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Abstract: With the advancements in optical 

systems and tomographic reconstruction 

techniques, researchers are able to produce three-

dimensional image data sets at ultrastructure 

resolutions of electron microscope. To visualize 

such data sets in order to conclude structural 

information, three-dimensional modeling 

techniques are being developed in order make 

contours of the detected structures in the volume 

image data. Such contours can then be rendered 

into surfaces to create volume models. Manual 

volume segmentation allows researchers to 

manually trace and label contours of the 

structures of interest. However, this is a time 

consuming process which can be done more 

efficiently with development of techniques for 

automatic or semi-automatic contour extraction 

methods. This paper outlines a model that 

incorporates nonlinear diffusion across the 

volume to eliminate noise that corrupts the 

imaged biological structures. An entropic 

thresholding based on gray-level and spatial 

correlation across the data volume is then 

incorporated into this model. It follows with an 

edge detection model and contour extraction to 

label extracted connected contours. Such 

contours can be exported to a volume rendering 

environment to produce volume models in an 

automatic or semi-automatic manner.  

 

Keywords: tomographic data, nonlinear 

diffusion, local entropic thresholding, Canny 

contour detection, contour extraction. 

 

1. Introduction 
 

Ultrastructure studies in biophysics and 

structural biology is advanced as a result of the 

amount and diversity of information that can be 

obtained from three-dimensional (3D) image 

data sets from electron microscope. 

Advancements in electron microscopes, sample 

preparation and computational techniques has 

played a major part in improvement of the 

finalized 3D image data sets. Currently there are 

high demands for computation methods that 

allow visualization and analysis of such complex 

image data sets. Convenient visualization and 

display of the 3D image data set result in better 

understanding the structure under study. The 3D 

image data is provided from a volume of 

material, in which each voxel has a single 

intensity value. Examples of these data are 

tomographic reconstructions that provide serial 

section images from the volume of the material 

from an electron microscope and optical sections 

from a light microscope. The programs such as 

IMOD (http://bio3d.colorado.edu/imod/), 

XVOXTRACE and JINX 

(http://ncmir.ucsd.edu/) that are used for analysis 

of 3D image data, allow users to manually create 

data sets (manual tracing/labeling) that contain 

list of scattered points, list of contours describing 

a surface, or list of connected line segments, 

which can then be used for volume rendering [6]. 

The output of volume rendering process is a 3D 

Model based on stack of membrane contours that 

can be rotated and viewed at different angles. In 

order to create such data sets automatically using 

edge detection methods, edge-lists of closed 

edges that are well-detected and well-localized 

by a detector (filter) should become available 

from the 3D image data. Well-detection is 

equivalent to having no missing edges and no 

responses to non-edges. Well-localization means 

that the distance between the detected edge 

pixels and the actual edge is at a minimum. 

Edges identified by edge detection methods are 

often disconnected so it should be combined by 

other techniques as to have closed edges where 

possible, to be labeled in the edge-list prior to 

volume rendering. Then one way to provide the 

data that is needed for volume rendering is to 

develop an approach where closed edges with 

such criteria are computationally detected along 

the volume of the 3D image data set. Then the 



edge-lists containing the coordinates of 

sequential edge pixels are stored, one list for 

each edge contour. They can then be modified to 

group lists of contours describing a certain 

surface together. It would then be possible to 

make such edge-lists compatible and exportable 

to a surface rendering program such as IMOD or 

Jinx for subsequent rendering to visualize the 3D 

model.   

Various methods are developed for 3D image 

segmentation. Through 3D image segmentation, 

one can partition the 3D data into segments, 

which allow label assignment to every pixel in 

the data. The labels can be assigned so that 

pixels with the same label share certain visual 

characteristics. Image segmentation methods can 

be grouped into gray-value based, region based 

and shape based categories. There are other 

methods such as Fuzzy connectedness and 

Watershed algorithms that do not fall cleanly 

into these categories [10]. Models of 3D entropic 

thresholding to segment the volume to object and 

background while closing the inter-ruptured 

structures and improving segmentation of 

connected edges, and volume segmentation using 

edge detection techniques by hysteresis 

thresholding to segment connected edges that are 

modified and used in this study fall into the 

category of gray-value based 3D image 

segmentation. 

This paper is organized as follows: Section 2 

briefly describes methods of preparing the 3D 

image data set. Section 3 presents the models of 

3D nonlinear diffusion and bilateral filtering 

combined (implemented in terms of [9], [4], [1]), 

entropic threshold selection method based on 3D 

gray-level spatial correlation (GLSC) histogram 

(implemented in terms of [11]) and Canny edge 

detection model with use of hysteresis 

thresholding applied to 3D image data set 

(implemented in terms of [3]). Section 4 includes 

the numerical experiment (proposed model) and 

numerical results. The paper ends with a 

summary and discussion in section 5. The 

nonlinear diffusion method and entropic 

threshold selection method are applied across the 

volume while canny edge detection model and 

contour labeling are done on each 3D serial 

section image. This is done so that the contours 

based on the features of interest from each image 

section can be selected. 

 

 

2. Image Acquisition 
 

The tomographic 3D image data set was 

calculated from series of tilted views of volume 

of material from an electron microscope by use 

of the R-weighted back projection algorithm [5]. 

IMOD software package is used to compute the 

tomogram by the R-weighted back projection 

algorithm. Prior to application of this algorithm, 

the tilt series was first aligned by creating a list 

of fiducial points. The minimization approach 

described by Luther el al. is used through the 

program TILTALIGN as part of the IMOD 

tomography package to solve for shifts, rotations 

and size changes needed to align the views [8]. 

Five sequential serial section images spanning a 

volume of ~ 15 nm are used for the numerical 

experiment in this study.  

 

3. Related Models 
 

In this section an overview of the related 

models is presented to serve as a background to 

the model proposed in this study. The proposed 

modifications to these related models are 

described which are then further elaborated on in 

Section 4.  

 

3.1 Nonlinear Diffusion Model  

 

Tomographic 3D image data from biological 

material usually contain large amount of noise 

that can corrupt the structural patterns. Nonlinear 

diffusion is a very powerful technique to reduce 

noise while enhancing the structural features. 

The model that is used in this study to enhance 

structures by denoising is an incorporation of 

Perona and Malik model where regularization is 

proposed directly into the PDE to avoid the 

dependence on the numerical schemes based on 

the formulation due to Catt´e, Lions, Morel and 

Coll with the refinement proposed by Bazan and 

Blomgren [9], [4], [1]. The model is written as  
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Perona and Malik nonlinear diffusion model 

avoids the blurring of edges and other 

localization problems presented by linear 

diffusion models by reducing the diffusivity in 

places with higher likelihood of being edges. The 

likelihood is measured by a function of the local 



gradient u∇ in terms of the current image 

and 0=∂ gun
r  is the Neumann boundary 

conditions. The diffusivity of Perona and Malik 

model is such that ( ) 02 →∇ug  when 

∞→∇u  and ( ) 12 →∇ug when 0→∇u  as 
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In the attempt of introducing the regularization 

directly into the PDE, Catt´e, Lions, Morel and 

Coll model proposed replacing the Perona and 

Malik diffusivity by ( ) 2σug ∇ where likelihood 

of being edges is measured in terms of the local 

gradient of the current image σu ; that is the 

smooth version of the current image by a 

Gaussian kernel of variance 2σ . With this 

Gaussian filtering, the diffusivity term allows 

detection of the locations of the main edges to 

prevent excessive diffusion while the small noise 

fluctuations will not be detected as edges hence 

diffused away since they will be smooth. 

Incorporating the Bazan and Blomgren 

refinement for the gradient estimator, a bilateral 

filter in place of the Gaussian kernel is applied. 

The main purpose of the diffusivity term is to 

provide selective smoothing by precisely 

locating the position of the main edges and 

inhibiting diffusion at those locations. With the 

bilateral filtering, a spatial Gaussian and a range 

Gaussian are applied to smooth the image at 

every location where they decrease the influence 

of distant pixels and decrease the influence of the 

pixels with intensity values that are very 

different respectively. Then by design the 

bilateral filter provides strict preservation of the 

edges without artificially enhancing them hence 

improving the selectivity of the diffusivity term 

when 
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For this study Canny’s noise estimator is used to 

determine λ as the 90 percentile of the magnitude 

of the gradient for the edges in terms of the 

original image smooth by the bilateral filter; 

since the local gradient for the diffusivity term is 

set in terms of the smooth version of the current 

image by a bilateral filter.   

Bazan et al. has used a method of anisotropic 

nonlinear diffusion for tomographic data where it 

not only account for modulus of the edge 

detector, but also its directional information; 

hence by choosing appropriate eigenvalues, one 

can allow smoothing parallel to the edges and 

avoid doing so across them [2]. For this study, 

this approach is not used for denoising since 

entropic thresholding in terms of the 3D gray-

level spatial correlation that is introduced in the 

next section can to some extend improve 

smoothing parallel to the edges; due to its spatial 

correlation dependence.   

The nonlinear diffusion in this study is applied 

throughout the 3D image data where the gradient 

and divergence operator are computed not only 

along the x and y directions in each serial section 

image but also across the serial section images in 

the z direction. This allows modulation of 

diffusivity in terms of patterns across the serial 

images as well as each serial section image. 

 

3.2 Entropic Threshold Selection from GLSC 

 

When using edge detection as part of contour 

extraction, edges are often disconnected. Canny 

edge detection model proposes hysteresis 

thresholding in an attempt to segment connected 

edges but pre-segmentation and pre-thresholding 

is not incorporated. In biological 3D image data, 

due to characteristics of the imaged material as 

well as some effects from tomographic 

computation method such as wedge effect 

(missing some high frequency details in the 3D 

image data), there are many inter-ruptured 

structures. In this case use of a thresholding 

scheme in terms of the spatial as well as gray-

level correlation of the voxels can help to either 

close the inter-ruptured structures or eliminate 

them from the object depending on if they are 

included as part of the object or the background 

when threshold is chosen.  

The approach in thresholding schemes is to 

select a valueφ , and sets foreground voxels, 

accordingly,  
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Based on different model assumption, there are 

different solutions to the above binarization 

algorithm. When there is low signal to noise 



ratio or when the object and background gray 

value intensities are not constant throughout the 

volume, even with an optimal selection of φ the 

results will not be satisfactory. For the case study 

at hand, the intensity histogram equalization is 

performed across the volume using the IMOD 

package. The expectation is that with the use of 

the nonlinear diffusion model as described 

before the influence of the noise is removed 

optimally; hence increasing the signal to noise 

ratio.  

One approach to determine an optimal threshold 

value is through entropic maximization as in 

concept in information theory. In various models 

of entropic methods by Pun [1981], Kapur 

[1985], Renyi’s entropy [1997] and Tsallis’s 

entropy [2004], the image spatial correlation is 

not considered. In Abutaleb’s model, the gray 

value of the pixels and the local gray-value of the 

pixels are used to set up a 2D histogram for 

entropic thresholding approach [11]. This 

approach bears resemblance to using “shading 

correction” when the mean intensity value within 

a window around each pixel in subtracted from 

each pixel as part of local thresholding approach 

in 2D image processing [10].  

For this study, the image local property is 

incorporated in thresholding based on the GLSC 

histogram proposed by Xiao, Cao and Zhang. 

The refinement is done as part of segmentation 

of 3D image data in computing the GLSC 

histogram across the image volume. The GLSC 

histogram takes into account the image local 

property by using the gray value of the pixels 

and their similarity with neighboring pixels in 

gray value.     

The 3D GLSC histogram is computed as follows. 

With ( )zyxu ,,  being the gray value of the voxel 

at ( )zyx ,, in the 3D image data, then ( )zyxm ,, is 

defined as the number of neighboring voxels that 

their gray-level is close to the voxel located 

at ( )zyx ,, (neighbor voxels). For this study the 

gray-levels across the volume are between 

[0,255], the corresponding neighboring voxels 

are chosen from a 333 ××  volume and when the 

intensity of the voxels are within 4 gray-levels, 

then their gray-levels are considered close to 

each other such that, 
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where 
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Then the normalized probability of a voxel with 

gray-level k and m neighbor voxels ( )( )mkh , can 

be computed.  

At a threshold t segmenting the object from the 

background, the entropies of the object and that 

of the background are 
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and  
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respectively, where ( ) ( )
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As the grey-level of the background is more 

homogeneous than that of the edges and the 

noise and since it has less information quantity, 

different weights are assigned in terms of the 

number of neighbor voxels in calculation of 

entropy such that as the number of neighbor 

voxels increases the weight decreases (similar to 

the weights proposed by Xiao, Cao and Zhang). 

Then the optimal threshold t* can be obtained by 

maximizing the sum of the background and 

object entropies.  

 

3.3 Canny Edge Detection Model 

  

Kovesi has argued that most of the edge 

detection methods has focused on detection of 

the step edges and that the research on detection 

of step edges has resulted in edge detectors that 

fail to detect and correctly localize valid features 

that can be recognized by human eyes as part of 

manual contour extractions for volume rendering 

of 3D models [7].  Then in order to use an edge 

detector that can detect close edge contours of 

the various features that have been manually 

traced/labeled in 3D modeling programs such as 

IMOD (refer to the list by Kremer that was given 

in Section 1), one should use an edge detector 



that can detect and localize many edge type 

features that are somewhere between a step and a 

line including detection of lines, peaks, roofs and 

bars. The line and step edge detection by Canny 

[3] is an exception that allows detection of edge 

features other than step edges.  

Canny has shown that with ( ) ( )∫
−

−=
w

w

G dxxfxGH  

being the response of a detector ( )xf  to an edge 

in the finite impulse response bounded by 

[ ]ww ,− in 1D and ( )
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w

n dxxfnH being the 

root-mean-square response to the 1D noise ( )xn , 

then the problem of well-detection of edges with 

a well-localization constraint is an optimization 

problem to find ( )xf  that maximizes  
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This equation will be modified when including 

other constraints such as multiple response 

constraint. Canny has shown that with the 

detector being approximated as the first 

derivative of Gaussian operator, the final 

optimization can be achieved and this work can 

be extended to 2D space.  So then the Canny 

method finds edges by looking for the local 

maxima of the gradient that is calculated using 

the first derivative of Gaussian operator. The 

response of this detector is compared to the 

response from boxed detectors and Laplacian of 

Gaussian operator suggested by Marr and 

Hildreth 1980 model in 1D and in 2D showing 

that the canny edge detector has a better impulse 

response that the boxed detector in 1D and 

performs a better localization and detection than 

finding the zero-crossing of Laplacian of 

Gaussian in 2D.  In 2D boxed detectors are 

comparable to Sobel and Prewitt edge detectors 

and log filter searches for zero-crossing after the 

Laplacian of Gaussian is used to find the 

gradient to detect edges.  

With Canny edge detection to be implemented 

for this study one should find the direction of the 

gradient to be in one of 0 deg, 45 deg, 90 deg or 

135 deg intervals to describe one of the four 

possible directions when describing the 

surrounding pixels to a central pixel. Then by 

determining the directions of the gradient, non-

maximum suppression is applied to trace along 

the edge in the gradient direction and suppress 

any pixels values (sets it equal to 0) that is not 

considered to be an edge resulting in a thin line 

in the output image. For extending this work to 

3D image data, one can compute the direction of 

the gradient in terms of the axis across the serial 

image sections to suppress the non-edge voxels 

across the serial section images. Another specific 

approach in Canny edge detector is the use of 

hysteresis thresholding to eliminate streaking. 

Streaking is having disconnected edge contours 

since the operator output in the edge strength 

map fluctuates above and below the threshold 

when performing non-maximum suppression as 

a result of noise. With double thresholding in 

Canny detector implementation any voxel that 

has a value greater than the upper threshold is 

presumed to be an edge voxel and is marked as 

such. Any voxel connected to this edge voxel 

that has a value greater than the lower threshold 

is selected as an edge voxel as well resulting in 

connected contours when possible. However 

when this method is combined with a pre-

thresholding that takes into account the spatial 

correlation of the voxels as well as their gray-

level correlation (local thresholding) as described 

in Section 3.2, the effect of many inter-ruptured 

structures in the 3D image data of the biological 

material can be minimized in creating false edge 

connections or missing a small number of edge 

connections due to non-maximum suppresion.     

 

4. Numerical Experiment and Numerical 

Results 
 

Nonlinear diffusion combined with bilateral 

filtering of the local (current) image for finding 

and updating a selective diffusivity term, is 

performed on the serial image sections in the 3D 

image data; this is the step for initial denoising 

prior to finding the 3D GLSC for entropic 

thresholding. The nonlinear diffusion is 

implemented across the image volume 

incorporating the gradient and diffusion in all 

three [ ]zyx ,,  directions. Second order gradient is 

computed on the boundaries. A single 239.0=λ  

parameter is obtained from Canny noise 

estimator from the gradient of the filtered initial 

image. The initial image in filtered with a 



bilateral filter with the same parameters as the 

ones used for filtering each local (current) image 

when updating the diffusivity term. This 

approach results in selection of a smaller λ  

parameter leading to smaller diffusion at the 

well-preserved but not artificially enhanced 

edges through bilateral filter.  The 3=sσ  and 

03.0=rσ  parameters for bilateral filter are 

chosen to obtain the desired amount of low-pass 

filtering and combination of filtered values; for 

this study Tomasi and Manduchi (1998) 

implementation of bilateral filter for gray and 

color images in used. Time-step for 

implementation is set to 210−=τ and the 

determination of diffusion stopping criterion is 

similar to stopping criterion proposed by Bazan 

and Blomgren (2007) by finding the iteration 

that corresponds to the inflection point in the plot 

of correlation between the noisy serial section 

image and the improved ones. Figure 1 shows 

the 5 serial image sections with equalized 

intensity values across the volume and the result 

of denoising with this nonlinear diffusion model.  
 

(a)

(b)

(a)

(b)

 
 
Figure 1. Serial sections before (a) and after (b) 
denoising. 
 

Figure 2 shows the structure of the 2D 

probability distribution matrix of from 3D GLSC 

across 3D image data. Mesh of the matrix of 

normalized probabilities gives the 2D histogram 

based on 3D GLSC (Figure 3). Figure 2 also 

shows how the terms for entropy calculations at 

different thresholds ( )t  are obtained for this 
implementation where optimal threshold ( )∗t  is 

selected where the sum of the entropies from 

background and object is at the maximum. The 

optimum threshold 111=∗t is found from this 

entropic thresholding in terms of 3D GLSC. 

Figure 4 shows the result when segmenting the 

volume at this threshold.  
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Figure 2. Probability distribution 2D matrix in terms 

of gray-level and number of neighbor voxels as part of 

the 3D GLSC implementation for entropic calculations 

at different thresholds. 

X 10-3X 10-3

 
Figure 3. Two-dimensional histogram from 3D 

GLSC across the 3D image data. 
 

The implementation of Canny edge detector 

with non-maximum suppression and hysteresis 

thresholding is next applied to the pre-segmented 

result from of Figure 4. The hysteresis thresholds 

are set at 0.1 and 0.2. Gradient detection with 

first derivative of Gaussian operator, non-

maximum suppression and hysteresis 

thresholding to connect edge contours are done 

in two dimensions across each serial image 

section. 



 
 

Figure 4. 3D image data segmentation with entropic 

thresholding based on 3D GLSC. 
 

There must be a refinement when these 

models are implemented in three dimensions 

across the image volume. However since the 

nonlinear diffusion and entropic thresholding for 

pre-segmentation were performed across the 

image volume, a good portion of data association 

across the serial image sections is preserved. The 

connected and well-localized edges that are 

detected in this manner across the volume can be 

observed in Figure 5.  
 
 

 
 

Figure 5. Connected and well-localized edge contours 
that are detected using Canny edge detector when pre-

segmentation is performed. 
 

Figure 6 shows the result from using Canny 

detector without the suggested pre-segmentation 

with entropic thresholding. By comparing Figure 

5 and Figure 6, it can be observed that using this 

pre-segmentation model helps in connecting 

many of the edge contours while eliminating 

some of the false edge contour connections of 

the characteristic inter-ruptured structures in the 

3D image data from biological material as they 

are partly eliminated as background.  

The result in Figure 5 is used for labeling 

closed edge contours. In Figure 7 these labeled 

contours are shown with different colors plotted 

on original serial image sections from 

tomographic volume. For labeling contours, 

Kovesi (2001-2007) implementation of edge-

linking and edge-labeling is used to link edge 

pixels together into list of sequential edge points; 

one list for each edge contour where it 

starts/stops at an ending or a junction with 

another edge-list 

(http://www.csse.uwa.edu.au/~pk/Research/Matl

abFns/). For the case at hand the interest was in 

segmentation and contour extraction from the 

mitochondrial structure in the tomographic 

reconstruction. This structure can be isolated 

with adding empty 3D masks to the 3D image 

data where needed. Then when labeling the 

closed contours is performed we will only have 

edge-lists of the contours of interest. 
 

 
 

Figure 6. Edge contours from Canny edge detector 

without pre-segmentation. 
 
(a) (b)(a) (b)

    
  
Figure 7. Labeled contours are extracted and shown 

on the original serial image sections ((a) and (b)) from 

tomographic volume.    
 

Since the edge-lists are matrices of data 

containing the coordinates of sequential edge 

pixels they can be combined as a major extracted 

contour for surface rendering purposes. For 

example, the lists of the labeled closed contours 

inside the mitochondrial structure (inner 

membrane structures) can be combined as one 

list for extracted inner membrane contour; while 

the lists of the labeled contours outlining the 

mitochondrial structure can be combined as one 



list for extracted outer membrane contour from 

each serial image section across the 3D image 

data. When these lists are made compatible and 

exportable to volume rendering software such as 

IMOD or JINX and rendered, then this automatic 

volume segmentation model can be applied in 

place of manual contour tracing to produce 3D 

models. When the users observes some 

inconsistencies between the extracted contour 

and the contour of the structure of interest, they 

can modify the exported contours using the 

volume rendering environment making this 3D 

segmentation model a semi-automatic approach.  

 

5. Summary and Discussion 
 

Through this work, it is shown that the 

proposed model of denoising across the volume 

of the data using the refined nonlinear diffusion 

and determining a threshold for 3D segmentation 

by entropic maximization based on the spatial 

and gray-level correlation across the volume help 

the contour detection by a Canny edge detector; 

leading to detection of connected contours when 

possible. This work can be improved by 

implementing the Canny edge detector in 3D 

across the volume of image data to further 

incorporate data from across the serial image 

sections when detecting contours. The localized 

contours can be labeled by associated matrices of 

the coordinates of their sequential pixels making 

it possible to modify these lists to combine 

contours when needed and to export the lists to a 

volume rendering environment for subsequent 

contour refinement and surface rendering of 3D 

models.     
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