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Abstract

The development of a Hybrid high order Eulerian-Lagrangian algorithm to simulate shock

wave interactions with particles is discussed. The Hybrid high order WENO/central finite

difference scheme is assessed in three-dimensional simulations, as well as the effective use of

the high order polynomials and regularization techniques in the approximation to the singular

source term in the advection equation. The mathematical model is based on a coupled system,

consisting of a non-linear hyperbolic conservation laws with a source term that accounts the

influence of the particles on the flow and kinematic equations, which govern the fluid flow and

particle motion, respectively. The continuum conservation equations solve the carrier flow

with a Hybrid scheme that uses the weighted essentially non-oscillatory (WENO) method for

shock capturing, and a more computationally efficient high order scheme, including a central

finite difference or spectral methods in regions where the solution is smooth. Numerical

experiments illustrate the accuracy and efficiency of the Hybrid code compared with the pure

WENO. Initial efforts have been made towards the development of a Hybrid WENO-spectral

particle-source-in-cell (PSIC) algorithm. Specifically, a new regularization of the singular

source term through polynomial approximations that couples particles and fluid have shown

regularize discontinuities while converging at higher error away from discontinuity.

1 Introduction

Computational simulation of particle dispersion in a shocked flow is of central importance in many

applications of sciences and engineering. Often, shocks will interact with solid or liquid particles

and the prediction of the particle position after contact with the shock wave can be very useful

in industrial design. Simulations of dust explosions in coal mines, solid propellant combustion in
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rocket engines and mixtures of gases heavily laden with particles in powder metallurgy are notable

examples.

The full analysis of fluid particle interaction involves computation of the complete flow over each

particle, the tracking of individual solid or liquid complex particle boundaries along their paths, and

the tracking of shock waves in the moving frame. These individual computational components are

difficult to resolve and currently barely within reach, even with the latest advances of computational

technologies. The combined interaction between flows with shocks and particles has an immense

complexity, scale range and size, that can currently potentially be analyzed only in highly idealized

situation with a few particles. In that sense, is desirable the use of simplified models that allows

computational simulation with a large number of particles, in order to approach realistic situations

in science or engineering applications.

The particle-source-in-cell (PSIC) method facilitates affordable computations of real geometries,

while accurately representing individual particle dynamics. It is a particle-mesh type algorithm

where the continuum model is approximated on a static mesh, while the particle dynamics are

modeled as singular points and are traced along their path in a Lagrangian frame. The particles

are assumed to have a single point contribution and are carried by the carrier flow that is governed

by a continuum equation. The influence of the particles on the carrier flow is modeled through

point sources and appears as source terms in the continuum equations. The point modeling permits

the simulation of a large number of particles and provides sufficient resolution and accuracy to

model the particle-laden flows.
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The Mathematical model is formulated by the coupled system:

∂Q

∂t
(x, t) +∇ · F (Q) =

∑
K(xp, x)Fp︸ ︷︷ ︸
S(xp,x)

,

dxp

dt
= vp,

mp
dvp

dt
= Fp,

(1)

where the last two equations govern the position xp and acceleration
dvp

dt
of a particle of mass mp

through a kinematic equation and the Newton’s second law forced by the drag Fp on the particle,

respectively. The first equation comprise the continuum model, which is represented by non-linear

hyperbolic conservation laws, where Q and F are vectors with conserved quantities and the fluxes,

and S, is the source term that accounts for the effect of the particles on the flow by the weighing

function K(xp, x).

The computational solution of (1) exhibit both fine scale and structures of the physical phenomena

require and shocks. The use of very accurate methods with shock capturing capability, suitable

for implementation in modern parallel supercomputers and graphics processing units is desired.

The high order weighted essentially non-oscillatory (WENO) method [4] has proven to be very

effective capturing shocks in the numerical solution of hyperbolic conservations laws [6]. However,

the implementation of this method is computationally costly and unnecessary in physical regions

where the solution is in a stable manner sufficiently smooth. Central finite difference is more

efficient, but can not capture shocks. This work has focused on the development of a high order

PSIC scheme, based on WENO for shock capturing and a different and more computationally

efficient high order scheme in smooth regions. We have focused on the assessment of a 3D Hybrid

flow solver and the higher order coupling between the Hybrid and the particle solver. To couple

particles to fluid, a smooth higher order weighting function K is advisable to evaluate the source
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term, in order to ensure a low noise and accurate coupling of the particles to the flow. A lack

of smoothness of the particle shape results in Gibbs type phenomena that affect accuracy and

introduce noise in the source term, S. Non-smooth shapes also enhance instability [3].

We discuss an extension of the work presented in [14], where a high order Hybrid scheme that

switches between WENO high order central finite difference scheme (CFD) based on a higher

order multi-resolution (MR) analysis [12], was developed in two dimensions. We have extended

this Hybrid scheme to three-dimensions and we asses the performance of the Hybrid scheme in

terms of speed and accuracy in parallel computations of a three-dimensional circular sonic jet in

supersonic cross flow in [1], following the benchmark experiment performed in [32]. We investigate

the performance of the Hybrid scheme in terms of accuracy for a long time integration and in terms

of the efficiency measured with CPU timing running on a parallel machine. The Hybrid scheme

is shown to be up to 40% more computationally efficient than the pure WENO scheme for the

injector benchmark. The results computed with various orders of the Hybrid scheme and different

grid resolutions are in good agreement with those computed with a pure WENO scheme.

The next step is the development of a multi-domain spectral-WENO method to solve the coupled

system (1). In this version, instead of CFD, we will use spectral methods [2] to deal with the

smooth parts of the solution, which are non-dispersive, non-dissipative and exhibit exponential

convergence rate for smooth problems. In addition, subdomain adaptivity based on MR analysis

is used to maintain shocks inside WENO subdomains and smooth parts in spectral ones

When the spectral method is used in the spatial discretization, the evaluation of the source term in

the coupled model (1) can induce artificial Gibbs oscillations, affecting considerably the accuracy

in the numerical solution. A extensive study of this phenomenon has been presented in [7, 8] for
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the one dimensional linear advection equation with a non-stationary singular source term given

by δ-function, where the WENO scheme and the spectral Chebyshev collocation method with

Gauss-Lobatto nodes were used for spatial discretization and, the direct projection (DP) method

and Gaussian (G) function to approximate the source term.

The numerical solution of the one dimensional advection equation plays an important role in our

problem mainly because of any algorithm developed for its numerical solution can be generalized

to the case of non-linear conservation laws [5]. We have developed approximations for the non-

stationary singular source term in order to obtain an accurate and stable numerical solution.

We develop of regularization techniques and high order polynomials with compact support for

which, the accuracy in the approximation to the source term depends on the smoothness and

vanishing moments of the respective function. Numerical results in the solution of one dimensional

advection equation, shows the effectiveness of this techniques in terms of accuracy, when the

spectral Chebyshev collocation method with Gauss-Lobatto nodes is used.

There are two main contributions in this work to distinguish: the three dimensional WENO/central

finite difference scheme implemented to solve conservation laws and the solution of the one dimen-

sional advection equation with a singular source term, which are described in sections 2 and 3,

respectively.

In section 2, a brief introduction to the Hybrid scheme and its algorithm is given. The central

finite difference scheme, WENO finite difference scheme and the Multi-Resolution analysis are

briefly described in sections 2.1, 2.2 and 2.3 respectively. Section 2.5 discusses the application of

the Hybrid scheme to the three dimensional circular sonic jet injection into a supersonic cross flow.

The computational results using both the pure WENO scheme and Hybrid scheme are presented
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and the performance of the Hybrid scheme is discussed.

In section 3 is presented the singular advection equation. The spectral Chebyshev collocation

method applied to this problem and the methods to approximate the δ−function are described

in sections 3.1 and 3.2, respectively. Section 3.3 contains numerical results and discussion in the

solution of the advection equation with the different approximations to the singular source term.

Finally, conclusions and remarks on the implementation of the Hybrid scheme and the solution of

the singular advection equation are given in sections 2.6 and 3.4, respectively.

2 Hybrid Central-WENO finite difference scheme

A hybrid scheme that hybridizes the high order non-dissipative central finite difference scheme

(CFD) and an improved high order weighted essentially non-oscillatory scheme (WENO-Z) pre-

sented in [14] is presented for solution of the three-dimensional Euler equations.

The well-known equations comprise a system of non-linear hyperbolic conservation laws that can

be written compactly as

∂Q

∂t
+ ∇ · F(Q) = 0. (2)

The system is discretized on a Cartesian uniformly spaced mesh in a three dimensional rectangular

physical domain. The central finite difference scheme is employed in regions where the flow solution

is smooth. The WENO-Z finite difference scheme is employed otherwise to capture discontinuities

in the flow solution such as shocks and contact discontinuities whose formation is closely related

to the nonlinear nature of (2). To determine the smoothness of solution in the computational

domain and to maintain the high order (resolution) nature of the Hybrid scheme, the high order
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multi-resolution analysis (MR) by Harten [12] is employed to switch between CFD and WENO

schemes. The temporal and spatial adaptation of the two high order (resolution) schemes allows

one to take advantages of the fast non-dissipative CFD solver for an accurate and efficient long

time simulations while sharp gradients and shocks are captured in an essentially non-oscillatory

manner by the WENO scheme.

We briefly review the three individual high order (resolution) components of the Hybrid method,

including the CFD, WENO-Z, and MR schemes followed by a summary of the Hybrid algorithm.

For a more detailed description, we refer to [14]. We present the schemes in one space dimension.

Following a method of lines, the one-dimensional method extends naturally to multi-dimensions

in Cartesian coordinates.

2.1 Central Finite Difference Scheme (CFD)

A central finite difference scheme (CFD) of order n approximates the derivative of a function at a

grid point xi on a Cartesian uniformly spaced mesh as follows

d

dx
f(xi) =

1

∆x

n∑
j=−n

wjfi+j, (3)

where wj are the Lagrangian weights of the first derivative [23].

Whereas the CFD scheme is non-dissipative, it does suffer from numerical dispersive errors that

introduce artificial high-frequency waves in the solution. To prevent these high-frequency oscilla-

tions from causing numerical instabilities, a high order smoothing is required to remove them. For

a given function f(x), discretized on a uniformly spaced grid, a filtered function of order n, f̂(x),
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at the grid point xi can be expressed as

f̂i =
n∑

j=−n

αjfi+j, (4)

where αj are the filtering weights which satisfy the symmetry property α−j = αj. The coefficients

αj are chosen in such a way that the first n moments of the filtered function match exactly the

first n mononomials {1, x, . . . , xn} ensuring that the approximation order of the filtered function is

kept high. In addition to that, the αj are also required to satisfy the condition
∑n

j=−n αj(−1)j = 0

so that oscillations at high wavenumbers are attenuated to zero. Some of these high order filtering

weights αj can be found in [24].

2.2 Weighted Essentially Non-Oscillatory Scheme

WENO captures discontinuities in the flow solution in an essentially non-oscillatory manner and

resolves the high frequency waves accurately. We consider the characteristics based weighted

essentially non-oscillatory conservative finite difference scheme (WENO-Z) for the solution of the

system of hyperbolic conservation laws of order, (2r − 1). We present the explicit formula for a

fifth (r = 3) order scheme. Extension to higher order (r > 3) WENO scheme is straightforward as

explained in [18].

Consider a uniform spaced grid defined by the points xi = i∆x, i = 0, . . . , N , which are called cell

centers, with cell boundaries given by xi+ 1
2

= xi + ∆x
2

, where ∆x is the uniform grid spacing (see

Fig. 1). The semi-discretized form of (2) is transformed into the system of ordinary differential

equations and solved by the method of lines

dQi(t)

dt
= − ∂f

∂x

∣∣∣∣
x=xi

, i = 0, . . . , N, (5)
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xi xi+1 xi+xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1 ω1

ω0

ω2

Figure 1: The computational uniformly spaced grid xi and the 5-points stencil S5, composed of

three 3-points substencils S0, S1, S2, used for the fifth-order WENO reconstruction step.

where Qi(t) is a numerical approximation to the cell-averaged value Q(xi, t).

To form the flux differences across the uniformly spaced cells and to obtain high-order numerical

fluxes consistent with the hyperbolic conservation laws, a conservative finite-difference formulation

is required at the cell boundaries. We implicitly define the numerical flux function h(x) as

f(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ)dξ, (6)

such that the spatial derivative in (5) is approximated by a conservative finite difference formula

at the cell boundaries xi± 1
2
,

dui(t)

dt
= − 1

∆x

(
hi+ 1

2
− hi− 1

2

)
, (7)

where hi± 1
2

= h(xi± 1
2
). High order polynomial interpolations to hi± 1

2
are computed using known

cell-averaged values fj = f(xj), j = i− r + 1, . . . , i+ r − 1.

The (2r − 1) order WENO scheme uses a (2r − 1)-points global stencil, which is subdivided into

r substencils {S0, S1, . . . , Sr−1} with each substencil containing r grid points and a global stencils

S2r−1 =
r−1⋃
i=0

Si. For r = 3, the 5-points global stencil, hereafter named S5, is subdivided into three

3-points substencils {S0, S1, S2}.
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The (2r−1) degree polynomial approximation f̂i± 1
2

= hi± 1
2
+O(∆x2r−1) is built through the convex

combination of the lower r degree polynomial f̂k(x) in substencils Sk at the cell boundary xi± 1
2
:

f̂i± 1
2

=
r−1∑
k=0

ω±k f̂
k(xi± 1

2
), (8)

where

f̂k(xi+ 1
2
) =

r−1∑
j=0

ckjfi−k+j, i = 0, . . . , N. (9)

The ckj are Lagrangian interpolation coefficients [11] and ωk are normalized nonlinear weights

(weights), which will be described below.

The regularity of the (r−1) degree interpolation polynomial approximation f̂k(x) at the substencil

Sk is measured by the lower order local smoothness indicators βk, which are given by

βk =
r−1∑
l=1

∆x2l−1

∫ x
i+ 1

2

x
i− 1

2

(
dl

dxl
f̂k(x)

)2

dx, k = 0, . . . , r − 1. (10)

For r = 3, the βk in terms of the cell averaged values fi = f(xi) are given explicitly by

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2 , (11)

β1 =
13

12
(fi−1 − 2fi + fi+1)2 +

1

4
(fi−1 − fi+1)2 , (12)

β2 =
13

12
(fi − 2fi+1 + fi+2)2 +

1

4
(3fi − 4fi+1 + fi+2)2 . (13)

The WENO-Z scheme makes use of the higher order information obtained from a global optimal

order smoothness indicator τ2r−1 which is built as a linear combination of βk, that is,

τ2r−1 =
r−1∑
k=0

ckβk, (14)

where ck are given constants [17, 18]. For r = 3, one has τ5 = |β0 − β2|, which is of order O(∆x5).

The normalized and un-normalized nonlinear weights ωZk and αZk , respectively, are defined as

ωZk =
αZk∑r−1
l=0 α

Z
l

, αZk =
dk
βZk

= dk

(
1 +

(
τ2r−1

βk + ε

)p)
, k = 0, . . . , r − 1, (15)
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The parameter ε (typically 10−12) is used to avoid the division by zero in the denominator and

power parameter p (typically p = 2) is chosen to increase the difference of scales of distinct weights

at non-smooth parts of the solution. The coefficients {d0, d1, . . . , dr−1} are called the ideal weights

since they generate the (2r − 1) order central upwind scheme when the solution is smooth. For

r = 3, the ideal weights are
{
d0 = 3

10
, d1 = 3

5
, d2 = 1

10

}
.

Following [17, 18], the hyperbolicity of the Euler equations admits a complete set of right and

left eigenvectors for the Jacobian of the system. The approximated eigenvalues and eigenvectors

are obtained via the Roe averaged Jacobian. The first order global Lax-Friedrichs flux is used as

the low order building block for the high order reconstruction step of the WENO scheme. After

projecting the positive and negative fluxes on the characteristic fields via the left eigenvectors, the

high order WENO reconstruction step is applied to obtain the high order approximation at the

cell boundaries using the surrounding cell-centered values, which are then projected back into the

physical space via the right eigenvectors and added together to form a high order numerical flux

at the cell-interfaces. The conservative difference of the reconstructed high order fluxes can then

be computed for inviscid flux.

The resulting system of ordinary differentiation equations ODE (3) and (7) remain after the spatial

discretization are advanced in time via the third order TVD Runge-Kutta scheme [17]. The CFL

condition is set to be CFL = 0.45 in the numerical experiments performed in this study.

2.3 Multi-Resolution Analysis (MR)

The Multi-Resolution analysis (MR) measures the smoothness of the solution at each grid point

at a given time and quantifies the smoothness through a MR coefficient. Since the WENO-Z and
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CFD schemes are both high order schemes, the measure of the smoothness of the solution must

also be of high order in order to differentiate a high frequency wave from a high gradient/shock

so that the appropriate numerical spatial scheme (CFD for high-frequency wave or WENO-Z for

shocks) can be applied at a given spatial location and at a given time. To do so, the high order

multi-level Multi-Resolution (MR) algorithm by Harten [12] is employed to detect the smooth and

rough parts of the solution.

Given an initial number of the grid points N0 and grid spacing ∆x0, we shall consider a set of

nested dyadic grids up to level L < log2N0,

Gk = {xkj , j = 0, . . . , Nk}, 0 ≤ k ≤ L, (16)

where xkj = j∆xk with ∆xk = 2k∆x0, Nk = 2−kN0 and the cell averages of function u at xkj :

ūkj =
1

∆xk

∫ xkj

xkj−1

u(x)dx, (17)

Let ũk2j−1 be the approximation to ūk2j−1 by a uniquepolynomial of degree 2s that interpolates

ūkj+l, |l| ≤ s at xkj+l, where r = 2s+ 1 is the order of approximation .

The approximation error (or multi-resolution coefficients) dkj = ūk−1
2j−1 − ũk−1

2j−1, at the k level and

the grid point xj, has the property that if u(x) has (p − 1) continuous derivatives and a jump

discontinuity at its p derivative ([·] and (·) denote the jump and the derivatives of the function

respectively), then

dkj ≈


[u(p)]∆xpk p ≤ r

u(r)∆xrk p > r

. (18)

The multi-resolution coefficient dkj measures how close the data at the finer grid
{
xk−1
j

}
can be

interpolated by the data at the coarser grid
{
xkj
}

. From (18) it follows that

|dk−1
2j | ≈ 2−p̄|dkj |, p̄ = min{p, r}, (19)
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which implies that away from discontinuities, the MR coefficients {dkj} diminish in size with the

refinement of the grid at smooth parts of the solution; close to discontinuities, they remain the

same size, independent of the order r = 2s + 1 and level k of multi-resolution analysis. Since

in this work, the first level (k = 1) MR coefficients {d1
j} are more than sufficient in detecting

high gradients and shocks, we will drop the superscript 1 from the d1
j unless noted otherwise.

Examples of the performance of the high order multi-level multi-resolution analysis in detecting

discontinuities in the solution of nonlinear system of hyperbolic PDE can be found in [14].

The computational overhead of the multi-resolution analysis, which comprises a dot product of a

two vectors of length equal to the order of the MR analysis at each grid point in each dimension

of a single flow quantity only once before the Runge-Kutta time stepping scheme, is negligible.

It is equivalent to doing three more derivates using CFD scheme in each Runge-Kutta step and

its cost is insignificant when compared to the cost of finding a non-oscillatory representation of

the derivative of the flux by the WENO scheme. The enhanced solution is well worth the minor

additional CPU time.

2.4 Hybrid Scheme

Algorithmically, the Hybrid scheme is implemented with the following essential steps:

1. The multi-resolution analysis (MR) is performed in a given variable (usually density) only

once at the beginning of the Runge-Kutta TVD time stepping scheme.

A grid point is flagged as non-smooth based on the smoothness sensor

Flagi =


1, |di| > εMR

0, otherwise

, (20)
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where εMR is a user tunable parameter.

2. A buffer zone is created around each grid point that is flagged as non-smooth.

If, for example, grid point, xi, is flagged as non-smooth, then its m = β 1
2

max (Nc, Nw + 1),

where β ≥ 0, Nc and Nw are the buffer zone factor, the order of CFD scheme and the

order of WENO scheme, respectively, neighboring points {xi−m, . . . , xi, . . . , xi+m} will also

be designated as non-smooth, that is, {Flagj = 1, j = i−m, . . . , i, . . . , i+m}. This condition

prevents computation of the divergence of the Euler fluxes by the CFD scheme using non-

smooth functional values.

3. The CFD scheme, which is computationally more efficient than WENO scheme, will compute

the divergence of the flux over the full computational domain first. Then, the WENO scheme

is employed to overwrite the divergence of the flux at those grid points designated as non-

smooth by the flag.

Remark 1 Since the WENO coverage of the solution is USUALLY smaller than the CFD cover-

age, and since the CFD can be vectorized in a cache efficient manner along lines, it is logical to

compute the redundant CFD solution that is going to be discarded and overwritten by the WENO

later. Moreover, ease of programming and implementation should be considered. From experience,

we know that the additional program complexity and additional labor cost is too high and the gain

is too small to justify a more elaborat implementation. Of course, there are exceptions and those

cases should be evaluated on a case by case basis. At the end of the day, it is the WALL clock time

that should be improved.

Remark 2 It is generally known that WENO is approximately five times more expensive than the

corresponding CFD with similar order. According to the paper by Johnsen et al. [22], they estimated
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the number of operations per grid point for CFD6, CFD8, WENO5 and WENO7 are 1100, 1600,

3100 and 6200 respectively, in computing the divergence of the convective fluxes. Since a WENO

scheme is required to perform substantially more computations such as involved in the forming the

eigensystem, flux splitting and forward and backward projections, five times more CPU time is a

reasonable estimate. Of course, the actual efficiency of any implementation of the scheme is also

highly depended on the competency of the programmer and data structures.

Remark 3 The class of problems studied is restricted to those where the boundary conditions do

not present any complications with the ghostpoints, for instance, periodic or freestream boundary

conditions.

In this work, we shall use as many ghostpoints as required for a given order of the CFD scheme,

the WENO scheme and the MR analysis. Also, the parameters εMR = 1× 10−4 and β = 1 are used

typically.

2.5 Numerical Results

The Hybrid scheme is tested on a three dimensional circular sonic jet injection in a Mach 2.1

supersonic cross flow with air according to the benchmark experiment performed by Schetz [32]

and the computations performed later by Viti [33]. In the experiment a circular nozzle connects to a

flat plate that is mounted parallel to the incoming supersonic flow. The flow field, as summarized

in the schematic in figure 2, shows many flow features that are typical for sonic injection in

supersonic cross stream. They include a laminar boundary layer that forms along the flat plate

and a bow shock that forms ahead of the injector. The injected air at sonic speed expands rapidly

into a plume and forms a barrel shock and a reflected shock. A contact slip line (shear layer) that
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emanates from the injector edge is highly unstable and leads to the formation of small, unsteady

vortex structures. The interaction between the bow shock and the boundary layer further leads to

form a local separation of the laminar boundary layer underneath the bow shock.

Ma>1
Expansion
Plume

Barrel Shock

Reflected Shock

Refelected Shock

Boundary Layer Shock
Bounary
Layer
Interaction

Slip Line

Mi=1.0

Bow Shock

Slip line

x

y

Figure 2: Schematic of flow features in a sonic injection in supersonic cross stream air flow.

Since the viscous effects are relatively small and since we are primarily interested in the performance

of the Hybrid scheme in terms of accuracy and computational speed in this work, we compute the

Schetz injector with the Hybrid inviscid Euler code. Since viscous effects are not accounted for,

we are not able to capture the laminar boundary layer on the plate and the shock-boundary

layer interaction. These viscous flow phenomena have only a minor influence on the large shock-

expansion structures (bow shock, barrel shock, reflected shock, expansion plume and slip lines or

shear layers). Moreover, with a high order Euler solver we are able to capture the more important

small scale mixing structures in the unstable shear layers.

We consider a three dimensional rectangular domain with a supersonic cross-stream flow in x-

direction and the sonic injection in z-direction. The rectangular computational domain size in x-, y-

and z-direction is (4cm×1.5×1cm) with the origin located at (x0, y0, z0) = (−2cm, 0cm,−0.5cm).

The freestream Mach number, pressure and temperature are Ma∞ = 2.1, p∞ = 11.1kPa and
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T∞ = 159K, respectively. The injection Mach number, pressure and temperature are Mai = 1,

pi = 364.8kPa, and Ti = 250K, respectively. The circular injector nozzle has a diameter of dn =

0.389cm with the center located at (xc, yc, zc) = (0cm, 0cm, 0cm). Computations were performed

with non-dimensionalized variables based on a reference time scale of tref = 3.95×10−5s. The final

non-dimensional time of Tf = 3 time units or in dimensional units, Tf = 1.2× 10−4s, is sufficiently

long for the flow to reach a quasi-steady state in which most large scale structures are statistically

invariant.

Free-stream conditions are specified at the x faces of the computational domain according to the

supersonic cross-stream flow. In the y-direction, periodic boundary conditions are specified. On

the bottom and top z-planes, a symmetry or zero mass flux condition is specified. The injector

boundary condition is specified on ghost points (similiar to the free stream conditions) and on

grid points that are located within the circular injector region. The circular injector boundary

geometry is hence a approximated through a staircasing approximation in the Cartesian grid.

Three grid sizes as described in Table I were considered. The variables Nx, Ny and Nz denote the

number of uniformly spaced grid points in the x-, y- and z-directions, respectively. Computations

are performed with the Hybrid scheme, with approximation orders of 2r − 1 = 3,5, and 7 for

WENO 4,6, and 8 for CFD. We shall denote Hybrid-CnWmMkGi as an n order CFD scheme, a

m order WENO-Z scheme and a k order MR analysis at a grid resolution case i in the following

discussion. For example, Hybrid-C8W7M8G4 means the Hybrid scheme with an eighth order CFD

scheme, a seventh order WENO-Z scheme and an eighth order MR analysis at a grid resolution

(Nx, Ny, Nz) = (500, 167, 111). In general, for a given M = 2r− 1 order WENO-Z scheme, we will

set n = k = m+ 1 in the computations performed in this study. An n+ 2 order smoothing of the

solution in the smooth regions of the domain is performed at the end of a Runge-Kutta TVD time
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stepping.

Grids Nx Ny Nz

1 360 135 90

2 400 150 100

3 444 167 111

4 500 167 111

Table I: Grid sizes used in the computation of the jet interaction in a Mach 2.1 supersonic cross

flow with air.

To avoid large and complicated three dimensional plots, that do not add significantly to the

performance assessment of the Hybrid scheme, we focus on the visualization of flooded contour

fields of relevant variables (mainly, density ρ, Mach number Ma and vorticity ω) with a two

dimensional x − z plane cut at the center y = y∗ = 0.75cm of the three dimensional physical

domain.

The three dimensional simulations of this problem capture the evoluation of the small scale eddies

along the unstable slip line that plays an important role in the formation of transverse vortex tubes

around the injecting jet. In figure 3, the temporal evolution of the density ρ(x, y∗, z, tn) and Mach

number Ma(x, y∗, z, tn) are shown via a two dimensional x− z plane cut with y = y∗ = 0.75cm as

well as the three dimensional two levels iso-surfaces of the Mach number Ma, from early times t

until the final time t = 3, as computed by the Hybrid-C8W7M8G4 scheme. The Hybrid scheme

captures the long time evolution of the large scales structures (bow shock, barrel shock, reflected

shock and expansion plume) as well as the small scales eddies structures (vortical rollups along the

slip line) in an accurate and efficient manner as we will discuss in detail below. The instabilities
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near the base of the injector jet lead to the formation of coherent structures between the bow shock

and the expansion plume.

To justify the use of the high order (resolution) Hybrid scheme, we plot, in figure 4, the two

dimensional density contour fields with increasing grid resolutions in the x-direction by 100 grid

points and with increasing order of the WENO-Z scheme from the m = 2r − 1 = 3, 5 and 7 with

corresponding order of the CFD scheme and the MR analysis as discussed above. The low order and

low grid resolution Hybrid scheme fails to capture the small scales eddies along the unstable slip

lines but perform much better with increasing order and grid resolution. For low order scheme, the

high numerical dissipation inherited in the underlying scheme requires a significant grid refinement

to capture the small scales eddies. However, the increasing of grid resolution imposes a severe stress

on the computational hardware in terms of memory and CPU time. It is recommended that high

order scheme should be used whenever possible for accurate capturing of small scales structures in

a long time flow evolution.

In figure 5, the density ρ, Mach number Ma and vorticity ω contours are visualized at t=3 as

computed via a pure WENO-Z scheme and the Hybrid scheme with various orders with a fixed grid

resolution (Nx, Ny, Nz) = (444, 167, 111). The large scales structures in Hybrid and pure WENO

computations are in good agreement except for minor differences in the small scales structures along

the unstable slip lines between the bow shock and the expansion plume. The minor differences

are a result of the slightly different level of dissipation in the WENO and CFD schemes at the

same grid location and time. This translates in a slightly different flow behavior of the small scales

structures even if they are evolved in time by the same time stepping scheme. Similar results and

remarks are obtained with other grid resolutions (not shown).
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Figure 3: Temporal evolution of density ρ (left column) and Mach number Ma (middle column)

at the center y∗ = 0.75cm are shown at various times as computed by the Hybrid-C8W7M8G4

scheme. The iso-surfaces of the Mach number (right column) are also given.
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Figure 4: The two dimensional x − z plane cut of the density fields as computed by the Hybrid

scheme with various orders and grid resolutions at time t = 3.
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Figure 5: The two-dimensional x− z plane cut of density ρ, Mach number Ma and vorticity ω as

computed by a pure WENO-Z scheme and the Hybrid scheme with various orders at time t = 3.

The grid resolution is (Nx, Ny, Nz) = (444, 167, 111).
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Computations were performed on an eight nodes cluster with 8 Intel Xeon cores per node at a

clock speed of 2.5 GHz. All computations were run on eight cores. The computational domain

with uniform grid spacing was partitioned using Cartesian domain decomposition. The parallel

speed-up for this code and case up to eight processors is ideal. The CPU timing of the runs to

time t = 3 is shown in Table II.

2r − 1 = 3 2r − 1 = 5 2r − 1 = 7

Cases WENO Hybrid WENO Hybrid WENO Hybrid

360× 135× 90 (a) 2.8 2.2 (27%) 3.6 2.6 (38%) 4.5 3.1 (45%)

400× 150× 100 (b) 4.2 3.3 (27%) 5.4 3.7 (46%) 6.8 4.5 (51%)

444× 167× 111(c) 6.5 4.9 (33%) 8.2 5.6 (46%) 10.3 6.6 (56%)

Table II: Timing in hours of the simulations at t = 3 with a pure WENO-Z scheme and a Hybrid

scheme of various orders and grid resolutions. The speedup in percentage is also given inside the

parenthesis.

On average the Hybrid scheme is 40% faster than the pure WENO-Z scheme. The Hybrid scheme,

on average, has a 35% coverage of WENO-Z scheme and hence a 65% coverage of the CFD scheme.

With an increase of grid size from the small grid (a) to the large grid (c) in Table II, the percentage

of WENO-Z coverage reduces as shown in the bar-plot in Figure 6. The reduced WENO-Z coverage

lowers the normalized computational cost as shown versus the normalized grid size for different

order 2r − 1 = 3, 5 and 7 in Fig. 6. At large orders, 2r − 1, the reduction in WENO-Z coverage

leads to a relatively larger increase in efficiency of the Hybrid as compared to the pure WEN0-Z.

At 2r − 1 = 7 and for the largest grid (c), the Hybrid improves the computational efficiency by

56%.

We note that with an increase in approximation order from 2r−1 = 3 to 7, the WENO-Z coverage
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increases by approximately 10% (bar-plot in Figure 6). This means that the Hybrid scheme is

relatively less efficient with increasing order because of the increased WENO coverage.

Figure 6: Comparison of timing results and percentage of WENO coverage used by the Hybrid

scheme.

2.6 Conclusions

The high order Hybrid WENO-Z/Central finite difference Euler Solver is extended from two to

three dimensions. The parallelized Hybrid scheme was tested on a sonic injector benchmark flow in

supersonic cross stream. The Hybrid scheme uses the WENO-Z scheme in regions of the physical

domain where the flow is not smooth and contains discontinuities such as contact discontinuities

and shocks, whereas in smooth regions it uses a central finite difference scheme. The smoothness of

the solution is quantified with a multi-resolution coefficient that is determined through a high order

multi-resolution analysis on a single solution variable. Based on the multi-resolution coefficient, the

Hybrid scheme switches dynamically between the computationally efficient central finite difference

scheme and the computational more expensive WENO-Z scheme at each grid point and at each
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time step.

The computational overhead of the multi-resolution analysis, which comprises a dot product of a

two vectors of length equal to the order of the MR analysis at each grid point in each dimension

of a single flow quantity before each Runge-Kutta time stepping scheme, is negligible as compared

to the cost of finding a non-oscillatory representation of the derivative of the flux by the WENO

scheme. The Hybrid scheme is hence more computationally efficient.

To illustrate the accuracy and efficiency, the Hybrid scheme was tested by means of computations

of the benchmark flow problem of the sonic injection of fluid into a supersonic cross stream flow.

The computations focused on a near injector flow region which features rich interaction between

both large-scale shocks and expansions and the growth of small scale flow instabilities. In the

initially uniform supersonic flow, the curved cross stream jet increasingly blocks the flow and as a

result instabilities and shocks develop ahead and along of the curved cross-stream jet. Since the

pressure of the jet is higher than the pressure in the cross stream, the jet expands and accelerates

creating additional instabilities downstream, until it reaches a quasi-steady state.

For this flow computation 30% of the computational domain requires the use of WENO-Z scheme.

With this a relatively large percentage of WENO-Z usage, the computation is up to 1.56 times

faster with the Hybrid scheme than the one with a pure WENO-Z scheme. With increasing grid

resolution, the WENO-Z coverage becomes relatively smaller, and the Hybrid scheme becomes

relatively more efficient. For large computational domains, the lesser WENO-Z coverage is needed

and hence computational cost should decrease further. On average the speed up with Hybrid

scheme is 40% for the cases considered in this paper.

The flows computed with a Hybrid scheme and with a pure WENO-Z scheme are in very good
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agreement. Hence, while the Hybrid scheme improves computational efficiency over the high order

WENO-Z scheme, it does not reduce the accuracy. If anything, it is expected that the Hybrid

scheme is more accurate, since the numerical dissipation and dispersion of the central difference

schemes are smaller than WENO-Z scheme.

With an increasing order of underlying schemes, the capturing of the growth of small scale instabil-

ities improves. With a third order scheme, the shear layer emanating from the injector jet is stable

whereas at the fifth and seventh order scheme, the shear layer is unstable. Effectively, a lesser

grid resolution is required with an increased order of approximation to obtain the same result.

The lesser grid resolution reduces computational cost, which reduces the computational time by a

factor that is dependent on the problem as well as choice of parameters of the numerical scheme.

For the injector cases, with an increase of the order of approximation by two orders, similar results

are obtained for grid resolution that require only half the computational time, i.e. another factor

2 of relative increase in computational efficiency.

3 Singular advection equation

We consider the numerical solution of the non-stationary singular advection equation:
∂u

∂t
+ a

∂u

∂x
= δ(x+ ct), x ∈ [−1, 1] and t > 0,

u(x, 0) = sin(πx), x ∈ [−1, 1],

(21)

where a and c are non-zero fixed constants such that a + c 6= 0. With this restriction on a and c,

we ensure that the analytical solution will have a local jump discontinuity at x = −ct.
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The analytical solution for this problem is given by:

u(x, t) = sin(π(x− at)) +
1

a+ c
(H(x+ ct)−H(x− at)),

where H is the Heaviside function defined as:

H(x) =


0, x < 0,

1

2
, x = 0,

1 x > 0.

3.1 Spectral Chebyshev collocation method

In the this section we introduce the spectral methods and the discretization process, with particular

emphasis in the Chebyshev collocation scheme with Gauss-Lobatto points.

In the solution of non-periodic problems, spectral methods are based in the following series expan-

sion for the function u(x, t):

u(x, t) =
∞∑
k=0

ûk(t)φk(x),

where {φk(x)}k≥0 are polynomials representing an orthogonal basis set for Lw[−1, 1], the square

integrable functions with respect to the weight function w(x) with the usual inner product in this

space. The basis and weight functions are obtained as the solution of a specific Sturm-Liouville

problem and the coefficients ûk(t) are given by:

ûk(t) =
1

γ̂k

∫ 1

−1

u(x, t)φk(x)w(x) dx, γ̂k =

∫ 1

−1

φ2
k(x)w(x) dx.

The spectral approximation is obtained as a truncation of the previous series expansion, where a

Gauss quadrature rule is used to replace the coefficients ûk(t) for a suitable choice of points {xj}Nj=0

and discrete weights {wj}Nj=0. If ũk(t) and γ̃k denotes the respective approximations to ûk(t) and
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γ̂k by the Gauss quadrature, then:

ũk(t) =
1

γ̃k

N∑
j=0

u(xj, t)φk(xj)wj, γ̃k =
N∑
j=0

φ2
k(xj)w(xj),

and the spectral approximation uN(x, t) to u(x, t) is defined as:

uN(x, t) :=
N∑
k=0

ũk(t)φk(x)

=
N∑
k=0

(
1

γ̃k

N∑
j=0

u(xj, t)φk(xj)wj

)
φk(x)

=
N∑
j=0

u(xj, t)

(
wj

N∑
k=0

1

γ̃k
φk(xj)φk(x)

)
.

In particular, the spectral Chebyshev method correspond to the choice of Chebyshev polynomials

Tk(x) = cos(k arccos(x)) as orthogonal basis set with respect to the weight function w(x) =

(1 − x2)−
1
2 . In addition, we consider the Gauss-Lobatto points with discrete weights for the

quadrature:

xj = − cos
( π
N
j
)
, wj =

π

cjN
,

where c0 = cN = 2 and cj = 1 for j = 1, 2, . . . , N − 1. The spectral Chebyshev approximation is

expressed in terms of the Lagrange interpolation polynomial lj(x) as follows:

uN(x, t) =
N∑
j=0

u(xj, t)lj(x), (22)

where lj(x) =
(−1)N+j+1(1− x2)

cjN2(x− xj)
dTN
dx

(x) is such that:

lj(xi) =


1, i = j,

0, i 6= j.

(23)

Additionally, the derivative
∂u

∂x
is approximated by differentiating (22). In particular, if the deriva-

tive is evaluated at the ith quadrature node, for i = 0, 1, . . . , N , we obtain :

∂uN

∂x
(xi, t) =

N∑
j=0

Diju(xj, t), (24)
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where Dij =
dlj
dx

∣∣∣∣
x=xi

is a (N + 1) × (N + 1) matrix representing the discrete spectral derivative

operator, whose entries are:

Dij =



−2N2 + 1

6
, i = j = 0,

ci
cj

(−1)i+j

xi − xj
, i 6= j,

− xi
2(1− x2

i )
, i = j, for i, j ∈ {1, 2, . . . , N − 1},

2N2 + 1

6
, i = j = N.

The collocation method consist in substitute the spectral Chebyshev approximation (22) in the

advection equation (21) and evaluate the resulting expression at x = xi, for each quadrature node

xi. Thus, we obtain the following system of ordinary differential equations (ODE):

du

dt
(xi, t) + a

N∑
j=0

Diju(xj, t) = δ(xi + ct), for i = 0, 1, . . . , N, (25)

which can be integrated in time using the third order total variation diminishing (TVD) Runge-

Kutta scheme. The respective numerical solution to this ODE will represent the approximate

solution to (21) through the spectral Chebyshev collocation method with Gauss-Lobatto points.

3.2 The Dirac delta function

In the next section, we introduce some important properties of the δ-function, useful to construct

numerical approximations of it.

The δ-function was introduced by Paul Dirac in order to create the mathematical tools for the

development of quantum field theory, and currently, is with notable success used in applied math-

ematics and mathematical physics. Some properties of particular interest in this work are the

following:

30



1.

∫ ∞
−∞

δ(x) dx = 1.

2. Let (a, b) ⊆ R a real interval and f(x) a continuous function in a neighborhood of x0 ∈ (a, b),

then: ∫ b

a

f(x)δ(x− x0) dx = f(x0).

Moreover, if f(x) is a function with n continuous derivatives in a neighborhood of x0 ∈ (a, b):∫ b

a

f(x)
dnδ

dxn
(x− x0) dx = (−1)n

dnf

dxn
(x0),

where
dnδ

dxn
is known as the generalized nth derivative of δ.

3. The generalized derivative of the Heaviside function is given by:

δ(x) =
dH

dx
(x).

Many of the numerical approximations to the δ-function, are based on the properties 1-3 listed

above. We consider the direct projection (DP) method, the Gaussian (G) approximation (which

were used in [7, 8] to solve (25)) and a regularization technique with high order polynomials (P

method) presented in [9].

The DP method is based on property 3 and the δ-function on the right hand side of (25) is

approximate using the spectral derivative operator Dij as:

δDP(xi + ct) =
N∑
j=0

DijH(xj + ct).

The G approximation is defined as:

δG

ε (x) =
1

2
√
πε

exp

(
−x

2

4ε

)
,

which satisfy property 1 for all ε > 0 and property 2 when ε tends to zero, that is:

lim
ε→0

∫ ∞
−∞

f(x)δG

ε (x− x0) dx = f(x0).

31



We have developed a P method, where the δ-function is approximated by:

δP
m,k

ε (x) =


1

ε
Pm,k

(x
ε

)
, |x| ≤ ε,

0, |x| > ε.

Here Pm,k(ξ), for ξ ∈ [−1, 1], is a polynomial of degree 2
(⌊m

2

⌋
+ k + 1

)
containing only even

powers of ξ, given by:

Pm,k(ξ) = c(1− ξ2)k+1Q(ξ), Q(ξ) = 1−
bm/2c∑
j=1

〈1, r2j〉kr2j, (26)

where 〈·, ·〉k is the usual inner product in Lwk [−1, 1], wk(ξ) = (1−ξ2)k+1, {rj}mj=1 is an orthonormal

basis set for span{1, ξ, . . . , ξm} obtained with Gram-Schmidt orthogonalization procedure and c =

〈1, Q〉k. These polynomials satisfy the following properties:∫ 1

−1

Pm,k(ξ) dξ = 1,

dβPm,k

dξβ

∣∣∣∣
ξ=±1

= 0, β = 0, . . . , k,∫ 1

−1

Pm,k(ξ)ξα dξ = 0, α = 1, . . . ,m.

The first condition in (26) ensures that δP
m,k

ε satisfy property 1 and the second one establishes

the continuity of the derivatives up to order k. The third condition, known as moments condition,

indicates that Pm,k has m vanishing moments and as a consequence of it, can be proven [9] that

the accuracy in the approximation by δP
m,k

ε (x), in terms of property 2, is given by:

∫ ∞
−∞

f(x)δP
m,k

ε (x− x0) dx = f(x0) +O(εm+1),

for x0 ∈ R and f with at least m continuous derivatives.

Based on property 3, the approximation δP
m,k

ε (x) induces a regularized approximation to the
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Heaviside function with k + 1 continuous derivatives, as follows:

Hm,k
ε (x) =

∫ x

−∞
δP

m,k

ε (s) ds =

∫ x

−ε
δP

m,k

ε (s) ds

=


1, x > ε,

Rm,k
(x
ε

)
, |x| ≤ ε,

0, x < −ε,

where:

Rm,k(ξ) =

∫ ξ

−1

Pm+1,k−1(s) ds ξ ∈ [−1, 1]. (27)

As in the DP method, we will consider the following approximation to the δ-function using the

regularized Heaviside function:

δDPm,k

ε (xi + ct) =
N∑
j=0

DijH
m,k
ε (xj + ct).

In particular, we will use the polynomials Pm=3,k=2 and Rm=2,k=2 defined by (26) and (27) to

approximate the δ-function and Heaviside function:

P 3,2(ξ) =
315

512
(3− 20ξ2 + 42ξ4 − 36ξ6 + 11ξ8),

R2,2(ξ) =
1

2
+

1

64
(105ξ − 175ξ3 + 147ξ5 − 45ξ7).

The next section describes the numerical experiments in the solution of the advection equation us-

ing the spectral Chebyshev collocation method with the approximations to the δ-function described

above.

3.3 Numerical experiments

This section presents numerical results in the implementation of the Chebyshev collocation method

with Gauss-Lobatto points to compute an approximate solution of the advection equation (21)
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for a = 1 and c =
1

4
at tmax = 2. To evaluate the δ-function in (25), we will compare the

approximations δDP, δG
ε , δP

3,2

ε and δDP2,2

ε , described in section 3.2. For spatial discretization are

considered N + 1 = 61, 121, 241 collocation points and to solve to the ODE (25), a third order

TVD Runge-Kutta scheme is used for time integration, with time step ∆t =
λ

aN2
, where λ = 0.5

represent the Courant-Friedrichs-Lewy (CFL) number.

We present plots of analytical solution versus the spectral approximation (figure 8), logarithmic

plots of the pointwise error (figure 9) and pointwise convergence order (figure 10 and table III),

which are defined respectively as:

E(N, xj, tmax) = |u(xj, tmax)− uN(xj, tmax)|,

q(N, xj, tmax) = log2

∣∣∣∣ uN(xj, tmax)− u2N(xj, tmax)

u2N(xj, tmax)− u4N(xj, tmax)

∣∣∣∣ ,
for each collocation point xj in the coarser grid.

We first consider the δDP and δG
ε , which were used in [7, 8] for this problem and subsequently

compare it with our P method.

The DP method leads to an inaccurate numerical solution, characterized by an oscillatory behavior,

as figure 7 shows. In the δG
ε approximation we considered ε =

2

N2
, which is suggested in [7]. For

this case, the numerical solution does not exhibit the oscillatory behavior and it yields a first order

convergence in the jump discontinuity (figure 8-(a)). Despite the refinement of the grid, is not

observed a significant difference in the reduction of the error, moreover, the numerical solution is

not in the asymptotic range of convergence. Both results are consistent with [7, 8].

With respect to the approximations δP
3,2

ε and δDP2,2

ε , we consider the heuristic choice ε = xN
2

+3 on

the coarser grid (that is, for N = 60), which represent the second node to the right of zero. This

34



choice obeys to the fact that the convergence is first order in a neighborhood of the discontinuity

and when ε increase, the accuracy of the numerical solution on [−ε, ε] will be impacted negatively.

The numerical solution obtained with the P methods leads to a non-oscillatory solution (figures

8-(b) and 8-(c)). The convergence is first order in the discontinuity, but unlike the G method, away

of the singularity the error decrease when the grid is refined and the solutions exhibit an asymptotic

behavior at the formal order of the scheme (figures 9-(a), 9-(b) and 9-(c)), being approximately in

accordance to figures 10-(a), 10-(b), 10-(c) and table III, first, fifth and fourth order accurate for

δG
ε , δP

3,2

ε and δDP2,2

ε , respectively.
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Figure 7: Exact versus numerical solution on the coarser grid, using δDP, for N = 60, 120, 240.
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Figure 8: Exact versus numerical solution on the coarser grid, using δG
ε (a), δP

3,2

ε (b) and δDP2,2

ε (c),

for N = 60, 120, 240.
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Figure 9: log10 of the pointwise error on the coarser grid, using δG
ε (a), δP

3,2

ε (b) and δDP2,2

ε (c), for

N = 60, 120, 240.
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Figure 10: Pointwise convergence order on the coarser grid, using δG
ε (a), δP

3,2

ε (b) and δDP2,2

ε (c),

for N = 60.
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q̄(N)

δG
ε δP

3,2

ε δDP2,2

ε

1.1 5.1 3.8

Table III: Averaged convergence order q̄(N) =
1

N + 1

N∑
j=0

q(N, xj, tmax) for N = 60.

3.4 Conclusions

We present the Chebyshev spectral collocation method to compute a numerical solution of the

non-stationary singular advection equation (3), where the singular source term was approximated

by the DP, G and P methods. In the DP method, the δ-function is expressed as the derivative

of the Heaviside function through the discrete spectral derivative operator, the G method use a

Gaussian distribution and the P method employs regularization techniques based on high order

polynomials. with compact support.

The DP methods leads to a inaccurate numerical approximation characterized by oscillatory be-

havior, whereas the solution with the Gaussian function is free oscillation but first order accurate.

The P method approximation to the δ-function has proven to be very effective. With the high

order polynomials and the regularized Heaviside function, the numerical solution is approximately

fifth and fourth order accurate, respectively. Moreover, the results shows that with a smooth

approximation to the Heaviside function, the amplitude in the oscillations arising when the DP

method is used, will decrease.

In the near future, we plan to develop the multi-domain spectral-WENO method for two and three

dimensional simulations of flow-particle interactions through the PSIC formulation (1), using as

38



weighing functions, the high order polynomials presented in the solution of the advection equation.
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