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Abstract

In this paper, High-Order compact Castillo-Grone’s mimetic divergence and gradient
operators are introduced. The numerical tests demonstrate the effectiveness of the
compact mimetic implementation.
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1. Introduction

Without any doubt a numerical model must incorporate proper physics in order
to deliver acceptable numerical results. However, that is not all. The numerical
scheme that is used to solve the PDEs, also have major impact on the quality of the
results [1]. Different schemes have different requirements. Both the accuracy and
the performance of a model will vary based on the discretization scheme in use.

The majority of the equations, describing physical phenomena, are written using
the gradient, divergence, and curl operator. These operators, depending on the
field they are applied to, have a physical meaning. Mimetic discretization method,
as their name implies, mimics the physical property of their operator and satisfies
them exactly in the discrete environment. Castillo and Grone have developed a set
of mimetic operators known as Castillo-Grone’s mimetic (CGM) operators. CGM
operators have been used in many fields, such as wave propagation, seismic studies,
electrodynamics, and image processing. In all fields, they have often outperformed
the common approaches used in the respective field[2, 3, 4, 5].

CGM Operators have high accuracies even at the boundaries. The accuracy of the
solution in many PDE problems is affected by the accuracy used at the boundaries.
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This issue is even more visible in the numerical solution of the Navier-Stokes’ equa-
tions, so that some times it is said that the solution to NS equations is dominated
by the Boundary conditions [6, 1].

Other than being accurate, the implementation of CGM operators is very easy.
It looks very much like Finite Differences Schemes (FDS). At first glance, one might
even think that CGM is the same as FDS with just different coefficients; however,
they have completely different properties and behavior.

High order CGM difference operators are available, currently up to 8th order.
However, like any other method, the stencil of the scheme keeps getting larger as
the order of accuracy is increased. One solution to increase the order of accuracy
without increasing the size of the stencil is to implement the operators in a compact
way [7, 8]. There are two different approaches to implement compact schemes which
are explained. Both methods estimate the derivative as follows:

<g_Z) = M,u, (1)

where M, is a matrix representing a n-th order accurate discretization scheme and
u is the vector of values.

1.1. Compact Scheme: Implicit Approach
In this approach the derivative is calculated as follows:

n (%) - b @

where D5 is a matrix representing a second order scheme and R, is a banded
matrix. Equation 2 provides a system of linear equations. Once this system of
linear equations is solved du/Ox is calculated with n'® order of accuracy. Hence,
M, = R, 'D,.

1.2. Compact Scheme: Explicit Approach Approach
The implicit approach requires solving a system of linear equations. In the explicit
approach the high order accurate derivative is calculates as follows:

(%) — R,Dyu, (3)

This approach eliminates the need for solving a system of linear equations and
here M,, = R, Ds. This paper presents the corresponding R matrices for the Castillo-
Grone’s Mimetic (CGM) divergence and gradient operator. For example, to calculate
the gradient using 8-th order accurate CGM divergence operator, one can write:



ou
(%) = Dgu = R?DQU, (4)

where D, is the second order divergence operator and RY is a matrix such that
Dg = RPD,. The second order accurate CGM gradient is defined as follows:

-8 -1
1 3 —3 1 ?
=73 -1 1 (5)
1 8
_ 3 3
Likewise, the second order accurate CGM divergence operator is:
-1 1
P2 = % TR (6)

where h is the grid spacing.

2. R Matrices corresponding to the Higher order operators

In this section different R matrices for second order gradient and divergence
operators are introduced.



2.1. R Matrices for the Gradient

R{

| =

[17958  —8776 154787 —3415 25
14245 14245 341880 34188 9768
—2 041 -29 1
35 840 420 168
~1 13 ~1
24 12 24
~1 13 ~1
24 12 24
~1 13 ~1
24 12 24
1 —29 941 -2
168 420 840 35
25 —3415 154787 —8776 17958
0768 34188 341880 14245 14245.
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2.2. R Matrices for the Divergence Operator

(1045 492 —418 328 —25
1142 2291 2371 6821 15576
=1 13 =1
24 12 24
=1 13 =1
1 24 12 24
Ry = -
L =
=1 13 =1
24 12 24

—25 328 —418 492 1045
15576 6821 2371 2291 1142
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3.

Tests

To test these matrices, different polynomial functions were selected. The second

norm was used to calculate the error as follows:

e=[lz — "2, (13)
where z is the numerical results and x* is the analytic solution. The selected functions
are:

fi(z) = at, (14)
fo(x) = b, (15)
fa(z) = 28, (16)
fa(x) = 2° + 3027 + 2732° 4 8202° 4 5762, (17)

f5(x) = sin(x), (18)

fo(z) =77, (19)
and

fz(z) = sin(x)e”. (20)

The errors are reported in table 1.
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