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Abstract

We consider constrained biobjective optimization problems. One of
the extant issues in this area is that of uniform sampling of the Pareto
front. We utilize equispacing constraints on the vector of objective values,
as discussed in a previous paper dealing with the unconstrained problem.
We present a direct and a dual formulation based on arc-length homotopy
continuation and illustrate the direct method (using standard nonlinear
programming tools) on some problems from the literature. We contrast
the performance of our method with the results of three other algorithms,
showing several orders of magnitude speed-up with respect to evolutionary
algorithms, while simultaneously providing perfectly sampled fronts by
construction. We then consider a large-scale application: the variational
approach to mesh generation for partial differential equations in complex
domains. Balancing multiple criteria leads to significantly improved mesh
design.

Keywords: multiobjective optimization, Pareto fronts, constrained opti-
mization, mesh design, parallel global method

1 Introduction
Constrained multiobjective optimization arises frequently in engineering and
scientific applications. The key optimality concept is that of a local Pareto op-
timal point, which is a point such that no improvement in all the objectives can
be achieved by moving to a neighboring feasible point. One of the issues that
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makes these problems quite different from single-objective nonlinear program-
ming is that the set of Pareto optimal points is usually a continuum that may
have disjoint components.

In general, for a problem with p objectives, the Pareto set is a manifold of
dimension p − 1. For instance, in the simplest biobjective case, the Pareto set
will be a curve (or collection of curve segments).

An important tool, the Pareto front, is the image of the Pareto set viewed
in objective space. Again in the biobjective case, that we consider in detail in
this paper, this graph presents in a compact way all that one needs to choose an
appropriate Pareto-point compromise between the usually conflicting objectives.

Unless there is an a priori set of rules to drive an algorithm toward a desired
Pareto point, one would want to have a full discrete approximation of the Pareto
front in order to make an informed decision. It is now possible to calculate a
discrete approximation to the Pareto front for significant problems because of
the availability of high performance computers.

Some popular methods for mapping the Pareto front are based on Genetic
Algorithms (GA) [4], continuation or homotopy [21, 22, 25], and an interesting
geometrically motivated method [3]. In most of these papers a fundamental
issue is how to produce economically a well sampled Pareto front.

In a previous paper [20], one of the authors has introduced a new idea into
marching and global homotopy methods for unconstrained biobjective problems
that produces an equispaced discrete representation of the Pareto front using
few function evaluations, as compared with genetic algorithms. The approach
used there consisted of implementations of Newton’s method to solve the first-
order optimality conditions. Starting from an optimal point of the individual
objectives (themselves Pareto optimal points) and using arc-length homotopy
continuation [16, 13], the method solves a sequence of constrained optimization
problems involving the problem variables, the homotopy variable λ, and an
added nonlinear constraint that requires the vector of objective values to be a
given distance from the previous one. This is the key to producing an equally
spaced Pareto front.

Here we extend the approach to the fully constrained case. The main differ-
ence is that we use SNOPT [11], an established nonlinear programming code, to
solve the successive single-objective constrained problems that arise from taking
convex combinations of the objectives and performing homotopy continuation.
In this case, including the additional variable λ and the equispacing constraint
into SNOPT is straightforward. Although scalarization by convex combinations
has some limitations, as pointed out in the literature, it is one of the most
common and natural approaches used to generate Pareto points.

The difficulty until now has been that it is not obvious how to choose the
values of λ in order to generate an equispaced front, since the map from weights
to optimal Pareto points is nonlinear, and then the mapping from those points
to objective space adds another layer of nonlinearity. That is the question that
the equispacing constraint answers efficiently, as we demonstrate on a collection
of examples from the literature and in a real application to the generation of
optimal, well behaved meshes in two-dimensional complex regions for the solu-
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tion of partial differential equations. We also get a new insight on the intrinsic
parametrization of the Pareto front by arc length (in biobjective problems) that
is obtained with the addition of the equispacing constraint.

We use an implementation of the direct algorithm to compare it with some
problems from the literature [4, 3, 14] and apply it to the mesh generation
problem on several regions. We show then the correlation between the mesh
quality and the errors obtained when solving an elliptic equation using those
meshes.

Variational methods to generate “good" conforming meshes on curved regions
have a long history (see for instance Thomson [26]). These methods have shown
some difficulties for complicated regions, producing folded, crimped or rough
meshes. Castillo [2] has demonstrated that combining linearly several criteria
produces better behaved meshes than any single criterion alone.

We consider the generation of conforming, logically rectangular meshes in
2D curved regions using two criteria: minimization of the sum of the squares of
all the cell sides and minimization of the sum of squares of all the cell areas. We
attack this problem as a biobjective optimization via homotopy continuation.

Although global methods tend to be more complex than simple marching
homotopy continuation, especially for large problems, they may be promising
in terms of parallel implementation. As far as we know, nobody has explored
that possibility yet. We therefore describe in section 6 a parallel algorithm
for the global solution of the equispaced Pareto front representation that could
be applied to large-scale problems with expensive goals and many constraints
and/or variables.

1.1 Related work
Recently we became aware of some additional pertinent work. In [15], Leyffer
presents a global method and elegant theory for calculating an approximately
equispaced discrete representation of the Pareto front (where “global” means
that all points are calculated at once, as in the evolutionary algorithms or
the algorithm in Pereyra [20]). Leyffer uses a bilevel optimization approach
(different from [20]), with a measure of quality of the discrete representation
due to Sayin [24]. The second-level subproblems can be treated as mathemat-
ical programs with complementarity constraints (MPCCs), allowing the use of
general-purpose nonlinear solvers on the subproblems: an aim that we share.
A difficulty is that the subproblems are nonconvex, and the MPCC constraints
involve the first derivatives of the goal functions, so that the general-purpose
subproblem solvers will typically need higher derivatives.

More to the point of this paper, G. Eichfelder in her PhD thesis [5] and in
a recently published book [7] proposes a continuation method that is similar to
the homotopy method advocated here. The main differences are that she uses a
different scalarization approach due to Pascoletti and Serafini [17], and instead
of the equidistance constraint that we propose, she uses a local approximation
of the efficient set based on the Lagrange multipliers to estimate an appropriate
continuation parameter. There may be a difficulty with this approach if the
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distance between the points is large, but the methods are otherwise equivalent
in complexity [8]. The additional constraint in our case will be negligible in
real large-scale problems with expensive goals and many constraints. On the
other hand, the work of Eichfelder is more general, adds considerable theoretical
background, an extensive set of numerical tests, and a very impressive real
application to radiology. Some further references to her work are [6] and some
forthcoming papers [9, 10]. It would be possible to combine the two approaches
using Eichfelder’s method to predict the next point in the continuation even
for large steps and then using our approach to correct it, if necessary, to attain
equispacing of the discrete Pareto front.

1.2 Notation
The constrained multiobjective optimization problem is defined as

min
x

f(x) subject to g(x) ≤ 0, x ∈ D, (1)

where x ∈ Rn, f ∈ Rp, g ∈ Rm, D is a convex set, and the inequalities are
applied componentwise. We assume that the nonlinear functions in f and g are
smooth. For each separate objective function in f(x), we define x∗i , i = 1, . . . , p
to be a local minimizer of the associated single-objective problem:

x∗i ∈ arg min
x

fi(x) subject to g(x) ≤ 0, x ∈ D. (2)

The vector f∗ = [f1(x∗1), . . . , fp(x
∗
p)]

T is called the Utopia vector. Almost in-
variably the points x∗1, . . . ,x

∗
p are not the same. In other words, there is no x∗

such that f∗ = f(x∗). The Pareto front is a convenient tool to choose a suitable
compromise between the conflicting objectives.

2 Biobjective optimization algorithm
For simplicity we consider a biobjective problem (1) (p = 2). In the same way
as shown in [20], the algorithm described here extends naturally to constrained
problems with p > 2.

The algorithm is based on convex combinations of the objectives and homo-
topy continuation. We introduce the scalar objective function

f(x, λ) = (1− λ)f1(x) + λf2(x), (3)

where 0 ≤ λ ≤ 1, and the same problem constraints apply. Standard homotopy
starts at λ = 0 and then steps λ in some fashion, solving the successive sub-
problems to obtain a discrete sampling of the Pareto set and Pareto front. A
frequent and valid criticism of this method is that there is no sure way to obtain
a uniform sampling with it because the parametrization of the Pareto front by
λ is usually a very nonlinear unknown map.

In the current method we use the old idea of intrinsic parametrization of the
Pareto front by using discrete arc length. Let x∗1 and x∗2 be the minimizers of
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f1(x) and f2(x) (obtained by calling a general-purpose optimizer on each single-
objective problem (2)). Define x0 = x∗1 and xl+1 = x∗2 to be the end-points of
the Pareto set (curve segment) that we construct, where l is the desired number
of points in the Pareto front segment joining the end-points.

Given a collection of points fk = f(xk), k = 0, 1, . . . , l+1, we define the chord
length of a polygon defined by the points as Sl =

∑l
k=0 ‖fk+1 − fk‖ (where the

l2 norm is used throughout). If the points are samplings of a smooth curve,
then when the spacing between the points tends to zero, the chord length tends
to the arc length, an intrinsic parametrization of the curve.

Now we define
γ = α ‖f(x0)− f(xl+1)‖/l, (4)

where the distance between the images of the minimizers times a factor α > 1
is an estimate of the total chord length of the Pareto front (accounting for
curvature). In the unlikely case that f(x0) = f(xl+1) we are finished because
the Pareto front would be a single point. Otherwise, γ 6= 0 and we impose the
following equispacing constraint:

‖f(x)− fprev‖2 = γ2, (5)

where fprev is a previous point in the homotopy process. We then minimize the
scalarized function subject to all constraints with λ as an additional variable:

min
x,λ

(1− λ)f1(x) + λf2(x)

subjectto g(x) ≤ 0, x ∈ D, (6)

‖f(x)− fprev‖2 = γ2.

With fprev = f(x0), let the solution be (x1, λ1). We repeat the process with
fprev = f(x1) to obtain (x2, λ2), and so on. The corresponding discrete Pareto
front is defined as the set {f(xk), k = 0, . . . , l+1}, where {xk, k = 0, . . . , l+1} is
the Pareto set. If the process is successful we obtain a discrete representation of
the Pareto front with equispaced values f(xk). Observe that with the use of this
intrinsic parametrization, the λ parametrization of the front loses importance.

In order to prevent going backwards to the previous point or straying far
away from the current solution, we introduce constraints on the objectives. In
case of failure, we provide a restart from the far end going backward, which has
proved quite successful.

As initial estimates for the solution of each minimization problem in the
homotopy process we use the previous point, plus an estimate of the direction
and length of the move (taking into account the constraints, so the estimate
remains feasible). No second derivatives of the functionals are required.

Note that constraint (5) prevents the subproblems from being convex even
if the original goals and constraints are. However, in the convex case, the initial
point x0 is a global minimizer for the single-objective problem (2) with i = 1. If
l is large enough to make γ relatively small, we may argue heuristically that for
each problem (6) in the homotopy, warm-starting the optimizer at the preceding
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minimizer is likely to give a global minimizer for the current problem. (Recall
that SNOPT solves general optimization problems using a sequence of convex
QP subproblems.) We see this as a practical benefit of the homotopy approach.

Given our imperfect knowledge of the total arc length, the spacing γ may be
inappropriate and we may fall short of or overshoot the target right end-point.
A possible way to obtain a tighter result is to do a coarse sampling of the front
first and then use the calculated arc length to obtain a better value of γ in (4).
This is more critical for highly curved fronts.

As we showed in [20], the extension to p > 2 objectives is straightforward,
although the complexity increases considerably. Since the Pareto set and its
image, the Pareto front, have dimension p− 1, we need that number of weights
λi, i = 1, . . . , p − 1 and also p − 1 additional distance constraints in order to
produce a discrete representation of the Pareto front as a uniform grid of points.
Now the parametrization uses chord length along each coordinate axis.

3 A dual formulation
Here we suggest an alternative sequence of subproblems whose dual conditions
correspond to minimizing the weighted objective function. For variety we de-
scribe the general case with p objectives but temporarily omit the constraints.
Thus, consider

min
x

f(x), (7)

where x ∈ Rn and f ∈ Rp. Assume f(x) is a vector of smooth functions with
Jacobian matrix J(x) whose ith row is the gradient of fi(x). As before, let
x∗i = arg minx fi(x) and define the symmetric matrix F such that

Fij = ‖f(x∗i )− f(x∗j )‖, Fmax = max
i,j

Fij , Fqr = min
i 6=j

Fij ,

Assuming F 6= 0, set γ = Fmax/l for some integer l such as 10 or 100. With e
being a vector of 1s, set fprev = f(x∗q) and consider the optimization problem

min
x, z

eT z (8)

subjectto z− f(x) ≥ 0 : y (9)

‖z− fprev‖2 ≥ γ2 : µ (10)

with dual variables (y, µ). The optimality conditions for this problem require
that

J(x)Ty = 0 (11)
e− y − 2µ(z− fprev) ≥ 0 (12)

y ≥ 0, µ ≥ 0. (13)

We expect at least one of the constraints (9) to be active, and constraint (10)
to be feasible if γ is not too large. We also expect constraint (10) to be active.
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We see from (11) that a linear combination of the gradients of each fi(x) must
be zero, and from (12)–(13) that y is bounded above and below:

0 ≤ y ≤ e− 2µ(z− fprev).

Hence, if the optimal primal and dual variables are (x1, z1,y1), we can say that
y1 is nonnegative and bounded, and that x1 solves the scalarized optimization
problem

min
x

yT1 f(x)

with the elements of y1 as particular weights on each objective fi(x).
To trace a path of evenly spaced points on the Pareto front, we solve a

sequence of l such optimization problems in which fprev in (10) is the optimal
f(x) from the previous problem. If the original biobjective problem contains
constraints on x, they would be included in the sequence of optimizations.

A drawback of this approach is that the individual objective functions be-
come additional, possibly nonconvex, constraints in the subproblems, and con-
straint (10) is certainly nonconvex. Solvers may therefore be less efficient than
in the previous formulation, although the homotopy approach should have a
practical advantage as before.

4 Numerical examples
We now apply the method of section 2 to several examples. We use SNOPT
[11] to solve the individual nonlinear programs. SNOPT is a general-purpose
system for single-objective constrained optimization. It minimizes a linear or
nonlinear function subject to bounds on the variables and sparse linear or non-
linear constraints. If gradients of the objective and constraint functions are
available, SNOPT uses them; otherwise the unknown gradients are estimated
by finite differences. SNOPT uses a sparse sequential quadratic programming
(SQP) algorithm. Search directions are obtained from QP problems that mini-
mize a convex quadratic model of the Lagrangian function subject to linearized
constraints.

SNOPT requires relatively few evaluations of the problem functions and thus
is especially effective if the objective or constraint functions (and their gradients)
are expensive to evaluate, as is the case where they are the result of large-scale
simulations. (For an interesting example where this approach may be helpful
see [1].)

Problem DEB We start with a biobjective problem from [4] of the form (1)
with n = m = 2:

f1 = x1,

f2 = (1 + x2)/x1,

9x1 + x2 ≥ 6,
9x1 − x2 ≥ 1,
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Figure 1: Results for problem DEB.

with x1 ∈ [0.1, 1], x2 ∈ [0, 5]. The individual objectives have feasible local
minima at x∗1 = (1/9, 0) and x∗2 = (1, 0).

In Figure 1 (left) we see the results of running the homotopy algorithm with
l = 60. Unfortunately, it seems that the spacing of the points in the Pareto front
on the second branch is different from the first—a puzzling result when SNOPT
reports very accurate fulfilment of the distance constraint throughout.

The explanation is simple: the aspect ratio in the figure is 10 : 1 with
an amplification that visually magnifies the distance on the almost horizontal
second branch. By choosing the scale so that the ratio is closer to 1 : 1 as
in Figure 1 (right), we obtain a totally different picture with a much smaller
feasible region. The computation took 32 msec on a 3.4 GHz dual processor
Athlon PC running Linux (Intel ifort Fortran compiler in debug mode).

Compare with the results from [4] in Figure 2, where 50, 000 function evalu-
ations were used (500 generations for a population of 100 points), against about
200 evaluations used by our algorithm (for 60 points). Of course, this result
is not surprising, because GAs are notorious for using many function evalua-
tions, making them unsuitable for problems where these function evaluations
are costly. Besides, the sampling, although adequate, is hardly uniform.

Problem SRN The next example is also from [4]:

f1 = (x1 − 2)2 + (x2 − 1)2 + 2,
f2 = 9x1 − (x2 − 1)2,

x2
1 + x2

2 ≤ 225,
x1 − 3x2 ≤ −10,

with x1, x2 ∈ [−20, 20]. We ask for 20 equispaced points in the front. The
results are shown in Figure 3. The calculation took about 20 msec and required
565 function evaluations (compared to 50,000 for the genetic algorithm in [4]).

8



Figure 2: Problem DEB. Results from [4].

Figure 3: Pareto fronts for problems SRN and NBI.
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Problem NBI Now we consider an example from [3, 14]. We call it NBI,
the name of the method advocated by Das and Dennis in [3], which is shown
there as a failure of simple continuation and as a successful application of their
method. NBI is a biobjective, nonlinear constrained problem with five indepen-
dent variables:

f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5,

f2(x) = 3x1 + 2x2 − x3/3− 0.01(x4 − x5)3,

subject to

x1 + 2x2 − x3 − 0.5x4 + x5 = 2,
4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2

5 = 0,
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 ≤ 10.

For this example, l = 20. In Figure 3 we see that our method gives perfectly
spaced results (we have scaled the objectives to a maximum value of 1). Our
program took 20 msec to generate 21 equispaced points in the Pareto front,
running on the same Athlon PC as before. This compares with 3830 msec
reported for the adaptive weighted-sum method of [14] and 2430 msec for the
NBI method of [3], which also generate well sampled Pareto fronts. (We could
not find which computer platform was used in the tests, so these results are not
directly comparable to ours, although they were produced in 1998.)

Problem R2a The previous example showed some escalation in the number
of independent variables without any significant effect on the performance of the
algorithm. Now we push this up to a problem with 31 independent variables.
This problem is a modification (smoothing) of R2, a test problem in [12]. We
call it R2a to indicate that is a modified version:

f1(x) = x1,

f2(x) = g(x)h(x1, g(x)),

where

g(x) = 1 + 10(n− 2) +
n−1∑
j=2

(x2
j − 10 cos(πxj)),

h(x1, g(x)) = 1 + e−x1/g(x) + (x1 + 1) sin(πx1)/g(x),

and x ∈ Rn−1, −1 ≤ xj ≤ 1. In Figure 4 (left) we show the results for this
problem. Again, a perfectly spaced solution of the convex part of the Pareto
front is computed in a negligible time.

It is true that these apparently large problems are somewhat artificial: the
Pareto set is the interval −1 ≤ x1 ≤ 1, with all the other variables identically
zero. We understand that the purpose of these made up tests is somewhat
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Figure 4: Results for problems R2a and Genmesh.

different from determining if the algorithms scale well with the number of inde-
pendent variables. On the other hand, from the point of view of SNOPT, it is
proceeding as if the problem were genuinely 31-dimensional. In the next section
we show results on an actual application with many variables and non-trivial
functionals that would strain evolutionary algorithms.

5 Variational grid generation
In Castillo [2], a method is presented that uses multiple objectives to design
“good” meshes for solving partial differential equations in complex domains. As
an application of the homotopy method we consider the biobjective optimization
problem that uses the grid spacing and grid cell area functionals described in
Castillo’s paper. An initial mesh is generated from the given geometry and
this is optimized using a combination of the criteria. In Castillo’s paper the
usual scalarization procedure plus trial and error was used to combine the two
objectives, leading to better meshes than what could be obtained with any
single objective alone. Below, we simply automate that procedure and provide
an exploration of the Pareto front to facilitate the choice of the weights.

Problem Genmesh In order to exercise the homotopy code for generating
a discrete Pareto front with equidistant points we have combined Castillo’s
code with it, including the equispacing constraint and using SNOPT as the
optimizer for the scalarized nonlinear programs that result. The unknowns are
the Cartesian coordinates of the mesh nodes. In the first example we consider
a 2D logically rectangular mesh with 17× 17 points.

Only the interior nodes are allowed to vary, resulting in optimization prob-
lems with 451 variables (including λ). This problem was originally discussed in
[23], where the authors showed how the standard methods of the time (Thomp-
son et al. [26]) produced folded grids. We call this problem Genmesh.

We ran the homotopy continuation with 30 points, obtaining the Pareto front
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Figure 5: Problem Genmesh. Optimizing length and area separately.

Figure 6: Problem Genmesh. Biobjective results.
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Figure 7: Problem S: Optimizing length and area separately.

shown in Figure 4 (right). In Figure 5 we present the meshes that result when
one optimizes mesh spacing or area alone. Observe that when mesh spacing is
optimized, mesh lines tends to be close together near the hole, while optimizing
area produces a fairly rough mesh. In Figure 6 (left) we show the optimal
meshes resulting from the combined objectives at the 4th point in the Pareto
front (from left to right). As observed in [2], the combined functional gives a
better looking mesh than either of the single functionals do. Moreover, when
solving an elliptic equation on that domain, one obtains a smaller error for the
combined mesh, as we show below.

The time for computing the equispaced Pareto front for this more exigent ap-
plication was 63 secs on the same platform as above but with the code compiled
with the -O flag.

Figure 6 (right) illustrates simple continuation with fixed uniformly spaced
λ’s and no equispacing constraint, as compared to the new algorithm. We have
plotted the chord lengths of successive points resulting from both procedures.
The full line represents the constant spacing γ = 0.3. As expected, we see perfect
agreement for the points generated by the new procedure (except for the last
one where we did not match exactly the total arc length with our estimate),
while standard continuation with equispaced λ’s has deviations of as much as
300%.

Problem S The next example corresponds to a region appropriately named
“S". The results are shown in Figures 7–8, including the Pareto front, meshes
associated with the end values of λ, and a combined mesh for the 18th Pareto
point.

Of course, good-looking meshes are fine, but what one really wants is to solve
differential equations on these meshes with good accuracy. Thus we consider the
solution of the following elliptic boundary value problem on the two domains for
all of the 17 × 17 meshes corresponding to the calculated points in the Pareto
front:

L(u) = (αux)x + (βux)y + (βuy)x + (γuy)y = g, unexpected′′inmathwith α = d1 cos2 φ+d2 sin2 φ, φ = 5π/12, β = (d1−d2) cosφ sinφ, d1 = 1+2x2+y2, γ = d1 sin2 φ+d2 cos2 φ, d2 = 1+x2+2y2.array
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Figure 8: Pareto front for region S.

Figure 9: Errors for regions Genmesh and S.

We take the exact solution to be uexact(x, y) = sinπx sinπy, and the Dirich-
let boundary conditions are g(x, y) = L(uexact(x, y)) on ∂D. The problem is
discretized using a second-order approximation. The Jacobian of the transfor-
mation from Cartesian to curvilinear coordinates is calculated approximately
by differences. The resulting discretized system is solved using SOR.

In Figure 9 we show the maximum error and the Residual Mean Square
error for each mesh. We have set the errors arbitrarily equal to 2 if SOR did not
converge—a sign of folded or badly distorted meshes that occurs for the meshes
associated with the Pareto end-points and also for some of the interior points
close to them. The errors tally with the results observed in the Pareto front. For
region Genmesh, the errors for points 2–15 are about the same, deteriorating
very slowly, while for region S the errors are fairly uniform for meshes associated
with points 14–31.
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Figure 10: Global method.

6 Parallel Pareto front calculation
Finally, we describe an algorithm to compute all the points in the Pareto front
at once in the manner of Pereyra [20]. This “global” approach contrasts with
the “marching" homotopy method described in the preceding sections.

The idea is to pose and solve simultaneously all the scalarized optimization
problems that lead to the uniform mapping of the Pareto front; i.e., including
the additional equispacing constraints and determining the appropriate weights
of the scalarization as part of the process. See Figure 10 for a schematic diagram
of the process.

This looks like a formidable task because for l points in the Pareto front we
would multiply the original number of design variables by l. For the biobjective
case, this leads to a global problem in which all subproblems

min
xk,λk

(1− λk)f1(xk) + λkf2(xk)

subject to g(xk) ≤ 0, xk ∈ D
‖f(xk)− f(xk−1)‖2 = γ2

are required to be solved simultaneously for k = 1, . . . , l. We see that the
independent scalarized optimization problems are coupled through the front
equispacing constraints, leading to a very sparse and structured global problem,
as explained in detail in [20].

Since we are advocating the use of off-the-shelf optimization software such as
SNOPT, we pursue now a different idea that is similar in spirit to that of Leyffer
[15], in order to achieve an efficient parallel algorithm for large-scale problems
(expensive functionals and many variables and constraints). We observe that
the marching homotopy continuation of the previous sections is inherently a
sequential process and thus is not amenable to parallelization.

The idea is to use an asynchronous iteration [18, 19] in which each individual
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minimization is assigned to a different processor, while the current values of all
the vector functions f are kept in a central storage that is available to all the
processors.

To be precise, the problem solved on processor k is

min
xk,λk

(1− λk)f1(xk) + λkf2(xk)

subjectto g(xk) ≤ 0, xk ∈ D,
‖f(xk)− f(xcurrent

k−1 )‖2 = γ2,

where f(xcurrent
k−1 ) is obtained from central storage. Each processor updates in

central storage its own values of f(xk) as soon as they are calculated. Additional
bound constraints can be used to make the homotopy more robust as stated
before. Additional bound constraints can be used as indicated before.

This is now an asynchronous block Gauss-Seidel type of iteration. The con-
vergence theory in [18] guarantees robustness of this iteration with regard to
potential processor failures.

7 Conclusions
We have presented an efficient homotopy continuation method for solving biob-
jective optimization problems. The method produces an equispaced sampling
of the Pareto front and is very efficient compared with evolutionary algorithms.
This will be specially noteworthy for real-life problems, where either the goals
or the constraints are expensive to calculate, as we have exemplified with a
variational approach to mesh generation for complex 2D regions.

The key concept to obtain an equispaced Pareto front is the addition of a
constraint in the homotopy continuation process that explicitly requests that
outcome. This simple idea, already advanced in a previous paper of the first
author for unconstrained problems [20], seems to be novel and as demonstrated
in the numerical examples, it does work as advertised.

For clarity of exposition we have concentrated on the biobjective problem,
but the concepts extend naturally to more objectives, although with consider-
able increase in the cost of implementation, because now one would need to do
homotopy continuation in each coordinate direction in order to map the Pareto
front, which is an (m− 1)-dimensional manifold for an m-objectives problem.

Finally, we described a global method that is amenable to parallelization, as
required for large-scale problems such as in [1].
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