

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2011

Finite Volume discretization of
flux-divergence in mapped grids with

embedded boundaries

David Batista

August 2011

Publication Number: CSRCR2011-02

	

	

	

	

	

	

	

	

	

	

	

	

Finite	
 Volume	
 discretization	
 of	
 flux-­
divergence	
 in	
 mapped	
 grids	
 with	

embedded	
 boundaries	

	

	

	

Report	
 of	
 Internship	
 at	
 Lawrence	
 Berkeley	
 National	

Laboratory,	
 July	
 2010	
 –	
 May	
 2011	

	

	

	

By	

	

David	
 Batista	

Computational	
 Science	
 Research	
 Center	

San	
 Diego	
 State	
 University	

	

	

	

	

	

	

	

	

	

	

	

Acknowledgement:

This work was done during my stay at LBNL in
the Advanced Numerical Algorithms Group, from
July 2010 to May 2011.

FINITE VOLUME DISCRETIZATION OF FLUX-DIVERGENCE IN
MAPPED GRIDS WITH EMBEDDED BOUNDARIES

DAVID BATISTA∗

1. Introduction.

The objective of this work is to construct a finite volume-based scheme for approx-
imating the average of the divergence of a flux, 〈∇ · F 〉, in curvilinear, non-boundary
conforming grids, a case that we call: Mapped Embedded Boundary Method.

The two main contributions made are, first, the construction of an explicit formula
for calculating multi-dimension derivatives of product of functions, ∇p(F G), that
allows us to do a detailed mathematical analysis of our approximating formulas while
providing us with an efficient way of computationally evaluate ∇p(F G). The second
one is a mathematical proof of how, for these finite volume-based type of methods,
just by taking Taylor expansions of fluxes we can obtain a conservative, high-order
scheme but not a freestream one. On this regard, we show that integrals of rows of
the matrix N associated with the mapping, X, and given by:

(NT)p,q = det((∇ξX)(p | ~e q)),

where A(p | ~v) is the matrix obtained by replacing the p th row of the matrix A by
the vector ~v, ~e d denotes the unit vector in the d th coordinate direction; have ”always”
to be computed the right way in order to get a freestream preserving scheme. This is a
general result that applies for the Cartesian Embedded Boundary and Mapped Finite
Volume methods as well as for the Mapped Embedded Boundary method discussed
here.

Finally, numerical results show that the schemes obtained are conservative, free-
stream preserving, and produce high-order approximations of 〈∇ · F 〉 in two and three
dimensions.

2. Preliminaries.

Let X be a smooth map from the computational space [0, 1]D to the physical
space Ω ⊆ RD,

X : [0, 1]D −→ Ω ⊆ RD,

ξ ∈ [0, 1]D, X(ξ) = (X1(ξ), . . . , XD(ξ))
T

= x ∈ Ω ⊆ RD and D represents the
dimension of the spaces.

An irregular domain Ω is discretized as a collection of control volumes (CV), Vi,
obtained by intersecting Ω with non-uniform, topologically cube (3D)/square (2D)
grid cells. These non-uniform grid cells are considered to be the image over the

∗PhD Candidate. Computational Science Research Center, San Diego State University.

1

2 D. Batista

smooth mapping X of cube/square grid cells defined on the computational space.
Thus:

X(Vi) = X(Υi) ∩ Ω,

where Υi =
[(

i− 1
2u
)
h,
(
i + 1

2u
)
h
]
, i ∈ ZD, h is the mesh spacing, and u is

the vector whose entries are all ones.

Each CV is classified as: outside CV, if it is a control volume that does not inter-
sect Ω (X(Υi) ∩ Ω = ∅); inside CV, if it is a control volume completely contained in Ω
(X(Υi) ∩ Ω = X(Υi)); and irregular CV, if it is neither an inside or outside CV. This
classification of control volumes will also be used in the case of a Cartesian grid, that
is, we will have outside, inside and irregular control volumes in the computational
space as well as in the physical space. Furthermore, it is assumed that X establishes
a correspondence between control volumes of the same type.

An embedded boundary (EB) method is an algorithm developed for solving par-
tial differential equations (PDE’s) on complex domains discretized by a set of CVs.
When the discretization of Ω doesn’t have irregular CV’s we say we have a boundary
conforming mesh and a Finite Volume (FV) algorithm for solving PDE’s.

The particular case when the control volumes are cubes/squares, (Cartesian EB
method or Cartesian FV method) is obtained by taking X to be the identity map,
that is,

Vi = Υi ∩ Ω

We show how to construct high-order, multi-dimensional, conservative, free-stream
preserving, finite volume-based approximations for calculating the average of the di-
vergence of a flux in a curvilinear embedded boundary setting. This formulation is
quite general and schemes for all other cases namely, Finite Volume, Cartesian EB,
and Mapped FV, can be obtained from it while preserving/inheriting all its conser-
vative properties and accuracy.

3. The basic equation for the average of the divergence of a flux.

By using the chain rule, Cramer’s rule and the equality of mixed partial deriva-
tives, the divergence of a flux, ∇x · F , in the physical space can be written as ([1])

∇x · F =
1

J
∇ξ · (NT F), (3.1)

where J = det(∇ξX), (NT)p,q = det((∇ξX)(p | ~e q)), A(p | ~v) is the matrix
obtained by replacing the p th row of the matrix A by the vector ~v, ~e d denotes the
unit vector in the d th coordinate direction, and F (x) = F (X(ξ)) = F(ξ).

We would like to discretize/approximate the average of the divergence of a flux,
〈∇x · F 〉.

Mapped EB 3

Let’s consider an irregular control volume, X(Vi) ⊂ Ω, and the corresponding
irregular control volume, Vi, in the computational space. From (3.1) it is obtained

∫
X(Vi)

∇x · F dx =

∫
Vi

∇ξ · (NT F) d ξ,

and, therefore, 〈∇x · F 〉 is given by

〈∇x · F 〉 =
1

|X(Vi)|

∫
Vi

∇ξ · (NT F) d ξ, (3.2)

We’ll focus on discretizing the integral on the right hand side of (3.2), since

|X(Vi)| =
1

D

∫
Vi

∇ξ · (NT F) d ξ,

when taking F(ξ) = X(ξ).

From the divergence theorem applied to the integral on the right hand side of
(3.2) we get

∫
Vi

∇ξ · (NT F) d ξ =
D−1∑
d=0

∑
±=+,−

±
∫
Ad
±

(NT F)d dAξ +

∫
AEB

(NT F) · n̂ d ξ (3.3)

Ad± are the coordinate faces of the control volume Vi, AEB is the surface obtained
by intersecting the domain with the Cartesian cell number i, and n̂ is the normal
vector to AEB .

4. Discritizing equation (3.3).

In this section we present one of the main contribution of this work which is
proving, mathematically, why by using just Taylor expansions on equation (3.3) we
can get a high-order scheme but not a freestream preserving one. A way of fixing this
problem is proposed.

In (3.3) we have written the integral
∫
Vi
∇ξ · (NT F) d ξ over the whole control

volume Vi in terms of integrals over its boundary, ∂Vi, and thus, the accuracy of our
resulting scheme will depend on how precise our approximations of these integrals are.
For achieving the desired high-order accuracy we use Taylor expansions of the vector
function NT F.

For the sake of conservation, we Taylor expand NT F in the integrals over Ad± and
AEB , about the face centroids ξ d± and ξEB , respectively, to get

4 D. Batista

∫
Vi

∇ξ · (NT F) d ξ =
D−1∑
d=0

∑
±=+,−

±
∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p∇p(NT F)d(ξ

d
±) dAξ

+

∫
AEB

∑
0≤|p|≤P

1

p!
(ξ − ξEB)p

[
D−1∑
s=0

∇p(NT F)s(ξEB) n̂s

]
dAξ

+O
(
hP+D

)
(4.1)

We will denote by Id± the integral over Ad± and by IEB the integral over AEB .

On the other hand, the multi-dimension derivatives, ∇p(NT F)s(ξ), can be com-
puted using the exact formula (see section 5.2):

∇p(NT F)s(ξ) =
D−1∑
j=0

∑
0≤|q|≤|p|

Kq∇p−qFj(ξ)∇qNT
s j(ξ), (4.2)

Expression (4.2) is obtained by combining ideas from the Binomial theorem and
combinatorics and its importance is two folded: (a) it provides us with a tool to math-
ematically manipulate expression (4.1) and (b) it allows us to easily and efficiently
evaluate ∇p(NT F)s(ξ).

To simplify the notation, we re-write equation (4.2) in a compact way as

∇p(NT F)s(ξ) =
∑

j = 0, . . . , D − 1
0 ≤ |q| ≤ |p|

Kq∇p−q,q(Fj , NT
s j)(ξ), (4.3)

where ∇p−q,q(Fj , NT
s j)(ξ) is equal to the product ∇p−qFj(ξ)∇qNT

s j(ξ). Kq is the
number of multi-indices q contained in p.

Then, the integral Id± can be written as:

Id± =

∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1

0 ≤ |q| ≤ |p|

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ

Id± =

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ

+

∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p

D−1∑
j=0

Fj(ξ
d
±)∇pNT

d j(ξ
d
±) dAξ (4.4)

Mapped EB 5

The integral IEB can be written as follows

IEB =

∫
AEB

D−1∑
s=0

 ∑
1≤|p|≤P

1

p!
(ξ − ξEB)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
s, j)(ξEB)

 n̂s dAξ
+

∫
AEB

D−1∑
s=0

 ∑
0≤|p|≤P

1

p!
(ξ − ξEB)p

D−1∑
j=0

Fj(ξEB)∇pNT
s j(ξEB)

 n̂s dAξ (4.5)

By substituting (4.4) and (4.5) into (4.1) it is obtained

∫
Vi

∇ξ · (NT F) d ξ = (4.6)

D−1∑
d=0

∑
±=+,−

±

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ (4.6.a)

+

∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p

D−1∑
j=0

Fj(ξ
d
±)∇pNT

d j(ξ
d
±)dAξ

 (4.6.b)

+

D−1∑
s=0

∫
AEB

 ∑
1≤|p|≤P

1

p!
(ξ − ξEB)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
s j)(ξEB)

 n̂s dAξ(4.6.c)

+

∫
AEB

D−1∑
s=0

 ∑
0≤|p|≤P

1

p!
(ξ − ξEB)p

D−1∑
j=0

Fj(ξEB)∇pNT
s j(ξEB)

 n̂sdAξ (4.6.d)

+O(hP+D)

Let’s examine (4.6.b) and (4.6.d).

(4.6.b) =
D−1∑
j=0

Fj(ξd±)

∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p∇pNT

d j(ξ
d
±) dAξ


=
D−1∑
j=0

Fj(ξd±)

∫
Ad
±

∑
0≤|p|≤P

1

p!
(ξ − ξd±)p∇pNj d(ξd±) dAξ


=
D−1∑
j=0

[
Fj(ξ

d
±)

∫
Ad
±

TPξd±
Nj d(ξ) dAξ

]
, (4.7)

where TP
ξd±
Nj d(ξ) is the P -th order Taylor polynomial of Nj d about ξd±.

6 D. Batista

Analogously, (4.6.d) is equal to

(4.6.d) =
D−1∑
j=0

[
Fj(ξEB)

∫
AEB

D−1∑
s=0

[
TPξEB

Nj s(ξ)
]
n̂s dAξ

]
, (4.8)

(4.7) and (4.8) are the freestream destroyers, as it is explained next.

By substituting (4.7) and (4.8) into (4.6) it is obtained:

∫
Vi

∇ξ · (NT F) d ξ = (4.9)

D−1∑
d=0

∑
±=+,−

±

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ (4.9.a)

+

D−1∑
j=0

Fj(ξ
d
±)

∫
Ad
±

TPξd±
Nj d(ξ) dAξ

]
(4.9.b)

+

D−1∑
s=0

∫
AEB

 ∑
1≤|p|≤P

1

p!
(ξ − ξEB)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
s j)(ξEB)

 n̂s dAξ(4.9.c)

+

D−1∑
j=0

[
Fj(ξEB)

∫
AEB

D−1∑
s=0

TPξEB
Nj s(ξ)

]
n̂s dAξ (4.9.d)

+O(hP+D)

Suppose F(ξ) = C is a constant flux. If derivatives ∇pFj are approximated

appropriately, i.e. by using a linear combination of values of Fj ,
∑
k∈K αk F

k
j , such as∑

k∈K αk = 0 then, (4.9.a) and (4.9.c) are equal to zero, because sums over |p| start
at 1. Thus, (4.9) becomes:

∫
Vi

∇ξ · (NT F) d ξ =

D−1∑
j=0

Cj

[
D−1∑
d=0

∑
±

±
∫
Ad
±

TPξd±
Nj d(ξ) dAξ +

∫
AEB

D−1∑
s=0

(
TPξEB

Nj s(ξ)
)
n̂s dAξ

]

Obs: The error term O(hP+D) in equation (4.9) is equal to zero because it is
proportional to some derivative of F, and F is constant.

Since, Nj d(ξ) = TP
ξd±
Nj d(ξ)+O(hP+1) and Nj s(ξ) = TPξEB

Nj s(ξ)+O(hP+1), we

get

Mapped EB 7

∫
Vi

∇ξ · (NT F) d ξ =

D−1∑
j=0

Cj

[
D−1∑
d=0

∑
±
±
∫
Ad
±

Nj d(ξ) dAξ +

∫
AEB

(N(ξ) · n̂s)j dAξ

]

+O(hP+D)

∫
Vi

∇ξ · (NT F) d ξ =
D−1∑
j=0

Cj

[∫
Vi

∇ξ · (Nj, •) d ξ

]
+O(hP+D),

where Nj, • is the row j of N .

Since each row of N is divergence free (which can be checked by direct computa-
tion), we finally get,

∫
Vi

∇ξ · (NT F) d ξ = O(hP+D), (4.10)

Thus, we fail to satisfy the freestream preserving property because we are calcu-
lating integrals

∫
Ad
±
Nj d(ξ) dAξ and

∫
AEB

(N(ξ) · n̂)j dAξ inappropriately, namely, by

using Taylor expansions. By doing so, the condition that rows of N are divergence
free is not fulfilled which introduces an error of order O(hP+D) into the formulation
that, otherwise, would be freesteam preserving already (in terms of flux calculations).

This analysis is not restricted to the mapped-EB case. In fact, it is a very general
result that works for the Finite Volume, Mapped Finite Volume, Cartesian EB, and
Mapped EB methods.

Figure 4.1 shows an example of this phenomenon. We have implemented a
Mapped FV, second order version of equation (4.9) and tested it for a constant flux.
As predicted, we do not get exact zero but an error that, in this case, is second order.

In order to get a freestream preserving scheme we proceed as follows.

Going bak to (4.9), let’s substitute the approximate values
∫
Ad
±
TP
ξd±
Nj d(ξ) dAξ

and
∫
AEB

∑D−1
s=0

(
TPξEB

Nj s(ξ)
)
n̂s dAξ by the exact values

∫
Ad
±
Nj d(ξ) dAξ and∫

AEB
(N(ξ) n̂)j dAξ, respectively.

As seen in (4.10) this introduces an error O(hP+D) but, the error in (4.9) is
O(hP+D) thus, the total error doesn’t change.

8 D. Batista

0.000001	

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

100	

1	
 10	
 100	
 1000	

E
rr

or

n

Max
L2
L1
2nd Order

Fig. 4.1. No freestream preservation for the Mapped FV case. Left: boundary conforming
curvilinear grid, right: error obtained. This error is different than zero and, therefore, the scheme
is not freestream preserving

Then,

∫
Vi

∇ξ · (NT F) d ξ = (4.11)

D−1∑
d=0

∑
±=+,−

±

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ (4.11.a)

+

D−1∑
j=0

Fj(ξ
d
±)

∫
Ad
±

Nj d(ξ) dAξ

]
(4.11.b)

+

D−1∑
s=0

∫
AEB

 ∑
1≤|p|≤P

1

p!
(ξ − ξEB)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
s j)(ξEB)

 n̂s dAξ

(4.11.c)

+

D−1∑
j=0

[
Fj(ξEB)

∫
AEB

(N(ξ) n̂)j dAξ

]
(4.11.d)

+O(hP+D)

When |AEB | goes to zero, (4.11.c) and (4.11.d) also go to zero because they are
integrals over AEB and we recover formulas in [1].

As a summary: right after applying the Divergence theorem to the integral in
(3.2) we have taken Taylor expansions of (NT (ξ)F(ξ))d in (3.3). By using the exact,
new formula for calculating multi-dimensional derivatives (equation (4.3)), we have

Mapped EB 9

rearranged terms to show that integrals of the divergence of rows of N have ”always”
to be calculated in an appropriate way for guarantying freestream; a computation that
was hidden in the formulation. Thus, computing the integrals

∫
Ad
±
Nj d(ξ) dAξ and∫

AEB
(N(ξ) n̂)j dAξ appears in a natural way. For a given control volume Vi, equation

(4.11) provides an explicit formula for computing the integral
∫
Vi
∇ξ · (NT F) d ξ up

to any order of accuracy.

The standard Finite Volume case is obtained when having a boundary conform-
ing, Cartesian grid. In this scenario the map, X, and, therefore, the matrix, N , are
the identity operators. The integral

∫
Ad
±
Nj d(ξ) dAξ is either zero or equal to |Ad± |

and the divergence free condition of the rows of N gets trivially satisfied thanks to
the topological symmetries of the problem. For all the other cases, we have to calcu-
late the integrals

∫
Ad
±
Nj d(ξ) dAξ and

∫
AEB

(N(ξ) n̂)j dAξ in an appropriate way. In

section (5.3) we show how to do so using the ideas presented in [1].

5. Implementation of equation (4.11).

In this section we show some details about the implementation of formula (4.11),
specifically, we show how to compute integrals of the form

∫
Ad
±

(ξ − ξ0) p dA, or mo-

ments, how to compute multi-dimension derivatives of product of vector functions,
∇p(NT F)s(ξ), and how to calculated the integrals

∫
Ad
±
Nj d dAξ and

∫
AEB

(N n̂)j dAξ

in order to get freestream preservation.

5.1. Computing integrals of the form
∫
Ad
±

(ξ − ξ0) p dA.

Integrals of the form

∫
Ãd
±

ξ p00 ξ p11 · · · ξ pD−1

D−1 d Ã =

∫
Ãd
±

ξ p d Ã, (5.1)

where ξ = (ξ0, ξ1, · · · , ξD−1) ∈ RD and p = (p0, p1, · · · , pD−1) ∈ ND is a multi-
index, are called ”moments”.

The region Ãd± is given by: Ãd± = T (Ad±), where T (ξ) = ξ − ξc and ξc ∈ RD
is the center of the control volume Vi that is, moments are calculated using local
coordinates, where the center of the cell is taken to be the zero vector.

The integrals (5.1) are already computed and we will use them to calculate

∫
Ad
±

(ξ − ξ0) p dA, (5.2)

for any given ξ0,∈ RD and any p ∈ ND. Integral (5.2) appears when we Taylor-
expand fluxes during the discretization process.

10 D. Batista

Adding to and subtracting from the integrand in (5.2), the vector ξc, we get:

∫
Ad
±

(ξ − ξ0) p dA =

∫
Ad
±

(ξ − ξc + ξc − ξ0) p dA =

∫
Ãd
±

(ζ + ξ1) p dÃ, (5.3)

with ζ = ξ − ξc and ξ1 = ξc − ξ0.

Now, by definition, (ζ + ξ1) p is written as

(ζ + ξ1) p =
D−1∏
j=0

(ζj + ξ1
j) pj , (5.4)

where each factor can be computed as follows

(ζj + ξ1
j) pj =

pj∑
kj=0

(
pj
kj

)
ζ
kj
j (ξ1

j) pj−kj (5.5)

Combining (5.5) and (5.4) it is obtained

(ζ + ξ1) p =
D−1∏
j=0

 pj∑
kj=0

(
pj
kj

)
ζ
kj
j (ξ1

j) pj−kj

 (5.6)

After algebraic manipulations, (5.6) can be written as

(ζ + ξ1) p =

p0∑
k0=0

(
p0

k0

)
(ξ1

0) p0−k0

[
p1∑
k1=0

(
p1

k1

)
(ξ1

1) p1−k1

[
· · ·[

pD−1∑
kD−1=0

(
pD−1

kD−1

)
(ξ1
D−1) pD−1−kD−1

[
ζ k0
0 ζ k1

1 · · · ζ kD−1

D−1

]]
· · ·

]]
(5.7)

Integrating (5.7) over Ãd± produces

∫
Ãd
±

(ζ + ξ1) p dA =

p0∑
k0=0

(
p0

k0

)
(ξ1

0) p0−k0

[
p1∑
k1=0

(
p1

k1

)
(ξ1

1) p1−k1

[
· · ·[

pD−1∑
kD−1=0

(
pD−1

kD−1

)
(ξ1
D−1) pD−1−kD−1

[∫
Ã d
±

ζ k0
0 ζ k1

1 · · · ζ kD−1

D−1 dÃ

]]
· · ·

]
,

or, equivalently,

Mapped EB 11

∫
Ad
±

(ξ − ξ0) p dA =

p0∑
k0=0

(
p0

k0

)
(ξ1

0) p0−k0

[
p1∑
k1=0

(
p1

k1

)
(ξ1

1) p1−k1

[
· · ·[

pD−1∑
kD−1=0

(
pD−1

kD−1

)
(ξ1
D−1) pD−1−kD−1

[∫
Ã d
±

ζ k0
0 ζ k1

1 · · · ζ kD−1

D−1 dÃ

]]
· · ·

]
(5.8)

As we can see in (5.8), for a given j, 0 ≤ j < D − 1, each of the sums is of the
form

Sumj =

pj∑
kj=0

(
pj
kj

)
(−ξ0

j) pj−kj

(
Sumj+1

)

For j = D − 1 we have that

SumD−1 =

pD−1∑
kD−1=0

(
pD−1

kD−1

)
(−ξ0

D−1) pD−1−kD−1

[∫
Ã d
±

ζ k0
0 ζ k1

1 · · · ζ kD−1

D−1 dÃ

]

Expression (5.8) has been implemented recursively, finishing the recursion when

j = D− 1, by asking for the (already computed) moment
∫
Ã d
±
ζ k0
0 ζ k1

1 · · · ζ kD−1

D−1 dÃ.

The case

∫
Ad
±

(ξ − ξ0) p (ξ − ν0) q dA,

with ξ, ξ0, ν0 ∈ RD and multi-indices p, q ∈ ND, appears when Taylor-expanding
the normal vector, n̂, in (4.11) and can be calculated according to:

∫
Ad
±

(ξ − ξ0) p (ξ − ν0) q dA =

p0∑
k0=0

(
p0

k0

)
(ξ1

0) p0−k0

[
p1∑
k1=0

(
p1

k1

)
(ξ1

1) p1−k1

[
· · ·[

pD−1∑
kD−1=0

(
pD−1

kD−1

)
(ξ1
D−1) pD−1−kD−1

[
q0∑
r0=0

(
q0

r0

)
(ν1

0) q0−r0

[
· · ·

[
qD−1∑
rD−1=0

(
qD−1

rD−1

)
(ν1
D−1) qD−1−rD−1

[∫
Ã d
±

ζ k0+r0
0 ζ k1+r1

1 · · · ζ kD−1+rD−1

D−1 dÃ

]]
· · ·

]
,

(5.9)

with ζ = ξ − ξc, ξ1 = ξc − ξ0, and ν1 = ξc − ν0.

12 D. Batista

5.2. Computing multi-dimension derivative ∇p(NT F)s(ξ).

We will denote the multi-dimension derivative of the product of two functions, F
and G, by

∇p (F (x)G(x)) , (5.10)

where F, G : RD → R are vector functions and p ∈ ND is a multi-index indicating
the derivatives to be computed. For instance, the derivative

∂2

∂ x2

∂

∂ y
(F (x)G(x)) , (5.11)

is denoted by expression (5.10) with p = (2, 1).

Inspired on the Binomial theorem and by using combinatorics we will write an ex-
act formula to compute (5.10) for any dimension D ∈ N and any multi-index p ∈ ND.

First, suppose the simplest case D = 1.

Let’s compute, for instance, the derivative ∂3

∂ x3 (F (x)G(x)). By direct computa-
tion and after grouping terms, we get:

∂3

∂ x3
(F G) =

∂3F

∂ x3
G+ 3

∂2F

∂ x2

∂G

∂ x
+ 3

∂F

∂ x

∂2G

∂ x2
+ F

∂3G

∂ x3
,

which, written in the form (5.10), is equal to:

∇3 (F G) = ∇3 F ∇0G+ 3∇2 F ∇1G+ 3∇1 F ∇2G+∇0 F ∇3G,

or,

∇p (F G) =
∑

0≤q≤p

(
p

q

)
∇p−q F ∇q G, (5.12)

with p = 3.

As we can see, (5.12) looks exactly like the Binomial theorem, where
(
p
q

)
counts

how many distinct q−elements subsets, or q−subsets, we have in a set with p ele-
ments, or a p−set.

Now, let’s compute (5.11). This is equal to:

∇(2, 1) (F G) =∇(2, 1) F ∇(0, 0)G+ 2∇(1, 1) F ∇(1, 0)G+

∇(2, 0) F ∇(0, 1)G+ 2∇(1, 0) F ∇(1, 1)G+

∇(0, 1) F ∇(2, 0)G+∇(0, 0) F ∇(2, 1)G,

Mapped EB 13

or,

∇p (F G) =
∑

0≤| q |≤| p |

Kq∇p−q F ∇q G, (5.13)

with p = (2, 1) and | p | =
∑D−1
j=0 pj . Here, in general, Kq 6=

(
p
q

)
. Therefore,

even though (5.13) looks like the Binomial theorem, it is not equal to (5.12). The rea-
son why this happens is that, now, p and q are not just numbers but vectors of integers.

For the rest of this section we will refer to a vector of integers, p = (p0, · · · , pD−1) ∈
ND, either as the multi-index p or as the set p with p0 elements of some type, p1 ele-
ments of some other type, etc, and | p | elements in total. A multi-index q ∈ ND, is a
subset of p if qi ≤ pi, for every i = 0, · · · , D − 1.

In expression (5.13), Kq is equal to the number of subsets, q, we have in p but
now, we care about the subset q itself when counting for | q |−subsets of p. That is,
we don’t only have to count the subsets but to construct them as well.

Different multi-indices q1, q2, with the same modulus, | q1 | = | q2 |, can have differ-
ent coefficients associated, Kq1 6= Kq2 . Furthermore, some multi-indices, q, satisfying
0 ≤ | q | ≤ | p |, might not be a subset of the multi-index p, e.g. q1 = (2, 0) is a subset
of p = (2, 1), whereas q2 = (0, 2) is not, even though | q1 | = | q2 | = 2 ≤ 3 = | p |.

Every multi-index q and, therefore, p−q, is unique, meaning that there is ”almost”
no redundancy in (5.13). We say ”almost” because, even though q1 = (0, 1) 6= q2 =
(1, 1), in both cases we have to compute ∂ G

∂ y . The way (5.13) has been implemented

we compute ∇q1G and ∇q2G separately thus, we could still have some room for im-
provements. However, the algorithm for (5.13) works recursively over multi-indices,
calculating the derivatives ∇p−qF and ∇qG only once, at the end of the recursion.
Since multi-indices are vectors of integers of length equal to D (the dimension of the
problem), the algorithm is computationally efficient.

As we mention before, we want to count subsets of a given set. Two very common
methods for enumerating the subsets of a given set are lexicographic ordering and
Gray codes, neither of which is particularly well suited when looking for a minimum
subset. These methods do not generate a sequence of subsets in which the number of
elements in each subset increases monotonically. For our particular purpose, which is
evaluating (5.13):

∇p (F G) =
∑

0≤| q |≤| p |

Kq∇p−q F ∇q G,

having an algorithm with this characteristic is important, for two main reasons:
1. Terms of the form ∇p(F G) appear on Taylor expansions of F G which, in

turn, are used for discretizing flux-divergence. We use expression (5.13) for
mathematical analysis of these flux-divergence numerical discretizations by,
possibly, breaking the sum in (5.13), rearranging terms, etc. If subsets q are
generated in a monotonically increasing fashion, the resulting mathematical

14 D. Batista

expressions can be evaluated with slight modifications (if any) of the original
algorithm for computing (5.13).

2. Subsets q are multi-indices, which indicate what derivatives have to be com-
puted. Generating them ordered by their size, | q |, means that we first evalu-
ate all (if any) first order derivatives, then all (if any) second order derivatives,
and so on. We could use this fact to eliminate all redundancy when comput-
ing ∇p(F G) by, let’s say, saving previously calculated derivatives and reusing
them later.

The idea of a k−subset of a set having n elements can be expressed by means
of a n−digit binary number in which exactly k of the digits are 1. When k−subsets
are enumerated before any (k+ 1)−subset we obtain the so called Banker’s sequence.
We have adapted the algorithm for generating a Banker’s sequence presented in [2],
that outputs the binary representation of a k−subset. With it, we construct the
corresponding | q |−subset, q, of p, with | q | = k.

5.3. Computing integrals
∫
Ad
±
Nj d dAξ and

∫
AEB

(N n̂)j dAξ.

In this section we show how to calculate the integrals

∫
Ad
±

Nj d dAξ and

∫
AEB

(N n̂)j dAξ

such as, we get a freestream preserving scheme from equation (4.11). For com-
puting

∫
Ad
±
Nj d dAξ, we follow the ideas presented in the Mapped Finite Volume

case [1], which are based on the theory of differential forms and the use of Poincare
Lemma. For the general case discuss here, we also have to calculate

∫
AEB

(N n̂)j dAξ.
For doing so, we first apply the divergence theorem on the complement, Υi − Vi, of
the control volume Vi to write the integral over the EB-face in terms of integrals over
coordinate faces and, then, we use Poincare Lemma again. This can be done because
the mapping X is defined over the rectangular control volumes Υi, i ∈ ZD and, there-
fore, so is the matrix N .

Any vector field ~v = (v0, · · · , vD−1)T on RD has a corresponding (D − 1)−form

w = v0 (dx1 ∧ dx2 ∧ · · · ∧ dxD−1) + · · ·+ (−1)D−1 vD−1 (dx0 ∧ dx1 ∧ · · · ∧ dxD−2),

which exterior derivative is the D−form

dw = div(~v) (dx0 ∧ dx1 ∧ · · · ∧ dxD−1),

where div(~v) is the divergence of ~v.

The jth-row of the matrix N , Nj, • = (Nj, 0, · · · , Nj,D−1), with
Nj, d = det((∇ξX)(d | ~e j)), d = 0, · · · , D − 1, defines a vector field on RD with the
corresponding (D − 1)−form:

Mapped EB 15

wj = Nj, 0 (dx1∧ dx2∧ · · · ∧dxD−1)+ · · ·+(−1)D−1Nj,D−1 (dx0∧ dx1∧ · · · ∧dxD−2)

Since the rows of N are divergence free, the exterior derivative of wj is

dwj = div(Nj, •) (dx0 ∧ dx1 ∧ · · · ∧ dxD−1) = 0

Now, we assume that the faces A d
± and AEB are or can be represented as a star-

shaped with respect to zero, where:

Definition 5.1. An open set A ⊂ RD is called start-shaped with respect to 0, if
for any x ∈ A the line segment from 0 to x is contained in A.

Therefore, according to the following theorem:

Theorem 5.1 (Poincare Lemma). Let A ⊂ RD be a star-shaped with respect to
0. If w is a closed form on A (dw = 0) then w is exact that is, w = dη, for some η;

there exist a (D − 2)−form, ηj , such as

wj = dηj

Example: In 2D the matrix N is given by

N =

 ∂ X1

∂ ξ1
−∂ X1

∂ ξ0

−∂ X0

∂ ξ1
∂ X0

∂ ξ0


Each row of N defines a vector field. The first row, for instance, is equal to

N0, • =

(
∂ X1

∂ ξ1
, −∂ X1

∂ ξ0

)
The corresponding 1−form is

w0 =
∂ X1

∂ ξ1
dξ1 +

∂ X1

∂ ξ0
dξ0,

and

dw0 = div(N0, •) (dx0 ∧ dx1) =

(
∂2X1

∂ ξ0 ∂ ξ1
− ∂2X1

∂ ξ1 ∂ ξ0

)
(dx0 ∧ dx1) = 0,

assuming X1 is, at least, C2. Thus, according to theorem 5.1, there exist a
0−form, i.e., a smooth function, η0, such as

16 D. Batista

∂ X1

∂ ξ1
dξ1 +

∂ X1

∂ ξ0
dξ0 = w0 = d η0 =

∂ η0

∂ ξ0
dξ0 +

∂ η0

∂ ξ1
dξ1

For this particular example we clearly see that η0 = X1.

The form η is not unique. In this work we follow the formulas given in [1], where
each entry, Nj d, of N can be written as:

Nj d =
∑

s = 0, . . . , D − 1
s 6= d

∂ N s
j d

∂ ξs
,

with

N s
j d =

1

D − 1
det[(∇ξX)(X | j) (s | ~e d)] (5.14)

If we define N̂j d = (N0
j d, N

1
j d, · · · , N

d−1
j d , Nd+1

j d , · · · , ND−1
j d) then, we can write

∫
Ad
±

Nj d dAξ =

∫
Ad
±

∇·N̂j d dAξ =

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫

(Ad
±)s
±̂

Ns
j d dEξ+

∫
(Ad
±)EB

N̂j d·n̂ dEξ

where the last equality is a consequence of the divergence theorem, (Ad±)s±̂ is the

edge of the face Ad± in the s direction, and (Ad±)EB is the intersection of the domain
Ω with Ad±.

On the other hand, if Bd± denotes the face-complement of Ad± over the rectangular
control volume Υi, by using the fact that the rows of N are divergence free and after
applying the divergence theorem, we have that:

0 =

∫
Υi−Vi

∇ξ · (Nj, •) d ξ =
D−1∑
d=0

∑
±=+,−

±
∫
Bd
±

Nj d dAξ +

∫
AEB

(N n̂)j dAξ

Thus,

∫
AEB

(N n̂)j dAξ = −
D−1∑
d=0

∑
±=+,−

±
∫
Bd
±

Nj d dAξ = −
D−1∑
d=0

∑
±=+,−

±
∫
Bd
±

∇ · N̂j d dAξ

∫
AEB

(N n̂)j dAξ =

−
D−1∑
d=0

∑
±=+,−

±

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫

(Bd
±)s
±̂

Ns
j d dEξ +

∫
(Ad
±)EB

N̂j d · n̂ dEξ



Mapped EB 17

where (Bd±)s±̂ is the edge of the face Bd± in the s direction.

The different integrals over (Ad±)s±̂, (Bd±)s±̂, and (Ad±)EB are calculated using

quadratures, with the convention that the same quadrature rule is used wherever the
integrals appear.

We finish this section showing an algorithm for computing N s
j d when D = 3,

suitable for coding purposes, namely

N s
j d =

(−1)j+d

2

[
(−1)kXn

∂ Xm

∂ ξl
+ (−1)k+1Xm

∂ Xn

∂ ξl

]
, (5.15)

where k = 0 if l < s or k = 1 otherwise, m = min(d1, d2), n = max(d1, d2),
l 6= s, d, and j 6= d1, d2.

6. Mapped grid Embedded Boundary Method.

The resulting formula for calculating the divergence-average over the control vol-
ume Vi for the Mapped Embedded Boundary case, is given by:

∫
Vi

∇ξ · (NTF) d ξ = (6.1)

D−1∑
d=0

∑
±=+,−

±

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ (6.1.a)

+

D−1∑
j=0

Fj(ξ
d
±)

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫
(Ad
±)s
±̂

Ns
j d dEξ +

∫
(Ad
±)EB

N̂j d · n̂ dEξ


 (6.1.b)

+

D−1∑
s=0

∫
AEB

 ∑
1≤|p|≤P

1

p!
(ξ − ξEB)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
s j)(ξEB)

 n̂s dAξ(6.1.c)

−
D−1∑
j=0

Fj(ξEB) D−1∑
d=0

∑
±=+,−

±

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫
(Bd
±)s
±̂

Ns
j d dEξ +

∫
(Ad
±)EB

N̂j d · n̂ dEξ




(6.1.d)

+O(hP+D)

where N̂j d = (N0
j d, N

1
j d, · · · , N

d−1
j d , Nd+1

j d , · · · , ND−1
j d) and N s

j d are given by
equations (5.14) or (5.15) if D = 3.

18 D. Batista

7. Particular cases obtained from equation (6.1).

As shown in this section, from expression (6.1) we can also obtain formulas for
the particular cases Cartesian EB and Mapped FV.

7.1. Cartesian grid Embedded Boundary Method.

The analysis presented in previous pages also holds for the Cartesian EB case,
which, after all, it’s a mapped EB problem with the mapping being the identity op-
erator.

By using formula (6.1) with N equal the identity matrix, we get the following
high-order, conservative, freestream preserving scheme:

∫
Vi

∇ξ · F dx = (7.1)

D−1∑
d=0

∑
±=+,−

±

 ∑
1≤|p|≤P

1

p!
∇pFd(xd±)

∫
Ad
±

(x− xd±)p dAx (7.1.a)

+

D−1∑
j=0

Fj(x
d
±)

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫
(Ad
±)s
±̂

Ns
j d dEx +

∫
(Ad
±)EB

N̂j d · n̂ dEx


 (7.1.b)

+

D−1∑
s=0

∫
AEB

 ∑
1≤|p|≤P

1

p!
(x− xEB)p∇pFs(xEB)

 n̂s dAx (7.1.c)

−
D−1∑
j=0

Fj(xEB) D−1∑
d=0

∑
±=+,−

±

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫
(Bd
±)s
±̂

Ns
j d dEx +

∫
(Ad
±)EB

N̂j d · n̂ dEx




(7.1.d)

+O(hP+D)

7.2. Mapped Finite Volume Method.

When we have a boundary conforming, curvilinear mesh, formula (6.1) produces
the high-order, conservative, freestream preserving Finite Volume method:

Mapped EB 19

∫
Vi

∇ξ · (NTF) d ξ = (7.2)

D−1∑
d=0

∑
±=+,−

±

∫
Ad
±

∑
1≤|p|≤P

1

p!
(ξ − ξd±)p

∑
j = 0, . . . , D − 1
0 ≤ |q| ≤ |p| − 1

Kq∇p−q,q(Fj , NT
d j)(ξ

d
±) dAξ (7.2.a)

+

D−1∑
j=0

Fj(ξ
d
±)

D−1∑
s = 0
s 6= d

∑
±̂=+,−

±̂
∫
(Ad
±)s
±̂

Ns
j d dEξ


 (7.2.b)

+O(hP+D),

8. Numerical Results.

Mapped EB
In this example we have implemented a fourth order, mapped embedded bound-

ary scheme (formula (6.1)). That is, P is equal to 2 in (6.1), the normal vector has
been Taylor-expanded with a second order polynomial, and the moments are com-
puted with fourth order accuracy.

We consider the flux:

F(ξ) = (2π cos(2π ξ0) sin(2π ξ1), 2π sin(2π ξ0) cos(2π ξ1))
T
,

and a curvilinear grid given by the map:

X(ξ) =
(
ξ0, ξ1 + 2 ξ2

1 (1− ξ1)2 sin(2π ξ0)
)T

The domain (blue region) and an example of the mesh are shown in figure 8.1.

Errors, computed in three different norms, are shown in figure 8.2. We see we
get fourth order accuracy in L2−norm and third in Max-norm. Thus, at cut cells we
loose one order of accuracy.

We also checked for freestream preservation by considering the same topology
but, taking the flux to be constant. Results are shown in table 8.1. We see exact zero,
up to machine precision, is obtained.

20 D. Batista

Fig. 8.1. Non-symmetric domain and an example of the curvilinear grid with 30 × 30 nodes.
The grid inside the domain is also non-symmetric with respect to the domain.

1E-­‐10	

1E-­‐09	

1E-­‐08	

0.0000001	

0.000001	

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

1	
 10	
 100	
 1000	

E
rr

or

n

Max

L2

L1

3rd Order

4th Order

Fig. 8.2. Error. We have drawn third and fourth order lines for reference

Table 8.1
Freestream preservation

Npoints || · ||1
4 8.88× 10−16

8 4.44× 10−16

16 2.77× 10−16

32 1.31× 10−16

64 8.33× 10−17

128 5.55× 10−17

256 2.78× 10−17

512 2.008× 10−17

Mapped EB 21

Cartesian EB
In this example we have implemented a fourth order, Cartesian embedded bound-

ary method.

We consider the flux:

F(ξ) = (2π cos(2π ξ0) sin(2π ξ1), 2π sin(2π ξ0) cos(2π ξ1))
T
,

and the map to be the identity operator, X(ξ) = ξ.
The domain (blue region) and an example of the mesh are shown in figure (8.3).

Errors, computed in three different norms, are shown in figure (8.4). We get
fourth order accuracy in L2−norm and third in Max-norm. As before, we loose one
order of accuracy at cut cells.

We checked for freestream preservation by considering a constant flux under the
same topology. Results are shown in table (8.2), where we see exact zero, up to ma-
chine precision.

Fig. 8.3. Domain (blue region) and a Cartesian cut cell grid.

22 D. Batista

1E-­‐11	

1E-­‐09	

0.0000001	

0.00001	

0.001	

0.1	

10	

1000	

1	
 10	
 100	
 1000	

E
rr

or

n

Max

L2

L1

3rd Order

4th Order

Fig. 8.4. Error. We have drawn third and fourth order lines for reference

Table 8.2
Freestream preservation

Npoints || · ||1
4 4.44× 10−16

8 4.44× 10−16

16 2.22× 10−16

32 1.11× 10−16

64 6.26× 10−17

128 3.12× 10−17

256 1.73× 10−17

512 1.04× 10−17

Mapped FV
In this example we have implemented a second order, mapped finite volume

method.

We consider the flux:

F(ξ) = (2π cos(2π ξ0) sin(2π ξ1), 2π sin(2π ξ0) cos(2π ξ1))
T
,

and a curvilinear grid given by the map:

X(ξ) = (1.7 + (0.148 ξ0 + 0.462) cos(2π ξ1 + 0.429 sin(2π ξ1)),

1.66(0.148 ξ0 + 0.462) sin(2π ξ1))
T

The domain (blue region) and an example of the mesh are shown in figure (8.5).

Errors, computed in three different norms, are shown in figure (8.6). We see we
get second order accuracy in all norms: L1, L2, and Max norm.

For this particular example we can easily checked for conservation since the flux
is equal to zero at the boundary of the domain. As shown in table (8.3), we observe

Mapped EB 23

exact conservation, up to machine precision.

Finally, we also checked for freestream preservation by considering the same topol-
ogy but, taking the flux to be constant. Results are shown in table (8.4), where we
see exact zero, up to machine precision.

Fig. 8.5. Domain (blue region) and a boundary conforming curvilinear grid.

0.000001	

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

1	
 10	
 100	
 1000	

E
rr

or

n

Max

L2

L1

2nd Order

Fig. 8.6. Error. We have drawn a second order line for reference

Table 8.3
Conservation

Npoints Sum of 〈∇x · F 〉
4 1.78× 10−15

8 −3.33× 10−15

16 −2.83× 10−15

32 7.91× 10−16

64 −5.03× 10−17

128 2.75× 10−16

256 1.05× 10−15

512 1.86× 10−15

24 D. Batista

Table 8.4
Freestream preservation

Npoints || · ||1
4 2.88× 10−15

8 2.10× 10−15

16 1.16× 10−15

32 8.12× 10−16

64 4.44× 10−16

128 2.64× 10−16

256 0
512 1.43× 10−16

Mapped FV - 3D
In our last example we have implemented a second order, mapped finite volume

scheme in 3D.

We consider the flux:

F(ξ) = (2π cos(2π ξ0) sin(2π ξ1) sin(2π ξ2),

2π sin(2π ξ0) cos(2π ξ1) cos(2π ξ2),

ξ2)
T

and a curvilinear grid given by the map:

X(ξ) =

(
5 ξ0,

ξ1
2
,
ξ2
4

)T
The domain (blue region) and an example of the mesh are shown in figure (8.7).

Errors, computed in three different norms, are shown in figure (8.8). We get
third order accuracy in all norms: L1, L2, and Max norm, even though we have
implemented a second order scheme. Since the mesh is orthogonal, we think we are
getting some extra cancellations in the error term.

Mapped EB 25

Fig. 8.7. Domain (blue region) and a boundary conforming grid in 3D.

0.0000001	

0.000001	

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

1	
 10	
 100	
 1000	

E
rr

or

n

Max

L2

L1

3rd Order

Fig. 8.8. Error. We have drawn a third order line for reference

9. Summary.

• We have presented an Embedded Boundary Scheme in Mapped Coordinates
that is high-order, multi-dimensional, conservative, and freestream preserv-
ing.
• This formulation reduces to the scheme presented in [1] when a boundary

conforming mesh is used.
• We show why by just taking Taylor expansions we fail to obtain freestream

preservation and how to fix this, a theoretical result which is one of the main
contribution of this report.
• The second main contribution has been the construction of an exact formula

for calculating multi-dimension derivatives of product of functions.
• The analysis presented here is quite general, covering the cases Finite Volume,

Cartesian grid Embedded Boundary, and Mapped grid Embedded Boundary
as well.

26 D. Batista

• By taking X equals the identity map, we get a Cartesian grid EB method
that is freestream preserving.
• A key factor for having a conservative scheme was to take Taylor expansions

at faces centroids.
• Key factors for having freestream preservation were the use of the new formula

for multi-dimension derivates (5.13) and the use of (Poincaré) lemma 5.1.

Acknowledgments. P. Colella, T. Ligocki, and P. Schwartz. Thanks to the
Advanced Numerical Algorithms Group, for all the enlightening discussions we had.
This project was entirely founded by the US Department of Energy.

REFERENCES

[1] P. Colella, M. R. Dorr, J. A. F. Hittinger, and D. F. Martin, High-order, finite-volume
methods in mapped coordinates, J. Comput. Phys., 230 (2011), pp. 2952–2976.

[2] J. Loughry, J. I. van Hemert, and L. Schoofs, Efficiently enumerating the subsets of a set,
(2000), pp. 1–10.

[3] P. Colella, D. Graves, T. Ligocki, D. Trebotich, and B. Van Straalen, Embedded
boundary algorithms and software for partial differential equations, J. of Phys.: Conference
series, 125 (2008), doi:10.1088/1742-6596/125/1/012084.

[4] T. J. Ligocki, P. O Schwartz, J. Percelay, and P. Colella, Embedded boundary grid gen-
eration using the divergence theorem, implicit functions, and constructive solid geometry,
J. Comput. Phys.: Conference series, 125 (2008), doi:10.1088/1742-6596/125/1/012080.

[5] D. Trebotich, B. Van Straalen, D, Graves, and P. Colella, Performance of embedded
boundary methods for CFD with complex geometry, J. of Phys.: Conference series, 125
(2008), doi:10.1088/1742-6596/125/1/012083.

[6] P. Colella, D. Graves, B. J. Keen, D. Modiano, A Cartesian grid embedded boundary
method for hyperbolic conservation laws, J. Comput. Phys., 211 (2006), pp. 347–366.

[7] P. Schwartz, M. Barad, P. Colella, and T. Ligocki, A Cartesian grid embedded boundary
method for the heat equation and Poisson’s equation in three dimensions, J. Comput.
Phys., 211 (2006), pp. 531–550.

[8] M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson’s
equation, J. Comput. Phys., 209 (2005), pp. 1–18.

[9] P. McCorquodale, P. Colella, and H. Johansen, A Cartesian grid embedded boundary
method for the heat equation on irregular domains, J. Comput. Phys., 173 (2001), pp. 620–
635.

[10] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains, J. Comput. Phys., 147 (1998), pp. 60–85.

	BerkeleyInternshipReport.pdf
	Document1
	Acknwoledgment3
	Reportdavid

