V , the kinetic energy has a general analytical rep-
resentation, which Cartesian form:

T̂x = −~2

2

3N∑
i=1

1

mi
[
∂2

∂x2i
] (25)

where mi is the mass of i-th atom, x, y and z are Cartesian
coordinates, and N is the number of atoms in the molecule,
can be re-written into [55]:

T̂q = −~2

2

M∑
r=1

M∑
s=1

[
g1/4

∂

∂qr

[
g−1/2 ·Grs ∂

∂qs
[g1/4]

]]
(26)

where qr and qs are internal coordinates, Grs are the el-
ements of the Wilson G-matrix [45], and g is its determi-
nant. M , the number of vibrational degrees of freedom,
is equal to 3N − 6 for non-linear and 3N − 5 for linear
molecule.

The Wilson G-matrix represents the transformation
between Cartesian and internal coordinates. It is defined
as:

Grs =

3N∑
i=1

1

mi

∂qr
∂xi

∂qs
∂xi

(27)

where ∂qi/∂xj represents the partial derivative of i-th in-
ternal with respect to j-th Cartesian coordinate. Proper-
ties and formation of G-matrix can be found in [47].

Equation 26 can be simplified as:

T̂q ≈ −
~2

2

M∑
r=1

M∑
s=1

∂

∂qr

[
Grs

∂

∂qs

]
(28)

where the determinant (g) is neglected, because of its small
internal coordinate dependence [56].

The nuclear Hamiltonian 24 in its most general form

still contains vibrational, rotational and translational mo-
tions of nuclei. To extract only the vibrational motions,
Eckart conditions [50] need to be applied to all geometries,
corresponding to a particular set of internal coordinates
along the point-wise PES scan. This has to be done before
the transformation from Cartesian to internal coordinates.
The Eckart conditions are:

N∑
α=1

mα(dα · r0α) = 0 (29)

and
N∑
α=1

mα(dα × r0α) = 0 (30)

where r0α denotes the position vector of the α-th atom in
the reference structure, and dα is the displacement vec-
tor of the same atom from its position in the reference
structure. These conditions are not easily applied and the
process involves multiple numerical steps.

First, the optimized geometries are placed into the the
same plane in case they are planar. A “pre-rotation” rou-
tine will test their alignment with the reference structure,
by rotating the molecule 180 degree along each of the three
Cartesian axis. This is necessary because some molecular
structures can be rotated more than one way to satisfy
condition 30. Condition 29 is satisfied by setting the ori-
gin of the coordinate system into the center of mass of the
molecule. Numerical routine is used to satisfy condition
30. For all of our tested systems the error for the nu-
merical treatment of condition 30 was always smaller then
10−6.

After condition 30 has been applied a “post-rotational”
modification is applied, where the molecule is again ro-
tated 180 degrees along each Cartesian axis and compared
to the reference structure. The reason for the “post-rotation”
is that for certain molecular structures, the numerical rou-
tine might rotate the molecule 180 degrees away from the
expected structure, despite condition 30 being satisfied.

Once Eckart conditions are successfully applied, the
G-matrix elements may be calculated. In most cases the
functional dependence of internal coordinates on Cartesian
coordinates, poses a problem. The change in the internal
coordinate variations are limited by Eckart conditions, re-
sulting in 0 derivatives ∂qi/∂xj .

The solution to this problem as discussed in [57], is to
calculate the inverse of the G-matrix instead, hence ex-
change the role of dependent and independent variables
[46].

Grs =

3N∑
i=1

mi
∂xi
∂qr

∂xi
∂qs

(31)

In our program every set of Cartesian coordinates (e.g.
x1), corresponding to the same atom for every structure,
is considered as a d-dimensional surface where qki repre-
sents the i-th element along k-th axis; k = 1, .., d. We use
SD-IMLS interpolation at every point on the surface and
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using its basis set coefficient estimate the derivatives. This
approach is general even for scattered PESs, for which a
1D-cubic spline interpolation [57] is not sufficient. This
approach is also superior to [54], where contributions from
all atoms are considered in the G-matrix calculation. Once
we have calculated the Grs we simply invert it to obtain
Grs.

Calculation of the inverse G-matrix elements leads di-
rectly to the kinetic energy operator:

T̂q = −~2

2

M∑
r=1

M∑
s=1

[
3N∑
i=1

mi
∂xi
∂qr

∂xi
∂qs

]−1

q̇r q̇s (32)

We can re-write equation 32 in a simpler form as

T̂q = −~2

2

M∑
r=1

M∑
s=1

Grsq̇r q̇s (33)

Following this process further in the vibrational analysis
we construct the secular equation [57] for the vibrational
Hamiltonian using equation 28. The formed VSE can be
solved using an appropriate numerical scheme.

2.3.1. GCAL Program Structure

GCAL program has been written in C++ program-
ming language. The steps behind the algorithm are out-
lined below:

1. Set all the structures into the same plane, if the
molecule is planar.

2. “Pre-rotate” all the structures along each axis by 180
degrees and compare to reference structure. Retain
the structure closest to reference.

3. Apply first Eckart condition: set the origin of the
Cartesian coordinate system to the center of mass
for each structure.

4. Apply second Eckart condition: rotate each struc-
ture until condition 30 is satisfied. To achieve this,
a Variable Metric method in multiple dimensions is
used [58].

5. “Post-rotate” all the structures to account for geom-
etry inversions.

6. Cycle through all the Cartesian coordinate sets cor-
responding to components along x, y and z axis for
each atom and construct surfaces, where internal co-
ordinates are independent variables and Cartesian
are dependent.

7. Interpolate the surfaces at all points, that repre-
sent internal coordinates, using SD-IMLS and con-
sequently estimate the derivatives.

8. Using these derivatives construct the Inverse G-matrices.
9. Invert the Inverse G-matrices.

3. Results

3.1. Interpolation Methods

Six different surfaces have been used for the testing of
interpolation methods. Their analytical representation is

Function Name 2D Form 3D Form

De Jong [60] x2 + 2y2 x2 + 2y2 + 3z2

Rosenbrock [62] (1+ x2)2 +100 ∗ (y−
x2)2

not tested

Rastrigin [63] 20 + (x2 − 10cos(π ∗
x/4))+(y2−10cos(π∗
y/4))

20 + (x2 − 10cos(π ∗
x/4))+(y2−10cos(π∗
y/4))+(z2−10cos(π∗
z/4))

Griewank [61] (x2 + y2)/4000 −
cos(x)cos(y/

√
(2)) +

1

not tested

Michalewicz [64] not tested −sin(x)sin2(x2/π)−
sin(y)sin2(y2/π) −
sin(z)sin2(z2/π)

”Doube Well” not tested (x + 4)(x + 1)(x −
3)(x−6)+y4−60y2+
z2

Table 2: Testing function names and analytical forms.

Figure 1: Visualized testing functions. Domain range for
every dimension: De Jong (−6, 6), Rosenbrock (−2, 2),
Rastrigin (−6, 6), Griewank (−4, 4), Michalewicz (0, π),
“Double Well” (−9, 9).

given in table 2. There are three main aspects we have
focused on during the testing: “shape” parameter (r) sen-
sitivity, accuracy and grid density dependence. Testing
functions are visualized along x and y coordinates in fig-
ure 1, along with their domain boundaries. The errors
were estimated on a 20 × 20 regularly spaced grid for 2D
and a 10 × 10 × 10 regularly spaced grid in 3D. The fi-
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nal error for a test function, interpolation method, grid
density and “shape” parameter was taken as the average
over all the errors produced at each grid point. Twenty
different grid densities have been used in 2D, ten in 3D.
FEMVib is aimed to be a general solver without imposing
any conditions on the surfaces density or shape, therefore
each of the three aspects has been evaluated individually
and based on these results an interpolation scheme has
been selected for implementation.

3.1.1. Parameter Dependence

Inverse multiquadric and multiquadric RBFs have a
strong parameter dependence. As we increase the value
of r the error decreases for all the tested functions in 2D
until an optimum value is reached. Once r is larger than
the optimal value the average error increases and the er-
ror evaluation becomes very unstable figure 2, producing
oscillations.
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(a) Inverse Multiquadric RBF
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(b) Multiquadric RBF

Figure 2: Average error vs “shape” parameter r for various
grid densities. Blue line N = 16 points, yellow line N = 81
points, light blue line N = 225 points, green line N = 484
points.

As we increase the grid density the optimum value of r
becomes smaller, except for the lowest grid density Rastri-
gin and Griewank functions evaluated using multiquadric
RBF, where the average error stays constant for all pa-
rameter values tested. Despite the similarities in trends of
the parameter functional forms for each testing function,
no correlation with the grid density can be found. In other
words, the optimum value of the “shape” parameter has a
different behavior for different surfaces and does not relate
to the average spacing on the grid.
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(b) Thin-plate RBF

Figure 3: Average error vs “shape” parameter r for various
grid densities. Blue line N = 16 points, yellow line N = 81
points, light blue line N = 225 points, green line N = 484
points.

Similar behavior for the “shape” parameter was ob-
served for De Jong and Double Well in three dimensions.
Both of these functions are polynomials and have a sim-
ple analytical formulation. For Rastrigin in 3D, two sharp
minima are observed when inverse multiquadric interpola-
tion is used and a single sharp minimum for multiquadric
interpolation. The “shape” parameter dependence for Mich-
alewicz is very different for inverse multiquadric and multi-
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quadric interpolation compared to other testing functions
Appendix A. The optimum r value is close to 0 and as it
increases the error starts growing. For high density grids
the collocation matrix becomes degenerate and high oscil-
lations can be observed. On the other hand for very small
grid densities the error remains constant throughout the
parameter space.

Kriging interpolation has the highest parameter sensi-
tivity figure 3 a. The recommended range for the “shape”
parameter is for r ∈ (1, 2) [48], but we have covered a much
wider spectrum. For values r > 2 the interpolation matrix
is likely to become singular or degenerate, hence giving
very high error. On the other hand for certain higher val-
ues of r the variogram will be very close the the actual
testing function and the error would become extremely
low. Such behavior is observed for all the tested functions,
but higher amplitude oscillations are observed for De Jong
and Rosenbrock, because of their simple analytical form in
two dimensions. A similar effect is observed for De Jong
and Double Well in three dimensions. The smallest error
for all functions is obtained for r ∈ (1, 20), yet even on
this relatively short interval the error goes through very
large oscillations that would have a major impact on the
interpolation. For the Michalewicz testing function, used
in 3D testing, the error oscillations are much smaller in
the range r ∈ (1, 10), compared to Griewank and Rastri-
gin in 2D and vanish for very low grid densities. Kriging
interpolation is, despite its variogram adaptability to cer-
tain functional forms, the most sensitive with respect to
parameter changes.

The thin-plate RBF is the most stable interpolation
with respect to parameter changes figure 3 b. Because
the “shape” parameter appears inside the logarithm of the
shape function, we have scanned a very broad parameter
space r ∈ (10−300, 10300). Minor changes in error estima-
tion were observed for r close to 1. This, almost negligible,
parameter sensitivity has put thin-plate RBF interpolation
way ahead of other tested methods. Same behavior was
observed for three dimensional testing cases where a small
error deviation occurs close to r = 1 and a very stable
interpolation is obtained for the rest of the tested param-
eter space. Results for the three dimensional testing can
be found in Appendix A.

3.1.2. Accuracy

Results for accuracy are divided based on the testing
function, which has the highest impact on a given tested
interpolation scheme. Since the testing functions have
been evaluated with each interpolation routine for differ-
ent values of the “shape” parameter, our results show only
the lowest error along the parameter space. This means
that each result for accuracy involves parameter tuning for
each function. The error estimation minima are plotted for
different grid densities.

The first analyzed function is De Jong, for which the
tests were performed in both two and three dimensions.
The least accurate scheme for De Jong is the thin-plate

RBF. For the two dimensional case thin-plate improved
the error three orders of magnitude over a 513 point range,
starting at 16 points - lowest density for 2D. The sec-
ond and third most accurate interpolation schemes were
mutiquadric and inverse multiquadric respectively. Mul-
tiquadric outperformed inverse multiquadric at each grid
density in two dimensions and at most of the low grid den-
sities in three dimensions. Their accuracy was almost iden-
tical for higher grid densities in three dimensions. Both
of these interpolation schemes followed the same trend in
two dimensions while significant differences could be ob-
served in three, where the inverse multiquadric had a much
higher error for lower grid densities than multiquadric and
improved 4 orders of magnitude when 1700 point limit was
reached. Results for two and three dimensional accuracy
tests for De Jong are given in figure 4.
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(a) De Jong 2D
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(b) De Jong 3D

Figure 4: Minimum error for De Jong at various grid den-
sities. Red diamonds represent thin-plate RBF, blue cir-
cles inverse mutliquadric RBF, black right-triangles mul-
tiquadric RBF and green down-triangles Kriging.

Kriging interpolation is the most accurate. This is due
to the variogram, which maps the spatial dependence with

8



the same order function as De Jong for certain values of the
“shape” parameter. In this case the interpolation function
becomes very close to its analytical representation. Hence
the best interpolation scheme for such smooth and simple
testing function as De Jong is the Kriging. Rosenbrock
valley, tested only in two dimensions, yielded very similar
results to De Jong in 2D with respect to accuracy, where
thin-plate was the least accurate, multiquadric and inverse
multiquadric were second with negligible differences be-
tween each other and Kriging came out as the best in-
terpolation scheme for this type of surface. Results for
Rosenbrock valley can be found in Appendix A.
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(a) Griewank 2D
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(b) Rastrigin 2D

Figure 5: Minimum error for Griewank and Rastrigin test-
ing functions in 2D at various grid densities. Red dia-
monds represent thin-plate RBF, blue circles inverse mutli-
quadric RBF, black right-triangles multiquadric RBF and
green down-triangles Kriging.

Different trend was observed for Griewank testing func-
tion as opposed to De Jong. Thin-plate RBF was the
least accurate method. Because the analytical formulation
of Griewank contains sine and cosine functions, Kriging‘s
variogram does not map the spatial dependence as well as

for simple polynomial functions, which makes it the third
best interpolation scheme for this type of surface. However
for high density grids Kriging interpolation was compara-
ble to inverse multiquadric and multiquadric with high
accuracy. Inverse multiquadric and multiquadric RBFs
were the most accurate figure 5a, especially at low grid
densities. Same trend as for Griewank was observed for
Rastrigin, which was tested in two and three dimensions.
Thin-plate was the least accurate, Kriging third followed
by inverse multiquadric and multiquadric with the highest
accuracy figure 5b.
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(a) Double Well 3D
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Figure 6: Minimum error for Double Well and Michalewicz
testing functions in 3D at various grid densities. Red dia-
monds represent thin-plate RBF, blue circles inverse mutli-
quadric RBF, black right-triangles multiquadric RBF and
green down-triangles Kriging.

The last two of the tested functions were Michalewicz
and Double Well, both in three dimensions. Scenario for
Double Well, figure 6a, was similar to De Jong and Rosen-
brock. Because the function has a polynomial character
the variogram mapped the spatial dependence well, thus
making the error for Kriging interpolation ten orders of
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magnitude lower than the second best interpolation. Sec-
ond and third best were inverse multiquadric and multi-
quadric respectively, followed by thin-plate RBF. Double
Well is a fourth order polynomial along x and y and second
order along z with very steep walls, which had an impact
on the value of error that may have appeared too large
compared to other surfaces. Michalewicz, figure 6b, was
the most interesting surface out of all in terms of accuracy,
where despite its sine and cosine analytical formulation, all
of the interpolation schemes performed roughly the same
starting from certain grid density; N = 700 points on the
surface. Before this point limit is reached the least accu-
rate scheme is thin-plate RBF followed by multiquadric
RBF. The second most accurate is Kriging, which is in
contrast with the previous testing where sine or cosine
like functions were better interpolated using multiquadric
or inverse multiquadric RBFs. The most accurate scheme
was the inverse multiquadric RBF. Again all of these ob-
servations are valid up to a certain grid density, from which
the error was roughly the same for all the tested interpo-
lation routines.
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(a) Inverse Multiquadric RBF
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(b) Multiquadric RBF

Figure 7: Average error vs grid density for inverse multi-
quadric and multiquadric RBFs. For each tested surface
in 2D.

3.1.3. Grid Density Dependence

Grid density dependence determines the rate of con-
vergence of each interpolation scheme based on the num-
ber of regularly distributed points along the surface. All
the graphs in this section were evaluated at the optimum
“shape” parameter value. Each surface has different do-
main boundaries which has a strong influence on the error
as well as different analytical form, which may lead to sig-
nificantly different absolute error estimates for different
surfaces.

Two dimensional density dependence is depicted in fig-
ure 7, figure 8 and figure 9. For inverse multiquadric
the most significant error decrease is within the first 200
points added to the surface figure 7. For De Jong the error
dropped three orders of magnitude, for Rosenbrock more
than four orders of magnitude change was achieved in this
interval.
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Figure 8: Average error vs grid density for Kriging. For
each tested surface in 2D.

Compared to De Jong in three dimensions, both in-
verse multiquadric and multiquadric needed 500 points to
achieve three orders of magnitude error improvement. The
decrease for Griewank was almost six orders and Rastri-
gin more than five orders of magnitude in two dimensions.
After the first 200 points the decrease in error slow down,
following an exponential behavior. Multiquadric RBF fol-
lowed the same pattern as inverse multiquadric figure 7b .

Kriging interpolation, as discussed earlier, does a map-
ping of the region using the variogram. For De Jong
this led to an average error equal 10−13 starting with 16
points along the surface. Roughly the same accuracy was
achieved using 64 points in three dimensions. For Rosen-
brock the variogram needed 25 points to bring the average
error ten orders of magnitude to 10−10. Once the region
was mapped for these two functions no error improvement
with additional points was observed. In contrast to De
Jong, after adding 513 points, Kriging improved only five
orders of magnitude for Rastrigin and six orders of mag-
nitude for Griewank figure 8. The overall performance of
Kriging on all the surfaces is excellent, when the only draw
back that remains is the parameter sensitivity.
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Figure 9: Average error vs grid density for thin-plate RBF.
For each tested surface in 2D.

Thin-plate improved only two orders of magnitude af-
ter 200 points were added to the De Jong surface in 2D.
After 441 points the error dropped three orders of magni-
tude from the initial value. Similar results were obtained
for Rosenbrock, where the only difference was the absolute
value of the estimated error. For both of the tested sur-
faces the error slightly increased passed 450 points. The
error improved almost five orders of magnitude for Rast-
rigin in 2D, when 513 points were added and three order
for Griewank over the same amount of points added to the
surface in 2D figure 9.

The rate of convergence for three dimensional surfaces
was, as expected, much lower. For inverse multiquadric
in 3D almost 600 points were needed for De Jong to lower
the error three orders of magnitude. Error for Double Well
decreased three orders over a 2700 point interval. Error
changes with increasing number of points were very low for
Rastrigin and Michalewicz in 3D. Error for these two func-
tions did not improve more than an order of magnitude
over a 1300 point range figure 10a. The rate of convergence
for multiquadric on all four three dimensional surfaces was
the same as for inverse multiquadric over 1600 point in-
terval. The only difference was an increase in the error
around 200 to 300 point range for De Jong, Michalewicz
and Double Well figure 10b.

Kriging interpolation yielded similar results for De Jong
in 3D as in 2D. Space mapping took less than 64 points
after which the error for the surface did not improve with
additional points. Michalewicz and Rastrigin testing sur-
faces in 3D where hard to interpolate and the error did
not converge more than order of magnitude as it was with
inverse and multiquadric. In addition the error did not
converge continuously for Rastrigin but rather oscillatory.
This surprising behavior is depicted in figure 11a. Error
for Double Well converged, as expected, ten orders of mag-
nitude, once the region was mapped. 150 points sufficed
for the mapping and no significant change in error was ob-
served after this limit.

Despite its low accuracy the thin-plate RBF converged
consistently with increasing number of points at each sur-
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(a) InverseMultiquadric RBF
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(b) Multiquadric RBF

Figure 10: Average error vs grid density for inverse multi-
quadric and multiquadric RBF. For each tested surface in
3D.

face. For De Jong the error improved more than an order
of magnitude over a 1300 point range and two orders for
Rastrigin. A surprisingly low error decrease was observed
for Double Well, where the error did not change more than
one order compared to at least three orders for all other
interpolation methods figure 11b.

To find the best interpolation scheme for our purposes
we had to compare all three aspects: “shape” parame-
ter sensitivity, grid density dependence and accuracy; and
decide on a winner. The highest parameter sensitivity
is found to be for the Kriging interpolation. The multi-
quadric and inverse multiquadric are second with respect
to parameter sensitivity. Thin-plate is by far the least
sensitive and hence most suitable interpolation based on
parameter sensitivity.

The fastest converging interpolation scheme for poly-
nomial type surfaces is Kriging interpolation. For more
complicated analytical forms that include various pow-
ers of sine and cosine functions, multiquadric and inverse
multiquadric RBFs have a higher convergence rate than
Kriging for low density grids. Thin-plate RBF has the
lowest convergence rate out of all the tested interpolation
schemes. This makes thin-plate RBF the least desirable
interpolation scheme with respect to the rate of conver-
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(a) Kriging
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(b) Thin-plate RBF

Figure 11: Average error vs grid density for Kriging and
thin-plate RBF. For each tested surface in 3D.

gence. Despite Kriging converging slower for low density
grids, for higher density grids it reached the convergence
rate of both inverse multiquadric and multiquadric and
converged extremely fast on the polynomial surfaces. We
therefore rate it as the overall fastest converging interpo-
lation scheme. The most accurate interpolation scheme is
again Kriging, followed by inverse multiquadric and mul-
tiquadric RBFs. The least accurate is thin-plate RBF. In
two out of the three tested aspects Kriging has proven to
be the best, when the only drawback is its parameter sen-
sitivity. We have therefore decide to implement it as our
main interpolation method.

The parameter sensitivity for Kriging is a crucial aspect
in terms of accuracy for FEMVib. This issue is addressed
by a simple parameter tuning before the actual interpo-
lation of the PES takes place. Initially 38 regularly dis-
tributed points along the parameter interval r ∈ (1, 20) are
evaluated. After a minimum is found, 8 additional evalua-
tions are made around the minimum taking 0.2 size steps
in the parameter space. The parameter value, where the
error reaches its minimum, is used for the actual interpo-
lation. The only disadvantage associated with the tuning
is computational time. Since the surface does not have
an analytical representation, we used the “leave-one-out”
method, used by Rippa [38] to calculate the error. This

method is used for small sets where a further partitioning
would lead to distorted error estimates. In the leave-one-
out method, one iterates through all N data points and at
each iteration step leaves out one point for error estima-
tion. The interpolation scheme is initialized without this
point and its functional value is used as error estimate.
After cycling through all the points on the grid the final
error prediction is given as the average of these errors.

3.2. Wilson G-Matrix Calculator - GCAL

The results are divided into two and three dimensional
examples, and further into structured and scattered grids.
One dimensional vibrational analysis does not require Wils-
ons G-Matrix, due to the absence of coupling. All the
studied structures were chosen so that their G-Matrix el-
ements could be calculated analytically and hence com-
pared to the results from our GCAL program. Tabulated
G-Matrix elements for a 3 atom system are given in table
3, notation used in the table is base on the system de-
picted in figure 12 [45]. Note, only six elements are given
in table 3 instead of 9, because of G-Matrix symmetry. In
the results we use two different error measures: the first
is the error on the grid which we get by comparing the
absolute values at each point, the second is a percentage
error. This percentage error represents the average error
on the grid points weighted by the actual expected value,
multiplied by 100%. Also, note that G-Matrix elements
have units amu−1, which is the inverse of atomic mass
unit. The units will be skipped throughout this section.
All the surfaces were calculated using Molpro [70].

G Matrix Element Analytical Expression
G11 µ1 + µ3

G12 µ3 · cos(φ)

G13
−µ3·sin(φ)

r32

G22 µ2 + µ3

G23
−µ3·sin(φ)

r31

G33
µ1

r231
+ µ2

r232
+ µ3( 1

r231
+ 1

r232
− 2cos(φ)

r31r32
)

Table 3: Tabulated G-Matrix elements for a 3 atom sys-
tem. Elements corresponding to system depicted in figure
12.

The first tested system is BeF2. Two internal coordi-
nates have been changed: Be−F stretch and F −Be−F
bend. A regular structured grid has been used, where
Be − F ranged from 0.8 to 1.6 Å taking 0.2 Å steps and
F −Be−F ranged from 2.79 to 3.66 rad, taking 0.145 rad
steps, which resulted into a 5× 6 = 30 point surface.

Results for BeF2 are given in figure 13. The average
error for G11 is 0.032, which represents 18%. For G13 the
average error is 0.0067, which might seem high in terms
of percentage 605%, but with respect to the density of
the surface, numerical precision and its low contribution
to the kinetic energy term, is still very good, considering
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Figure 12: Nonlinear triatomic system. Taken from [45].
Where r31 is the distance between atoms 1 and 3, r32 is
the distance between atoms 2 and 3 and φ is the 1− 3− 2
bend angle.

the magnitude of G11/G12. The average error for G33 is
0.0304. This is 32% average error based on the expected
values for each point.
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Figure 13: Calculated BeF2 G-Matrix surfaces marked
with red dots and analytical values marked with blue dots
for G11, G13 and G33 corresponding to Be−F stretch and
F −Be− F bend.

The second tested system is CO2. Two internal coordi-
nates have been changed corresponding to C−O stretches.
We have calculated two different surfaces, one is struc-
tured the other is scattered. The structured surface is
from 0.532Å to 1.765Å along the first stretch and from
0.583Å to 1.832Å along the second stretch. The spacing

for the points is not constant along the surface. Simi-
lar boundaries applied for the scattered surface: 0.55Å to
1.543Å along the first and 0.501Å to 1.850Å along the sec-
ond stretch. Surfaces for each G-Matrix are depicted in
figure 14.
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Figure 14: Calculated CO2 G-Matrix surfaces on scattered
and structured grids marked with red dots and analytical
values marked with blue dots for G11, G12 and G22 corre-
sponding to C −O stretches.

Results for both types of grid are very accurate, which
might be partly caused by the linearity of the molecule and
hence simplicity of the calculation. For unstructured grid
the average error on the grid points for G11 is 7.512 · 10−4

which corresponds to 0.51% error. Errors at G12 and G22

are 4.89 ·10−4 and 4.98 ·10−4 respectively. This represents
0.58% and 0.34% error. The average error for G11 on the
structured grid is 0.00328, which is 2.25%. Average errors
for G12 and G22 were 0.0024 and 0.00205, which in terms of
error percentages comes out to 2.88% and 1.4%. Because
the surfaces are small in terms of the number of calculated
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points, the entire grid was used for the SD-IMLS deriva-
tive evaluation.
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Figure 15: Calculated H2O G-Matrix surfaces on double-
stretch and stretch-bend surfaces marked with red dots
and analytical values marked with blue dots.

The third studied system was water H2O. When devel-
oping GCAL, water was the first system we have investi-
gated. Because of its symmetry and nonlinearity, trans-
lation and rotation of Cartesian coordinates alone does
not lead to the correct results. The first problem is the
initial orientation. Molpro [70], does not align the opti-
mized structures along the same set of axis. Therefore a
“pre-rotation” has to be used, where all the structures
are aligned as close as possible to the reference struc-
ture. After the second Eckart condition is applied a “post-
rotational” routine aligns the structures with the reference
structure once again. If this were not done some of the
structures despite satisfying the Eckart conditions would
not be aligned the correct way with the reference.

The first surface for H2O was calculated along the two

stretches H − O. We have used regular and structured
square grid comprised of 36 points, starting at 0.5Å, and
taking 0.2Å steps up to 1.5Å. The average error on the
grid points for G11 is 0.024 which represents 2.32% error.
For G12 the average error on the grid points was 0.015,
which in terms of percentage is 59%, however with respect
to its magnitude and contribution to the kinetic energy
this error is negligible. Again the ration of G11 : G12 is
roughly 100 : 1, which would make the 59% error for G12

a 0.59% absolute error for the kinetic energy. The last
G-Matrix element surface G22 had a grid error of 0.024
corresponding to 2.32%.

The other water surface was calculated changing the
stretch H−O and bend H−O−H. The stretch extended
from 0.8Å to 1.2Å taking a step of 0.1Å. The bend went
from 1.39 rad to 2.26 rad in 0.17 rad steps, which created
a regular and structured 30 point grid. The errors on grid
points for G11, G13 and G33 were 0.011, 0.017 and 0.29
respectively. In terms of percentage and contribution to
the kinetic energy the first two errors were low 1.09% for
G11 and 29.8% for G13. The error for G33 was 15.21%,
relatively high due to high absolute value of the error on
the grid points. Results for both water surfaces are given
in figure 15.
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Figure 16: Calculated HNO G-Matrix surfaces marked
with red dots and analytical values marked with blue dots
for G11, G12 and G22 corresponding to H −N stretch and
N −O stretch.

The last 2D system was HNO. Nitroxyl is a planar
molecule and has no central atom symmetry. The surface
was calculated along the two stretches H −N and N −O.
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The grid was regular and structured composed of 36 points
starting at 0.8Å taking 0.1Å steps and ending at 1.3Å. Be-
cause of the system being composed of different atoms the
G11 and G22 matrices are different, which was not the case
for previously studied symmetrical systems. The error for
G11 on the grid was 0.008, which represents 0.75%. Grid
error for G12 was 0.004 corresponding to 17.24% and for
G22, GCAL achieved a grid error equal to 2.44·10−4, which
comes up to 0.18%. As in the case of water and beryllium
fluoride G12 for nitroxyl contributes with only 2% to the
kinetic energy term compared to G11, hence the overall
error for the kinetic energy from this G-Matrix element
would be less than 0.4% figure 16.

Figure 17: Artificial 3D system used for GCAL testing.

The last tested system was three dimensional artifi-
cially constructed molecule figure 17. Internal coordinates
we have changed are the 5−2−6 angle 2β, the 3−1−4 an-
gle 2α and the bond distance 1−2 denoted as R. Notation
2α and 2β is used to simplify the relations between Carte-
sian and internal coordinates. According to our model, the
analytical expressions for Cartesian coordinates in terms
of internals are given in table 4.

Atom x y z Mass
1 0 0 R

2
+ 1

12
r(cos(β) − cos(α)) 12

2 0 0 −R
2

+ 1
12
r(cos(β)−cos(α)) 12

3 r · sin(α) 0 R
2

+ 1
12
r(cos(β)−cos(α))+

r · cos(α)

1

4 −r · sin(α) 0 R
2

+ 1
12
r(cos(β)−cos(α))+

r · cos(α)

1

5 0 r · sin(β) R
2

+ 1
12
r(cos(β)−cos(α))+

r · cos(β)
1

6 0 −r · sin(β) R
2

+ 1
12
r(cos(β)−cos(α))+

r · cos(β)
1

Table 4: Analytical expressions for Cartesian coordinates
in terms of internal coordinates based on figure 17.

It is simple to derive the analytical expression for the
inverse G-Matrix elements.

GinvRR = 7

GinvRα = −r · sin(α)

GinvRβ = r · sin(β)

Ginvαα = 2r2 · cos2(α) + 67
36r

2 · sin2(α)

Ginvββ = 2r2 · cos2(β) + 67
36r

2 · sin2(β)

Ginvαβ = − 7
36r

2 · sin(α) · sin(β)

0.5

1

1.5

0.5

1

1.5

0.16

0.18

0.2

Angle [rad]

Angle [rad]

(a) GRR

0.5

1

1.5

0.5

1

1.5
0

0.05

0.1

Angle [rad]

Angle [rad]

(b) GRα

0.5

1

1.5

0.5

1

1.5
−0.08

−0.06

−0.04

−0.02

Angle [rad]

Angle [rad]

(c) GRβ

0.5

1

1.5

0.5

1

1.5
0.4

0.45

0.5

Angle [rad]

Angle [rad]

(d) Gαα

0.5

1

1.5

0.5

1

1.5
−0.01

0

0.01

0.02

Angle [rad]

Angle [rad]

(e) Gαβ

0.5

1

1.5

0.5

1

1.5

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

Angle [rad]

Angle [rad]

(f) Gββ

Figure 18: Calculated G-Matrix surfaces for artificial sys-
tem (figure 17), for R = 0.5. Calculated values are marked
with red dots; analytical values marked with blue dots.

Knowing the functional dependence of Cartesian on in-
ternal coordinates and also the inverse G-Matrix, we have
used this model to test the GCAL program. The artificial
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surfaces was generated along the following boundaries: R
ranged from 0.5 to 1.55 while taking 8 steps of 0.15 size;
α and β had the same range and steps, however this time
the values represented an angle in radians. This produced
an 8× 8× 8 = 512 point regular structured surface. Aver-
age errors on the grid and and average percent errors are
given in table 5. The scenario for Gαβ is the same as
for the two dimensional systems with small G-Matrix ele-
ments that had a relatively high error. The average ratio
of Gββ : Gαβ is 0.0059, hence the contribution of Gαβ to
the kinetic energy compared to Gββ is 0.5%. Therefore
the 81% error will become roughly a 0.4% error on global
scale considering the kinetic energy. Figure 18, depicts the
G-Matrix surfaces for R = 0.5.

G Matrix Element Grid Error Percent Error
GRR 0.0019 1.17 %
GRα 0.002 4.33 %
GRβ 0.0016 3.66 %
Gαα 0.0053 1.32 %
Gαβ 0.008 81.45 %
Gββ 0.0042 1.07 %

Table 5: Grid errors and percent errors for Artificial sys-
tem (figure 17) at every G-Matrix surface.

GCAL proved to be a very accurate G-Matrix calcu-
lator on all the tested systems. Disadvantages associated
with the program lie in the complexity of the Cartesian
surfaces. If the surfaces are too sparse or have an over-
all low average values across the surface, the interpola-
tion of the surface and consequent derivatives estimates
might be inaccurate. Another problem associated with
the surfaces is their filtering. After each G-Matrix sur-
face is constructed a filtering routine has to remove the
singular values, which can occur due to structural similar-
ities for significantly different internal coordinates. These
are usually represented by torsional motions, in which the
structure after a 360 degree rotation can have a similar
Cartesian structure but be represented by different inter-
nal coordinates.

4. Conclusions

Four different interpolation schemes suitable for scat-
tered data sets have been tested on six different surfaces,
with different dimensionality, grid density and parame-
ter tuning. Based on this study the Kriging interpolation
method was chosen as the best and implemented into the
FEMVib package. Before the PES is interpolated a param-
eter tuning takes place and a parameter with the lowest
error on the surface is chosen for the actual interpolation.
Based on the advancements in PES evaluation in the past
four years the IMLS routine is also part of the FEMVib
package, where both options are available to the user.

A novel G-Matrix calculator GCAL was developed and

implemented as a part of the FEMVib package for ki-
netic energy evaluation. GCAL removes axis inconsisten-
cies produced by the ab-initio electronic calculations and
does a pre-rotation with respect to the reference structure.
This process aligns all the structures with the reference be-
fore translation or rotation are applied. Eckart conditions
are applied and all the structures are numerically rotated.
A post-rotational modification assures that the structures
are once again aligned with the reference. This step is
important for small symmetric molecules, where multiple
ways of satisfying the second Eckart condition exist. The
derivatives of Cartesian with respect to internal coordi-
nates are evaluated at the grid points using the SD-IMLS.
The program was tested on six different surfaces, in two
and three dimensions using different types of grids. GCAL
proved to be very accurate and general calculator for G-
Matrices and further kinetic energy operator assembly.

The finite element method based solver for the Vibra-
tional Schödinger equation, FEMV ib, has been fully au-
tomated and made publicly available as a web service, so
that groups around the world focused on theoretical spec-
troscopy can use it for analysis of their vibrational spectra.
Input to the program consists of the PES and correspond-
ing geometries in Cartesian coordinates. The output are
the vibrational eigenstates and the corresponding wave-
functions. A detailed outline of the input options and user
interfaces can be found in appendix B.
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Appendix A.
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Figure A.19: Minimum error for Rosenbrock testing func-
tion in 2D at various grid densities. Red diamonds rep-
resent thin-plate RBF, blue circles inverse mutliquadric
RBF, black right-triangles multiquadric RBF and green
down-triangles Kriging.
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Figure A.20: Minimum error for Rastrigin testing func-
tion in 3D at various grid densities. Red diamonds rep-
resent thin-plate RBF, blue circles inverse mutliquadric
RBF, black right-triangles multiquadric RBF and green
down-triangles Kriging.
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Figure A.21: Average error vs ”shape” parameter r for
thin-plate RBF in 3D at various grid densities. Blue line
N = 27 points, cyan line N = 216 points, grey line N =
1331 points.
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Figure A.22: Average error vs ”shape” parameter r for
Kriging in 3D at various grid densities. Blue line N = 27
points, cyan line N = 216 points, grey line N = 1331
points.
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Figure A.23: Average error vs ”shape” parameter r forin-
verse multiquadric RBF in 3D at various grid densities.
Blue line N = 27 points, cyan line N = 216 points, grey
line N = 1331 points.
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Figure A.24: Average error vs ”shape” parameter r for
multiquadric RBF in 3D at various grid densities. Blue
line N = 27 points, cyan line N = 216 points, grey line
N = 1331 points.
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Appendix B. Web-Service

Appendix B.1. FEMVib Dependencies

Installing FEMVib requires six main packages. The
first package to be installed is MPICH2. MPICH2 is a
high-performance and widely portable implementation of
the Message Passing Interface (MPI) standard (both MPI-
1 and MPI-2). The second package is SLEPc, the Scalable
Library for Eigenvalue Computations. SLEPc is a soft-
ware library for the solution of large scale sparse eigen-
value problems on parallel computers. It is an extension
of PETSc and can be used for either standard or gener-
alized eigenproblems, with real or complex arithmetic. It
can also be used for computing a partial SVD of a large,
sparse, rectangular matrix, and to solve quadratic eigen-
value problems. The third package is PETSc, Portable
Extensible Toolkit for Scientific Computation. PETSc is
a suite of data structures and routines for the scalable (par-
allel) solution of scientific applications modeled by partial
differential equations. It supports MPI, shared memory
pthreads, and NVIDIA GPUs, as well as hybrid MPI-
shared memory pthreads or MPI-GPU parallelism. The
last package is the finite element library LibMesh. For
FEMVib to work properly all the packages have to be de-
fined in the environment PATH.

The last two packages are associated with the Python
scripting language. The first is ActivePython and second is
PySparse / Numpy. ActivePython is used to install binary
python packages on any OS distribution, while PySparse
and numpy are python libraries for fast sparse matrix op-
erations, such as iterative solvers, preconditioners, and in-
terfaces to efficient factorization packages.

Appendix B.2. Web-Service

For wrapping FEMVib as a web-service we have de-
cided to use Opal Toolkit. Opal exposes the scientific func-
tionality through a generic Web services API (via a stan-
dard WSDL), manages user data, which includes creation
of working directories, input and output data staging, and
persistent storage for job information and metadata. It
can be accessed from a multitude of languages, which in
our case involves Shell script. To successfully deploy Opal,
four steps need to be fulfilled. The first is to install Java
1.5.x or higher with its path defined in the environment.
Installing Ant 1.6,1 or higher is the second step. Ant
serves as a make-like utility for compiling Java programs.
Third step is installing Apache Tomcat. Tomcat is an open
source web server, servlet container and provides a Java
HTTP web server environment for Java code to run. The
last step is to write an xml application specifically suited
for a given package, where all the parameters and their
types are defined.

Appendix B.3. Input Parameters and UI

There are 22 input parameters:

1. G-Matrix File: This file contains all the optimized
geometries in Cartesian coordinates along with the
reference structure. The first line of the file con-
tains three numbers: number of internal coordinates
(this can be 2 or 3), number of atoms that com-
prise the molecule, total number of the structures
(number of points calculated on the PES). The first
line of the G-Matrix file is followed by the reference
geometry of the molecule starting with the mass of
each atom. By reference geometry or reference struc-
ture we mean the overall optimized structure of the
molecule without any of the internal coordinates be-
ing fixed. Every atom has to be placed on a new
line. The rest of the G-Matrix file contains sets of
fixed internal coordinates followed by the Cartesian
representation of the molecular geometry. Note that
the order of the atoms has to stay the same as in the
reference geometry.

2. PES file: The PES file contains only the values of
internal coordinates and corresponding energies sep-
arated by space or tab. The bond lengths are given
in Angstroms and angles and dihedrals in radians.
Each points on the PES is on a new line.

3. Project Name: The project has to be given a name,
which is used in association with the output files.

4. Dimensionality : Either 1, 2 or 3.

5. Number of grid points along x : Number of grid points
that will define the discretization of the domain along
x axis.

6. Number of grid points along y : Number of grid points
that will define the discretization of the domain along
y axis.

7. Number of grid points along z : Number of grid points
that will define the discretization of the domain along
z axis.

8. Lower x limit : Minimum along x axis.

9. Upper x limit : Maximum along x axis.

10. Lower y limit : Minimum along y axis.

11. Upper y limit : Maximum along y axis.

12. Lower z limit : Minimum along z axis.

13. Upper z limit : Maximum along z axis.

14. Element type: Choice of element type based on the
dimensionality of the problem. The user interface is
simplified by leaving the choices in a radio button
format.

15. Order of the polynomial : Order of the polynomial
used in each of the elements. First or second order
can be selected. This parameter is associated with
the Shape function.

16. Shape function: Shape function type used in each of
the elements. The default values are Hermite and
Lagrange.

17. Energy units conversion: Conversion of the kinetic
energy operator to cm−1. Default value is 33.71526,
which corresponds to the conversion from ~2amu−1Å−2
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18. Number of Eigenvalues: Number of eigenvalues to
be computed.

19. Tau: Altitude at which the PES will be analyzed for
eigenvalues. This represents the absolute value along
the hight of the surface since every surface is shifted
so that its minimum lies at 0.

20. Wavefunction: Print wavefunction: yes or no.
21. PES constructed using IMLS : Was the PES gener-

ated dynamically using IMLS: yes or no.
22. PES in Hartrees: Is the PES in Hartrees: yes or no.

If so the PES will be converted to cm−1.

The structure of the parameter in the user interface is
depicted in figure B.25.

Figure B.25: User Interface for the web-service. Visual
input for above mentioned parameters.

Appendix B.4. Output Parameters
The output is printed in two different files. The first

file contains the details about the finite element discretiza-

tion such as, cpu times, total number of elements, global
and stiffness matrix assembly progress, etc. It also con-
tains details about PySparse eigensolver. The number of
requested eigenvalues is displayed in ascending order at
the end of the file. The second file, if the option for print-
ing the wavefunction is selected, contains the numerically
reconstructed wavefunctions. These are not visualized au-
tomatically and the task is left up to the user. In case
the system is three dimensional the wavefunctions will be
structured along the finite element discretization of the z
axis. An example of visualized 2D wavefunction, calcu-
lated on 30× 30 grid is given in figure B.26.

−0.2
−0.1

0
0.1

0.2
0.3

0.4
0.5

1.5

2

2.5

3

3.5

4

4.5

5
−6

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

R − streching

CCO = 1,91 rad

HCC − bending

(a) CCO = 1.91 rad

−0.2
−0.1

0
0.1

0.2
0.3

0.4
0.5

1.5

2

2.5

3

3.5

4

4.5

5
−10

−8

−6

−4

−2

0

2

4
x 10

−4

R − streching

CCO = 2.17 rad

HCC − bending

(b) CCO = 2.17 rad

Figure B.26: Reconstructed wavefunctions for H − C −
C bend and C − C − C relative stretch in HC3O. The
vibrational analysis was three dimensional, where the third
vibrational coordinate was C − C −O bend.
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