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Abstract

A computational protocol has been developed to solve the bounded vibrational Schrödinger

equation for up to three coupled coordinates on any given effective potential energy surface (PES).

The dynamic Wilson G-matrix is evaluated from the discrete PES calculations, allowing the PES to

be parametrized in terms of any complete, minimal set of coordinates, whether orthogonal or non-

orthogonal. The partial differential equation is solved using the finite element method (FEM), to

take advantage of its localized basis set structure and intrinsic scalability to multiple dimensions. A

mixed programming paradigm takes advantage of existing libraries for constructing the FEM basis

and carrying out the linear algebra. Results are presented from a series of calculations confirming

the flexibility, accuracy, and efficiency of the protocol, including tests on FHF−, picolinic acid

N -oxide, trans-stilbene, a generalized proton transfer system, and selected model systems.
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I. INTRODUCTION

The dynamics of any chemical change in a molecular system corresponds to motion along

an effective potential energy surface (PES), parametrized by some choice of vibrational co-

ordinates. In relatively rigid molecules at low vibrational excitation, motion along these

coordinates is often accurately modeled by a collection of decoupled simple harmonic oscil-

lators. However, this approximation fails to describe many problems of interest, including

hindered internal rotations, bends and stretches of hydrogen-bonded atoms, and van der

Waals vibrations. Of relevance to our research are the family of free radicals involving

coupling between the unpaired electron(s) and a conjugated π-system, particularly in unsat-

urated carbon-chain or monocyclic hydrocarbon intermediates. In these cases, the structure

of the radical intermediate may differ substantially from that of the parent compound, and

the redistribution of electron spin along the conjugated π-system may lead to shifts from

the anticipated location of the principal reactive site.1–5 The PES for motion along this

coordinate of spin “relocalization” may feature extensive flat regions, multiple minima, and

strongly coupled vibrational modes. Relevant surfaces may be parametrized in terms of

bond lengths, bond angles, dihedral angles, or any linear combination thereof.

Our goal has been to solve the vibrational Schrödinger equation (VSE) for a polyatomic

molecule, starting from an arbitrary PES of up to three dimensions, without requiring the

selection of specific coordinates or basis functions. The wavefunctions and energies obtained

from these calculations may then be used to predict vibrational spectra involving strongly

coupled and anharmonic modes. Although many pathological vibrational problems of three

or more dimensions have been tackled over the last twenty years, the approaches tend to

tailor the Hamiltonian, the coordinate system, and/or the basis set to the particular problem.

This paper presents a general procedure for solving the bounded VSE on an arbitrary PES,

based on the finite element method (FEM), and demonstrates its straightforward application

to a diverse range of problems in vibrational analysis.

Of many candidate algorithms for solving the Schrödinger equation in several dimen-

sions, FEM benefits by virtue of its local approximation properties. As in most numerical

methods, FEM discretizes continuous functions, often onto a regularly spaced grid. A com-

mon obstacle to solving the VSE in several dimensions is the reconstruction of highly peaked

wave functions, because a uniformly fine multidimensional grid is computationally expensive.
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FEM addresses this challenge by discretizing the spatial wave function into polyhedra, with

linear combinations of local polynomial functions defined on these polyhedra, and adapting

the multidimensional mesh to the solution. The approximation can be improved if necessary

through a manual refinement of the mesh, while an estimator for the local approximation

errors selects the relevant elements to be refined. The combination of an efficient FEM

and an adaptive mesh generation scheme results in a general method to predict vibrational

dynamics on an arbitrary, multidimensional PES.

Its adaptability to complex problems and unusual geometries has made FEM popular

for problems in classical dynamics, and it has seen many recent applications to quantum

electronic structure calculations, particularly of quantum dots.6–8 Its application to vibra-

tional quantum mechanics has been sporadic, although its success in solving the 2D methyl

bending vibrational states of toluene dates from 1978.9 Only some 20 papers have pursued

this application since then, and to our knowledge the only use of FEM in vibrational quan-

tum mechanics in the last five years is in a 3D solution to the vibrational dynamics of the

O2-H2O van der Waals complex.10,11

We have combined existing, open-source math libraries with programs and scripts to

arrive at a single package – incorporating various programs, libraries, and scripts – for

solving the general VSE in up to three dimensions. This report presents the design details

and benchmark results of this methodology for the solution of the VSE on several surfaces

of two and three dimensions.

II. METHODS

The method is intended for application to a highly coupled and anharmonic subset of a

molecule’s vibrational degrees of freedom, which are then sufficiently decoupled from any

other vibrational modes. The relaxed, pointwise PES is typically based on a scan of partial

geometry optimizations, using a large series of electronic structure calculations holding the

vibrational coordinates of interest fixed at specific values. However, there is no requirement

that the PES be strictly ab initio, nor even based on explicit calculations at each point.

Empirical, analytical expressions for couplings can greatly reduce the computational invest-

ment in developing PES’s of high dimensionality, and more advanced approaches include

the use of local coupled cluster methods.12
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Given such a surface ofM dimensions, our general approach to solve the multidimensional

VSE proceeds as follows: (a) Calculate each element of the M ×M Wilson G-matrix at

each point on the PES; (b) Fit M-dimensional analytical surfaces (of arbitrary complexity)

to the geometry-dependent values for the potential energy and for each G-matrix element;

(c) Derive the corresponding kinetic energy operator T̂ in terms of the analytical form

of the Wilson G-matrix; (d) Construct a fine-grain Hamiltonian matrix using basis sets

and boundary conditions established by FEM and solve for the desired eigenvalues and

eigenvectors. These steps are detailed below.

In order to take advantage of existing libraries, a mixed programming paradigm is cho-

sen. Scripts were written in Python to glue existing components developed in different

high-performance programming languages such as C++ and Fortran, and to handle labor

intensive tasks such as manipulation and management of the molecular structure and energy

data files.

A. Determination of the Wilson G-matrix

Each point on the PES is associated with a specific distribution of all the nuclei. To

restrict ourselves to a purely vibrational problem, we enforce the Eckart conditions13 at

each of these points:

N∑
i=1

mi (�di · �r 0
i ) = 0 (1)

N∑
i=1

mi (�di × �r 0
i ) = 0, (2)

where �r 0
i denotes the position vector of the ith atom in the reference geometry (with origin

at the molecular center of mass) and �di is its displacement vector relative to the reference

geometry, and N is the total number of nuclei.

The vibrational Hamiltonian may be written in general form

Ĥvib = T̂ vib(�R) + Eeff(�R), (3)

or in terms of Cartesian coordinates of the atoms,

Ĥvib = −�
2

2

3N∑
i=1

1

mi

∂2

∂x2
i

+ V, (4)
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where mi is the mass of the nucleus associated with the ith Cartesian coordinate xi, and

where V is the potential energy.

The kinetic energy operator in generalized local coordinates is more complex than in

Cartesian or normal mode coordinates,14–16 containing mixed derivative terms as well as

the G matrix of Wilson et al.14,15 The G matrix is symmetric, with matrix elements Grs

corresponding roughly to reciprocal reduced masses:

Grs =

3N∑
i=1

1

mi

∂qr
∂xi

∂qs
∂xi

. (5)

Alexandrov et al.17 introduced an approach to solving the G matrix by first calculating the

elements of the inverse G matrix, having elements Grs, where

Grs =

3N∑
i=1

mi
∂xi

∂qr

∂xi

∂qs
. (6)

This approach retains the couplings between all possible pairs of internal and Cartesian

coordinates (qr and xi), which may otherwise be obscured by imposition of the Eckart

conditions during direct evaluation of Eq. 5.18

For each value of qs, each of the atomic Cartesian coordinates xi is a 1D spline interpolated

along qr, and the derivatives are evaluated at each of the qr values. The same procedure is

repeated with changed roles between qr and qs in order to obtain ∂xi/∂qs. The Grs matrix

elements are calculated by Stare’s GMAT program,19,20 using Eq. 6 for each optimized

structure on the PES, and the Grs elements are obtained by inverting the matrix of Grs.

B. Fitting surfaces to pointwise V and G-matrix values

The Hamiltonian matrix involves derivatives of the potential energies and of the G-

matrix elements. For the present work, those were obtained from analytical surfaces written

as functions of the vibrational coordinates of interest. Therefore, the pointwise potential

energies andG-matrix elements obtained from electronic structure calculations are fitted into

a multi-dimensional analytic function using non-linear least squares regression algorithms

such as the Gauss-Newton21 or Levenberg-Marquardt methods.22,23

In general, a set of pre-defined non-linear equations may be fit to the pointwise PES,

and ranked by a quality index such as the R2 value. The TableCurve 3D package24 provides
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this capability for surfaces of two dimensions. For higher dimensionality, NLREG (Non-

Linear Regression Analysis) offers a scripting environment capable of handling as many

as 2000 independent variables, 2000 parameters, and arbitrary dimensionality.25 However,

determination of an adequate functional form is likely to require substantial effort. In this

work, the model potentials already have an analytical form. Pointwise 2D PES’s were

fitted using TableCurve 3D, and 3D surfaces using a series of 2D surface fits and a spline

interpolation of the resulting fitting parameters.

C. Formulation of T̂ in internal coordinates

To rewrite Eq. 4 for a set of generalized coordinates {q}, Podolsky16 and others26,27

showed that the kinetic energy operator may take the form

T̂q = −�
2

2

M∑
r=1

M∑
s=1

{
j−1/2 ∂

∂qr

[
j ·Grs ∂

∂qs

(
j−1/2

)]}
, (7)

where M is the number of coordinates taken into account and where j is the determinant

of the Jacobian transformation matrix between {x} and {q}:

j = det |Jij| , Jij = ∂xi/∂qj . (8)

Unlike its Cartesian analog, the kinetic energy operator in Eq. 7 includes mixed second

derivatives: the kinetic coupling terms. Moreover, all of the terms j, j−1/2, and Grs are,

in general, functions of the coordinates in the set {q}; thus, they should be included in the

differentiation.

By expanding Eq. 7, the kinetic operator can also be written as

T̂q = −�
2

2

M∑
r=1

M∑
s=1

{
∂

∂qr

[
Grs ∂

∂qs

]
−

[
Grs ∂

∂qr

∂

∂qs

]}

= −�
2

2

M∑
r=1

M∑
s=1

{
∂

∂qr

[
Grs ∂

∂qs

]}
+ V ′(q), (9)

where V ′(q) is the extrapotential28 or pseudopotential29–31 term which has been shown to

be negligible32 because the coordinate dependence of the Jacobian determinant, j, is much

smaller than the dependence of a particular individual component Grs.29 Equation 9 then

takes on the simplified form

T̂q ≈ −�
2

2

M∑
r=1

M∑
s=1

[
Grs ∂2

∂qr∂qs
+
∂Grs

∂qr

∂

qs

]
. (10)
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A further approximation could be to assume that the elements of the Wilson G-matrix are

constant:

T̂q ≈ −�
2

2

M∑
r=1

M∑
s=1

[
Grs ∂2

∂qr∂qs

]
. (11)

Alternatively, we could retain the coordinate dependence of the Wilson G-matrix elements,

but neglect the kinetic coupling terms. Hence, by omitting the mixed second derivatives

from Eq. 7, we obtain

T̂q ≈ −�
2

2

M∑
r=1

M∑
s=1

∂

∂qr

[
Grs ∂

∂qr

]
. (12)

Finally, we may combine both the constant-G and the no kinetic coupling approximations,

yielding an expression similar in form to the Cartesian form of the Hamiltonian (Eq. 4):

T̂q ≈ −�
2

2

M∑
r=1

M∑
s=1

[
Grs ∂

2

∂q2
r

]
. (13)

Among the possible levels of simplification of the original Podolsky expression for the kinetic

energy operator (Eq. 7), the one yielding Eq. 10 is reasonable and generally acceptable. This

is, however, not always true for the constant-G and the no kinetic coupling approximations

(Eqs. 11–13). This work uses the kinetic energy operator given in Eq. 10, unless stated

otherwise, allowing any minimal and complete coordinate set {q} to be used.

Furthermore, the treatments represented by Eqs. 10–13 may readily be generalized to

encompass the exact forms in Eqs. 7 and 9, in case the approximate forms give rise to

significant errors. Lauvergnat and Nauts33,34 have developed a numerical scheme to compute

the exact kinetic energy operator in curvilinear coordinates, which may be employed in

conjunction with the FEM scheme to give solutions to any given precision.

D. Solution using FEM

A grid-based method was adopted in this work so as to avoid presuming any particular

functional form for the wavefunctions, such as a linear combination of harmonic oscillator

eigenfunctions. Even within grid-based methods, there remain several choices for solving

the vibrational Schrödinger equation. Limitations on the plane-wave modeling of electronic

wavefunctions inspired the development of various real-space approaches, including finite

difference methods (FDM) and FEM,35–37 which produce sparse, structured Hamiltonian

matrices, require no Fourier transforms, and allow some degree of variable resolution in real
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space. However, to achieve these advantages, FDM relinquishes the use of a basis set and

works instead by discretizing individual terms of the equation of interest on a real-space grid.

As a result, quantities of interest are defined only at discrete points in space, limiting the

accuracy of integrations and complicating the handling of electron potentials. As a further

consequence, the FDM is not variational; the error can be of either sign and convergence is

often from lower energy.

Finite element methods achieve the significant advantages of FDM without conceding

the use of a basis. Like the plane wave method, FEM is a variational expansion method,

but the basis functions are strictly local, piecewise polynomials. Because the basis is com-

posed of polynomials, it is completely general and the convergence of the method can be

controlled systematically by increasing the number (h) and/or polynomial order (p) of the

basis functions (hp refinement). Because the basis functions are strictly local in real space,

FEM achieves the advantages of FDM approaches: (i) The method produces sparse, struc-

tured matrices, which in turn enable the effective use of iterative solution methods; (ii)

The method requires no Fourier transforms, as all calculations are performed in real space;

(iii) The method allows for variable resolution in real space more so than FDM approaches

by increasing the number or polynomial order of the basis functions where needed. The

FEM thus combines the significant advantages of both real-space-grid and basis-oriented

approaches.

The application of discrete variable representation (DVR) methods to problems of high

dimensionality has been limited to some extent by difficulties in constructing effective multi-

dimesional basis sets within the narrow DVR constraints.38,39 A direct comparison between

the FEM and a modified DVR approach to predicting the rotational energy levels of H2O

and H3O
+ found the two methods to be comparable.40 Schneider and Collins have devised

a finite element DVR method (FEDVR) that combines the advantages of two discretization

methods: the intrinsic accuracy of DVR using a well-chosen basis set, and the highly sparse

matrices and adaptive grid capabilities of FEM.41 The goal of the present work is a more

general approach, at the cost of some computational efficiency.

The major disadvantages of FEM are overcome by ongoing improvements in software and

hardware. First, the matrices produced by FEM tend to be less sparse, and often less simply

structured, than those produced by FDM, and these matrices must be stored, leading to

increased memory and I/O requirements. However, the storage requirement for eigenvectors

8



scales quadratically with system size, while the storage requirement for the FEM matrices

scales only linearly. Thus, the significance of this disadvantage decreases with increasing

system size. As a second drawback, FEM produces generalized eigenvalue problems rather

than the standard problems produced by many FDM approaches. Finally, FEM can be more

difficult to implement than either FDM or plane wave approaches. However, the hardware-

related demands such as memory size, matrix storage space, and cpu time for less sparse

matrices may be distributed by parallel processing, for which FEM is ideally constructed.

The second and third challenges above are addressed by using user-friendly finite element

libraries such as LibMesh42 in combination with an efficient iterative eigenvalue solver based

on the Davidson or Lanczos algorithms.

General 2D and 3D mesh-based electronic structure representations using finite element

methods as approximate numerical schemes for partial differential operators have become

widely used in only the last ten years, and have proven to be efficient and accurate tools

in many electronic structure calculations.18). No substantial adjustment of codes or scripts

is required to change the dimensionality of the problem in FEM, allowing a wide range of

systems to be studied with the same software.

1. Formulation of the Schrödinger Equation

For a generalized time-independent Schrödinger equation, we wish to solve

−∇2u+ V u− εu = 0, (14)

where V is the arbitrary potential energy surface and ε is the vibrational energy eigenvalue.

In order to use FEM, we require an equivalent weak or variational formulation of Eq. 14.

Taking the inner product of the differential equation with an arbitrary test function ν yields

an equivalent integral equation. We assume that all functions involved are sufficiently regular

to keep the integrals well defined, as will be the case in our applications:∫
Ω

ν
[−∇2u+ V u− εu

]
dΩ = 0, (15)

where we denote the domain by Ω. Strang and Fix provide details regarding the relevant

function spaces.43 To reduce the order of the highest derivative and create a boundary term,
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we then integrate the ∇2 term by parts:∫
Ω

∇ν · ∇u dΩ −
∫

Γ

ν∇u · n̂ dΓ +

∫
Ω

ν [(V − ε)u] dΩ. (16)

The boundary surface is denoted by Γ and n̂ is the outward unit normal vector.

For a quantum state bounded in all dimensions, the wavefunction u converges to zero

at the boundary of the domain, and therefore satisfies the homogeneous Dirichlet boundary

condition,

u = 0 on ∂Ω = Γ. (17)

As a result, the surface integral in Eq. 16 vanishes. The differential formulation Eq. 14 is

then equivalent to the following weak formulation: find the scalars ε and functions u such

that ∫
Ω

∇ν · ∇u dΩ +

∫
Ω

νV u dΩ = ε

∫
Ω

νu dΩ. (18)

The original problem Eq. 14 is thus reformulated in such a way that the highest derivative

which occurs is of order 1, and the homogeneous boundary condition is naturally imposed,

having been built into the equation itself. The problem is now in a form which is suitable

for approximate solutions by FEM. Because all integrands of such functions (and their

linear combinations) will have at most finite discontinuities at interelement boundaries, the

integrals are straightforward to evaluate as sums of integrals over individual elements.

The kinetic energy operator in Eq. 10 is derived for the vibrational Hamiltonian repre-

sented by a set of active internal coordinates. Thus the full VSE can be written as{
−1

2

M∑
r=1

M∑
s=1

[
Grs ∂2

∂qr∂qs
+
∂Grs

∂qr

∂

∂qs

]
+ V (Q)

}
ψ = εψ. (19)

The difference between Eq. 19 and the general time-independent formula in Eq. 18 is the

kinetic energy operator, which contains second-order mixed derivative terms and G-matrix

elements instead of a Laplacian. Since the G-matrix elements Grs are coordinate-dependent,

non-linear analytic functions, their derivatives with respect to the individual coordinates are

readily incorporated into the Hamiltonian.

Applying similar procedures described above, we obtain the weak formulation for Eq. 19:

∫
Ω

M∑
r=1

M∑
s=1

[
Grs ∂u

∂qr

∂ν

∂qs
+ ν

∂Grs

∂qr

∂u

∂qs

]
dΩ +

∫
Ω

νV u dΩ = ε

∫
Ω

ν u dΩ. (20)
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To find an approximate solution, we apply Galerkin’s approach44,45:

u =
∑

j

cjφj and ν =
∑

i

biφi, (21)

where {φk}n
k=1 is a real FEM basis satisfying the essential boundary condition, and where

{cj} and {bi} are the expansion coefficients. Then Eq. 18 becomes

∑
i

bi
∑

j

cj

∫
Ω

[∇φi · ∇φj + V φiφj] dΩ =
∑

i

biε
∑

j

cj

∫
Ω

φiφj dΩ ∀{bi}, (22)

or, identifying matrix elements,

∑
i

bi
∑

j

cjAij =
∑

i

biε
∑

j

cjMij ∀{bi}, (23)

which implies ∑
j

cjAij = ε
∑

j

cjMij i = 1 . . . n, (24)

due to the arbitrariness of {bi}. We have arrived at a generalized eigenproblem determining

the approximate eigenvalues ε and eigenfunctions u =
∑
cjφj of the weak formulation, and

thus of the original problem:

Ac = εMc, (25)

where

Aij =

∫
Ω

[∇φi · ∇φj + V φiφj ] dΩ

and

Mij =

∫
Ω

φiφj dΩ.

A is the global stiffness matrix and M is the global mass matrix. As in the plane wave

method, given the expansion of the potential, the above matrix elements can be evaluated

exactly due to the polynomial nature of the basis. As in the FDM, the above matrices are

sparse, symmetric, and structured due to the strict locality of the basis.

To put this in terms of the G-matrix elements, Eq. 20 becomes

∑
i

bi
∑

j

cj

∫
Ω

M∑
r=1

M∑
s=1

[
Grs∂φi

∂qr

∂φj

∂qs

+ φi
∂Grs

∂qr

∂φj

∂qs

]
dΩ +

∫
Ω

V φiφj dΩ =
∑

i

bi
∑

j

cjε

∫
Ω

φiφj dΩ. (26)
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which is equivalent to the generalized eigenproblem, Eq. 25, where now

Aij =

∫
Ω

{
M∑

r=1

M∑
s=1

[
Grs∂φi

∂qr

∂φj

∂qs
+ φi

∂Grs

∂qr

∂φj

∂qs

]
+ V φiφj

}
dΩ. (27)

The sparse and symmetric properties of the global matrices are preserved as a result of the

symmetric G-matrix and the symmetric formulation of the kinetic energy terms.

The vibrational eigenvalues and eigenfunctions are obtained by solving the generalized

eigenvalue problem in Eq. 20, and the resulting eigenvectors, ψε, are normalized according

to ∫
Ω

|ψε|2 dΩ = 1. (28)

2. The Finite-Element Basis

Finite-element bases are well-chosen sets of strictly local, piecewise polynomials, and have

an extensive literature.43,46–48 The above transformations are affine and invertible, permitting

the construction of efficient meshes that concentrate relatively small elements (and thus basis

functions) where needed. Global basis functions {φi} of the method are generated by piecing

together local basis functions at interelement boundaries, according to a scheme which is

recorded in a connectivity table, using the correspondence between nodes in the local and

global bases. Efficient assembly of the finite element matrices relies on the local-to-global

translation provided by the connectivity table.

It is not difficult in 1D to define local bases that match in value at interelement bound-

aries, but this is less straightforward in higher dimensions, where continuity across interele-

ment curves or surfaces must be achieved. This has led to a wide variety of choices and

a corresponding literature.48 Nevertheless, because the basis functions are strictly local,

the matrices are sparse and the method is reliably scalable. Furthermore, the basis func-

tions within each element are low-order polynomials, and hence computationally efficient.

Although higher-order polynomials are possible for finite element bases in multiple dimen-

sions, it becomes increasingly difficult to match both values and derivatives across entire

curves or surfaces, constraining the available meshes. In higher dimensions, however, there

arises a significant additional choice of shapes. The most common 2D element shapes are

triangles and quadrilaterals. In 3D, tetrahedra, hexahedra, and prisms are among the most

common. And with multiple shapes available, individual domains are often partitioned into
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multiple different shapes, for example, both triangles and quadrilaterals. In the context of

molecular vibration calculations, however, the domain is simple, rectangular cells, and our

first choice has been the hexahedral elements.

3. Solution to the Generalized Eigenvalue Problem

Numerous algorithms for solving the generalized matrix eigenvalue problem in Eq. 20 are

available. When the global matrices are not too large, the eigenvalues and eigenvectors can

be determined easily by performing Givens and Householder transformations.49 However,

these transformations have the disadvantage of producing extra non-zero matrix elements,

and worse, the cost of the calculation scales as N3 where N is the size of the matrix. The

performance of the direct method thus becomes debilitating when treating a large system in

three dimensions. Our choice of algorithm, due to the large and sparse nature of the global

matrices, favors iterative methods that preserve the structure of the matrices and access

them only via matrix-vector multiplications. Since most of the time we are only interested

in a portion of the eigenvalue spectrum, subspace methods are ideal for this task. These are

iterative methods that build a search subspace from which the eigenvector approximations

are selected. In the symmetric case, this is usually done using a Rayleigh-Ritz step. In each

iteration the search subspace is expanded by one or more new search directions. Restarted

subspace methods limit the dimension of the search subspace by periodically discarding some

search direction. In the present work, we relied primarily on an eigensolver based on a variant

of the Jacobi-Davidson (JD) algorithm,50 which is optimized for the generalized symmetric

eigenvalue problem on single-processor workstations. We also tested the Implicitly Restarted

Lanczos algorithm (IRL), implemented in the ARPACK and Parallel ARPACK (PARPACK)

packages,51 which is constructed for execution in a distributed computing environment.

Details of our implementation of the LibMesh library are given in Appendix A, and rele-

vant aspects of the JDSYM eigensolver are described briefly in Appendix B. The calculations

were carried out primarily using 2 GHz Opteron/Linux processors with up to 3 GB RAM.

Three-dimensional calculations demanded at least 2 GB of RAM, and up to 2 hours of cpu

time for the eigensolution step, using the grid dimensions given in the following section.
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III. RESULTS AND DISCUSSION

This package has been tested on numerous one-dimensional problems, including compar-

ison to results from our previous study of the tolane internal rotation using the Numerov

method.52 Greater interest is attached to the more demanding multidimensional problems,

however, and only those are described below.

a. Harmonic Oscillators. We first tested the method on 2D and 3D harmonic oscilla-

tors, with energy functions

V =
M∑
i=1

kix
2
i E =

M∑
i=1

√
ki

(
vi +

1

2

)
, (29)

with M the number of dimensions. These potentials were chosen for their simplicity, rel-

evance to typical molecular systems, and in the isotropic case (all ki equal) to verify the

method’s ability to correctly identify and distinguish degenerate states.

For comparison to previous work, our protocol was also tested on the 3D anisotropic

harmonic potential where kx = 1, ky = 1.44, kz = 1.69. Our results are shown in Table I

along with previous results calculated by FDM53 and FEM54 methods. The element volumes

are specified by the shape type and number of nodes; for example, HEX27 is a hexahedral

basis function with 27 nodes. The impact of polynomial order and type on the convergence

is evident when comparing our results with the results calculated by Ackermann et al. The

energy calculated using linear shape functions is worse than any results calculated at higher

polynomial order. The better results they obtain with the quadratic shape function level

may be attributed to their adaptive mesh refinement (AMR), which allows calculation of

a specific eigenvalue to high precision. In the context of molecular vibrations, however, we

often need to calculate tens or hundreds of eigenvalues at one time. Global (but manual)

hp refinement provided with the present software, in conjunction with a diverse selection

of element types, provides an additional flexibility that partly compensates for the lack of

AMR. We find also that, using cubic shape functions, the Hermite polynomial produces

more accurate results than the Lagrange polynomial, which demonstrates the advantage

of using shape functions with C1 continuity over C0. Although Ackermann et al. also

achieved highly accurate results using quintic (p = 5) Lagrange polynomials, these shape

functions become computationally quite expensive when p ≥ 4; thus they are rarely used in

practical applications. We note that the present package calculates eigenvalue 202 with good
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TABLE I: Selected Eigenvalues of the 3D Anisotropic Harmonic Oscillator (kx = 1, ky = 1.44, kz =

1.69).

n (vxvyvz) exact FEM HEX27a FEM HEX8b FEM/AMRc FDMd

1 (0 0 0) 1.75 1.7501603438 1.7500020614 1.75112123 1.7452

2 (1 0 0) 2.75 2.7503539601 2.7500047973 1.75000532 2.7399

3 (0 1 0) 2.95 2.9504927697 2.9500074904 1.75000045 2.9381

4 (0 0 1) 3.05 3.0505816415 3.0500093822 3.0372

5 (2 0 0) 3.75 3.7509261465 3.7500150688

6 (1 1 0) 3.95 3.9506863860 3.9500102262 3.9327

7 (1 0 1) 4.05 4.0507752578 4.0500121179 4.0314

8 (0 2 0) 4.15 4.1514722542 4.1500276821

9 (0 1 1) 4.25 4.2509140674 4.2500148108 4.2284

10 (0 0 2) 4.35 4.3518211405 4.3500364903

. . .

202 (4 4 4) 15.75 15.75051443

aThis work, quadratic Lagrange polynomials on 30 × 30 × 30 HEX27 elements.
bThis work, cubic Hermite polynomials on 30 × 30 × 30 HEX8
cAdaptive FEM by Ackermann et al.,54 the three ground state energies are calculated with linear, quadratic

and cubic Lagrange polynomials on TET10 elements respectively.
dAlvarez-Collado and Buenker.53

precision, to show that this approach is suitable for application to highly excited vibrational

eigenstates.

b. 2D Coupled Anharmonic Sextic Oscillator. As an initial test on a coupled system,

the potential for two coupled anharmonic sextic oscillators was used:

V (x, y) = V6(x) + V6(y) + xy, V6(q) ≡ q2

2
+ 2q4 +

q6

2
. (30)

We calculated the lowest 13 eigenstates and eigenvalues using cubic Hermite polynomials on

a 200 × 200 QUAD8 grid in [−4, 4] × [−4, 4]. Braun et al.55 have also used this system to

test their efficient Chebyshev-Lanczos method. The results for the eigenvalues are shown in

Table II. The low-lying binding energies are in good agreement with the results of Kaluza56

and Braun et al.,55 both obtained using the Lanczos method.
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TABLE II: Lowest 13 Eigenvalues of the 2D Coupled Sextic Anharmonic Oscillators

i analytical Chebyshev/ FEMa Differenceb

Lanczosc Lanczosd

1 1.9922357634 1.9922357634 1.9922357634 0.0

2 4.3051384550 4.3051384553 −3.0 · 10−10

3 4.6993231357 4.6993231360 −3.0 · 10−10

4 6.8954263767 6.8954263765 6.8954263772 −7.0 · 10−10

5 7.8378702941 7.8378702962 −2.1 · 10−09

6 7.9793012472 7.9593012390 7.9593012410 −2.0 · 10−09

7 10.0165291976 10.0165292001 −2.5 · 10−09

8 10.5861882834 10.5861882862 −2.8 · 10−09

9 11.7788803250 11.7788803349 −9.9 · 10−09

10 11.8005553313 11.8005553411 −9.8 · 10−09

11 13.4155400229 13.4155400285 −5.6 · 10−09

12 14.2097757808 14.2097757915 −1.1 · 10−08

13 14.4805192 14.4819638906 14.4819639001 −9.5 · 10−09

aThis work.
bDifference is taken between the results of this work and Braun et al.55
cKaluza56 calculated only the eigenstates with positive parity and exchange quantum numbers.
dBraun et al.55

c. 2D Hénon-Heiles Potential. An additional benchmark for a highly coupled 2D sys-

tem was the extensively studied Hénon-Heiles potential,57 given by

V (x, y) =
1

2
(x2 + y2) + λx

(
y2 − x2

3

)
, (31)

with λ =
√

0.0125, consistent with the choice of previous work. The eigenvalues and eigen-

functions of this system have been treated by many authors in the study of anharmonically

coupled oscillators.58–62 The FEMVib results are calculated using cubic Hermite polynomials

on a 300 × 300 QUAD8 grid in [−6, 6] × [−6, 6]. Table III compares results from this work

with previous calculations, finding excellent agreement. The eigenvalues are labeled with

the principle quantum number n and angular momentum quantum number l, as discussed
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TABLE III: Selected Eigenvalues of the 2D Hénon-Heiles System

(n, l) DP-DVRa Chebyshev- FEMb Semi- Direct Gaussian

Lanczosc classicald relaxatione basisf

(0, 0) 0.998595 0.998595 0.998595 0.9986 0.9988 0.9986

(1,±1) 1.990077 1.990077 1.990077 1.9901 1.9901 1.9901

1.990077 1.990077 1.990077 1.9901

(2, 0) 2.956243 2.956243 2.956243 2.9562 2.9562 2.9562

(2,±2) 2.985326 2.985326 2.985326 2.9853 2.9853 2.9853

2.985326 2.985326 2.985326 2.9853

(6, 0) 6.737916 6.737968 6.737859 6.7379 6.7379

(6,±2) 6.764867 6.764871 6.764769 6.7649 6.7649

6.764867 6.764955 6.764861

(6,±4) 6.853431 6.853436 6.853406 6.8534 6.8534

6.853431 6.853453 6.853425

(6,±6) 6.998932 6.998933 6.998930 6.9989

6.999387 6.999393 6.999380 6.9994

(7,±1) 7.659485 7.659551 7.658584 7.6595

7.659485 7.660248 7.659413

(7,±3) 7.697721 7.698226 7.697160 7.6977

7.736885 7.736915 7.736852 7.7369

aDegani and Tannor, Gauss-Hermite quadrature discrete variable representation.63
bThis work.
cBraun et al.55
dNoid and Marcus.58
eKosloff and Tal-Ezer.59
fDavis and Heller.60

by Noid and Marcus.58

d. 3D Anharmonic Coupled Sextic Oscillator. For a simple non-separable 3D example,

we considered the potential for three coupled anharmonic sextic oscillators

V (x, y, z) = V6(x) + V6(y) + V6(z) + xy + xz + yz. (32)
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TABLE IV: Lowest 10 Eigenvalues of the 3D Anharmonic Coupled Sextic Oscillator

i analytical Chebyshev/ FEM FEM

Lanczosa Lanczosb 30 × 30 × 30 grida 50 × 50 × 50 grida

1 2.9783 2.9783 2.9786 2.9783

2 5.2960 5.2973 5.2962

3 5.2960 5.2973 5.2962

4 5.8658 5.8672 5.8660

5 7.7537 7.7562 7.7541

6 7.7537 7.7562 7.7541

7 8.0917 8.0917 8.0950 8.0921

8 8.8711 8.8771 8.8719

9 8.8711 8.8771 8.8719

10 9.1149 9.1148 9.1200 9.1155

aKaluza.56
bBraun et al.55
aThis work.

We calculated the lowest 10 eigenstates and eigenvalues using quadratic Lagrange polyno-

mials on a 30 × 30 × 30 and 50 × 50 × 50 HEX27 grid in [−4, 4] × [−4, 4] × [−4, 4]. The

resulting eigenvalues are shown in Table IV, and agree well with the results of Kaluza56 and

Braun et al.55

e. H+
2 . The Hamiltonian in a.u. for the adiabatic two-center, one-electron problem is

given by

Ĥ = −1

2
∇2 − 1

rA
− 1

rA
+

1

R
, (33)

where R is the separation between the two hydrogen nuclei and rA, rB are the distances

between the electron and the hydrogen nuclei. We solved the ground state energy of this

system in Cartesian coordinates when R = 2.0 a0. The results, along with literature data,

are listed in Table V, showing that convergence improves with increasing number of elements

used (h-refinement). Cubic Hermite shape functions with C1 continuity produce more ac-

curate results than quadratic Lagrange shape functions when the same number of elements

are used. Agreement with the previous results is good.
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TABLE V: Ground State Energy of the H+
2 System

Number of Elements Element Type Energy

FEM Cubic Hermitea 30 × 30 × 30 HEX8 −0.598572

FEM Quadratic Lagrangea 30 × 30 × 30 HEX27 −0.609897

FEM Quadratic Lagrangea 40 × 40 × 40 HEX20 −0.600578

FEM Quadratic Lagrangea 50 × 50 × 50 HEX20 −0.602373

FEMb 165 triangles −0.60258

Exactc −0.60263

aThis work.
bFord and Levin.64
cWind.65

f. H2+
3 . For simplicity, the one-electron, three-center H2+

3 problem was confined to the

D3h symmetry case, with Hamiltonian

Ĥ = −1

2
∇2 − 1

rA
− 1

rB
− 1

rC
. (34)

The separation between pairs of hydrogen atoms is fixed to 1.68 a0. It is of theoretical

and experimental interest to study this system because the H+
3 molecule, stable in this D3h

geometry, may produce metastable H2+
3 by photoionization.66 The ground state eigenvalues

are given in Table VI. The results show a similar trend to the H+
2 calculations in terms

of the effect of hp-refinement on the convergence. Our results are in good agreement with

the results of Ackermann et al.,54 Conroy,67 Schwartz68 and Johnson et al.69 using various

numerical approaches.

g. 3D Non-Polynomial Oscillator. Varshni70 and Witwit71 extended the one-

dimensional non-polynomial oscillator (NPO) model to three dimensions, which takes on

the form

V (x, y, z) = x2 + y2 + z2 +
λ(x2 + y2 + z2)

1 + g(x2 + y2 + z2)
. (35)

Both investigations used similar inner product perturbation techniques and achieved highly

accurate results by exploiting the interchange symmetry between the non-separable Carte-

sian coordinates. Scherrer et al.72 reduced the 3D case to 1D by expanding the eigenfunction

into a radial part multiplied by a spherical harmonics, and generated an effective central-
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TABLE VI: Ground State Energy of the Equilateral H2+
3 System

Shape Function Number of Elements Element Type Energy

Cubic Hermite 30 × 30 × 30 HEX8 −1.906108205

Quadratic Lagrange 30 × 30 × 30 HEX20 −1.920153357

Quadratic Lagrange 40 × 40 × 40 HEX20 −1.908975173

Quadratic Lagrange 50 × 50 × 50 HEX20 −1.909435347

Adaptive FEMa −1.909570988

STO methodb −1.9073

GTO methodc −1.90945

GTO methodd −1.9097

aAckermann et al.54
bConroy.67
cSchwartz.68
dJohnson et al.69

force potential. We calculated the lowest 8 non-degenerate eigenvalues for the 3D NPO

model with λ = 100 and g = 1 and the results are compared to others in Table VII. The

agreement is good considering that no dimensionality reduction or symmetry separation

techniques were employed in the present work. However, this example demonstrates the

advantages of those techniques.

h. Proton Transfer Model System. The proton-transfer reaction, usually promoted by

intermolecular stretching, is an essential chemical reaction in numerous systems. Sato and

Iwata73 proposed a 2D model to elucidate the dynamics of proton transfer between two

species of equal mass M , using Morse functions to parametrize the hydrogen stretching

potential. The model and its coordinate system are shown in Figure 1. The kinetic energy

and potential energy operators are given by

T̂ =
1

2

[(
1

m
+

1

M

)
∂2

∂x2
+

(
1

M
+

1

M

)
∂2

∂R2
+

2

M

∂2

∂x ∂R

]
(36)

V =
1

2
K(R −Re)

2 +D

{
1 − exp

[
−β

(
R

2
+ x− re

)]}2

+D

{
1 − exp

[
−β

(
R

2
− x− re

)]}2

. (37)
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TABLE VII: Lowest 8 Non-Degenerate Eigenvalues of the 3D NPO Model.

n l IPPa IPPb MCF (1D)c FEMd FEMe

0 0 26.7059656 26.706 26.705966 26.726626 26.708770

0 1 42.2375602 42.238 42.237560 42.280243 42.243503

1 0 53.839093 53.820 53.839093 53.927243 53.851420

0 2 55.977803 55.976 55.977804 56.026935 55.984608

1 1 64.819422 64.929988 64.835512

0 3 67.960806 67.960 67.960806 68.006404 67.967075

2 0 72.780597 72.926917 72.801498

1 2 74.437213 74.532081 74.450802

aWitwit, inner product perturbation method.71
bVarshni, inner product perturbation method.70
cScherrer et al., matrix-continued-fraction algorithm, results are calculated from a reduced 1D model.72
dThis work, quadratic Lagrange shape functions on 30 × 30 × 30 HEX27 grids.
eThis work, quadratic Lagrange shape functions on 50 × 50 × 50 HEX27 grids.

M MH

x

R

R /2

FIG. 1: Coordinate system of the proton transfer model.

Because the model coordinates x and R are not orthogonal, there is a coupling term in the

kinetic energy operator. The parameters used in the model Hamiltonian are taken from Sato

and Iwata.73 The PES has two minima because the two Morse oscillators are symmetric in

the coordinate x and share one transition state. The barrier height is about 1300 cm−1.

We solved the model Schrödinger equation using both quadratic Lagrange and cubic

Hermite polynomials on 100 × 100 QUAD8 grid over the domain [−0.8 < x < 0.8, 2.5 <

R < 3.35]. The results are shown in Table VIII and compared to Sato and Iwata’s results,

calculated by the FEM approach using linear Lagrange polynomials on a 557 × 557 grid.

The results are in excellent agreement at all energy levels. Results from this work converge
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TABLE VIII: Lowest 17 Eigenvalues of the Proton Transfer Model Hamiltonian.

grid: 557 × 557 100 × 100 100 × 100

polynomial: linear Lagrangea cubic Hermiteb quadratic Lagrangeb

v E(v.u.)c E(v.u.)c E(v.u.)c

1 740.12 740.11 740.11

2 743.40 743.39 743.39

3 751.97 751.96 751.96

4 755.90 755.89 755.89

5 763.94 763.91 763.91

6 768.43 768.40 768.40

7 774.60 774.59 774.59

8 776.03 775.99 775.99

9 780.97 780.91 780.91

10 787.83 787.76 787.76

11 788.68 788.62 788.62

12 793.54 793.43 793.44

13 797.08 797.06 797.06

14 800.17 800.05 800.05

15 802.19 802.11 802.11

16 806.15 805.95 805.96

17 810.38 810.33 810.33

aSato and Iwata.73
bThis work.
cEnergies are calculated in vibrational atomic units (1 v.u. = 33.715 cm−1).

with fewer grids by using a higher polynomial order.

i. Hydrogen Difluoride Anion (FHF−). The FHF− anion provides a prime example

of a symmetric, hydrogen-bonded system, as attested by a considerable theoretical and

experimental literature. It features the strongest and shortest hydrogen bond in any chemical

species, having a F–F separation of 2.2777 Å74 and a hydrogen bond dissociation energy of

45.8 kcal/mol.75 Three fundamental bands, ν1 at 583 cm−1 (symmetric stretching), ν2 at
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1286 cm−1 (bending), and ν3 at 1331 cm−1 (antisymmetric stretching), and one overtone

band, ν1 + ν3, have been assigned in the infrared spectrum.76

The vibrational problem for the FHF− system has been probed theoretically by many

authors using different numerical techniques on two and three dimensions. Stare and Balint-

Kurti19 performed a 2D Fourier Grid Hamiltonian (FGH) calculation on the collinear FHF−

in both orthogonal and non-orthogonal stretching internal coordinates. Spirko et al.77 solved

the 3D Watson isomorphic Hamiltonian78 on a sophisticated set of rectilinear vibrational

coordinates. Yamashita et al.79 used a mixed discrete-variable/finite-basis representation

approach combined with an adiabatic separation between the ”heavy-atom” (symmetric

stretching) and other vibrational modes on the hyperspherical coordinates. Their findings

are in good agreement with experiment, suggesting a high degree of anharmonicity for the

antisymmetric stretching mode and strong coupling between the antisymmetric stretching

and bending modes. The bending mode, however, exhibits virtually no deviation from

harmonicity. Most recently, this system has been treated using Fourier grid80 and vibrational

self-consistent field (VSCF) calculations81 to obtain results that agree with experiment to

high precision. Table 1 of Ref. 81 contains a comprehensive review of previous results.

The PES of Stare and Balint-Kurti19 was calculated at the MP4(SDQ)/6-311++G(2d,2p)

level of theory for 422 FHF− collinear structures by varying H–F separations r1 and r2 over

the range 0.8–2.4˙Å. We first treat this problem using the orthogonal normal coordinates,

r1 + r2 and r1 − r2, and fit the PES to a 66-parameter Chebyshev series (LnX, Y) bivariate

polynomial in TableCurve 3D (Fig. 2). This Chebyshev series polynomial had the highest

R2 value among over 3000 non-linear equations tested. The average absolute fitting error

per point over the entire PES domain is only 1.17 cm−1. The 2D vibrational Hamiltonian

was then solved on the above PES using the G-matrix elements (G11=4.10526 amu−1 and

G22=0.10526 amu−1) calculated by Stare and Balint-Kurti.19 Because the orthogonal coor-

dinates are used, the kinetic energy coupling term with G-matrix element G12 vanishes. A

200 × 200 QUAD8 grid with quadratic Lagrange shape functions is applied on the region

[1.6, 4.8] × [−1.6, 1.6] and the results are shown in Table IX.

Inspired by the model Hamiltonian developed by Sato and Iwata73 for the linear

M· · ·H· · ·M system using non-orthogonal coordinates, we adopted their coordinate system

in Fig. 1 and fit the PES to a second 66-parameter Chebyshev series (X, LnY) bivariate

polynomial in TableCurve 3D (Fig. 3), obtaining the same 1.17 cm−1 absolute average fit-
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FIG. 2: FHF− PES in orthogonal normal coordinates.

ting error per point over the domain. Because the coordinate set {x,R} is not orthogonal, a

non-zero coupling term is included in the vibrational Hamiltonian. The G-matrix elements

G11=0.95716 amu−1, G22=0.10527 amu−1, and G12=0.05264 amu−1) are calculated from the

atomic masses of H and F using Sato and Iwata’s model Hamiltonian. The 2D system is

solved by FEM using quadratic Lagrange shape functions on a 200×200 QUAD8 grid in the

domain [−0.8, 0.8]×[1.6, 4.8]. Both analyses, using either orthogonal or non-orthogonal coor-

dinates, produce 1883201 non-zero entries for a matrix of dimension 120801, for a sparseness

of 99.9871%.

Table IX shows selected computational and experimental results for comparison. The

FEM calculation on the normal coordinate system yields results similar to those of previous

studies, and more accurate results are obtained using Sato and Iwata’s coordinate system

{x,R}. The results from these 2D analyses compare favorably in accuracy to the full 3D

analysis.77 Results from this work and from Stare and Balint-Kurti19 both predict the zero-

point energy of FHF− to be around 960 cm−1.

j. Picolinic Acid N-oxide. Picolinic acid N -oxide (PANO, Fig. 4) exhibits a very short

and strong intramolecular OH· · ·O hydrogen bond, which results in an asymmetric, single-

well proton potential. PANO has been a difficult system to characterize, with inconsistent

results being found among experimental and theoretical studies. For example, the most
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FIG. 3: FHF− PES in x and R coordinates.

recent x-ray diffraction study of crystalline PANO indicates that the O· · ·O distance is

only 2.428 Å.82 However, Stare and Balint-Kurti found that the O· · ·O distance in the op-

timized gas-phase geometries was always greater than 2.5 Å, no matter what level of theory

was used.19 Furthermore, harmonic frequency calculations at B3LYP/6-311++G(3df,3pd),

B3LYP/6-31+G(d,p) and B3LYP/6-31G(d,p) levels yield O–H stretching frequencies νOH of

2977 cm−1,19 2965 cm−1,83 and 2991 cm−184 respectively. In the experimental infrared spec-

trum of PANO isolated in an Ar matrix, however, Szczepaniak et al.84 found no intense

absorption band within 1200 cm−1 of the 2900 cm−1 region for the O–H stretch. From their

experimental results and an anharmonic simulation of the normal modes, Szczepaniak et

al. concluded that the νOH absorption intensity is redistributed into the in-plane O–H bend

and the C=O stretch, which account for 59% and 45% of the band intensities at 1867 cm−1

and 1514 cm−1, respectively. This issue has recently been revisited by Stare et al. in a

combined experimental and CPMD analysis of PANO in the solid state.85 Here, we present

a 2D analysis using the potential surfaces for PANO calculated by Stare and Balint-Kurti19

and by Stare and Mavri.83

The first PES was calculated using the Car-Parrinello Molecular Dynamics program.19,86

Stare and Balint-Kurti performed single point energy calculations on 340 distinct structures,

varying the O–H distance (0.8–1.75 Å) and the COH angle (70◦–150◦). We fit this PES to
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TABLE IX: Selected Vibrational Energies of FHF− (cm−1).

Method ZPE ν1 ν3 ν1 + ν3

harmonica 645 1041 1686

FGHb 961 592 1369 1891

rectilinear coordsc 580 1315 1814

DVRd 595 1374 1904

Fourier gride 593 1448 1977

VCIf 580 1313 1837

FEM normal coordsg 960 593 1369 1892

FEM {x,R}h 929 584 1319 1841

Experimentali 583 1331 1848

aCalculated at the MP4(SDQ)/6-311++G(2d,2p) level.19
bStare and Balint-Kurti.19
cSpirko et al.77
dYamashita et al.79
eElghobashi and González80

fHirata et al.81
gThis work.
hThis work.
iKawaguchi and Hirota.74,76

FIG. 4: Structure of picolinic acid N -oxide (PANO) and the O–H stretching and bending internal

coordinates.
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TABLE X: Calculated Fundamental Vibrational Frequencies (cm−1) in Crystal PANO

FGHa FEMb

νCOH νOH νCOH νOH

full Hamiltonian 1299 1767 1283 1757

equilibrium Grs 1386 1831 1351 1826

averaged Grs 1284 1717

variable Grs, ∂Grs/dq = 0 1264 1763

aStare and Balint-Kurti.19
bThis work.

a Chebyshev series X, LnY bivariate polynomial. To take into account the coordinate

dependency of the G-matrix elements, we also calculated the G-matrix elements at each

of the optimized geometries and fit each to a Chebyshev series polynomial, from which

analytical derivatives of the G-matrix elements were available. The vibrational Hamiltonian

was then solved by FEM on a 200× 200 QUAD8 grid over the PES domain using quadratic

Lagrange shape functions under different approximations for the G-matrix elements: (i)

using the full Hamiltonian with dynamic G-matrix elements Grs, (ii) fixing the three Grs

values to the equilibrium values, (iii) fixing the Grs values to the values averaged point-by-

point over the domain of the PES, and (iv) varying the Grs but omitting their derivatives

in Eq. 11. The results are shown in Table X.

The results using the full Hamiltonian obtained by FEM and by FGH are in good agree-

ment. For the fixed Grs calculations, the pointwise averaged Grs values yield better agree-

ment with the full Hamiltonian than the equilibrium Grs values. The effect of excluding the

Grs derivatives from the Hamiltonian in this case is small, comparable to the effect of fixing

the Grs values. This occurs because this 2D model focuses on motion of the proton, so the

overall system reduced mass remains nearly constant.

The second calculation is carried out on the 2D, B3LYP/6-31+G(d,p) PES of Stare and

Mavri,83 spanning a rectangular grid of 788 points varying the O–H bond length (0.8–3.15 Å)

and O· · ·O distance (2.0–3.7 Å). We again fit the PES and Grs to Chebyshev series (X, LnY)

bivariate polynomials and solve the full vibrational Hamiltonian using FEM on a 200× 200

QUAD8 grid with quadratic Lagrange shape functions. The results are shown in Table XI.
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The fundamental frequencies for the O–H stretch are in very good agreement among different

calculations. The discrepancy in the frequencies for the O· · ·O stretch as calculated in this

work and by Stare and Mavri83 may be caused by differences in the PES fitting schemes.

The previous study fitted the PES to a shifted Gaussian type function, which introduced

an absolute average fitting error per point of 55.75 cm−1,83 whereas the Chebyshev series

polynomial employed in this work has an average fitting error of 9.4 cm−1. Inaccuracies near

the PES minimum, where the lowest eigenvalues are determined, may play a significant role

in these results. Furthermore, the reduced masses were previously fixed to 1 amu for the

O–H stretch and to 20 amu for the O· · ·O stretch.83 By using the full Hamiltonian (Eq.

10), we account for subtle effects on the Grs values, including the reduced mass variation at

different geometries. The average G22 value is found to be 0.06245 amu−1, suggesting that

a reduced mass less than 20 amu would be more appropriate for the O· · ·O stretch.

Both 2D analyses produce consistent results with the previous numerical approaches.

However, PANO is apparently subject to strong mixing of the O-H stretch with other in-

plane vibrations.84 The predicted O-H stretch frequencies at 1757 cm−1 and 1741 cm−1 suc-

cessfully approximate the experimental 1737 cm−1 band, which contains the greatest contri-

bution from the O-H stretch. On the other hand, the crystal model predicts a fundamental

frequency of 1283 cm−1 for the COH bend, which should correspond to the 1514 cm−1 band

observed experimentally. There is even more uncertainty in the O· · ·O stretch, because no

experimental data is recorded below 550 cm−1. Szczepaniak et al. identified this coordinate

as involved in two different normal modes with fundamental frequencies of 390 cm−1 and

274 cm−1,84 which encompass the value of about 350 cm−1 found in our analysis.

k. The 2D Phenyl Torsions in trans-Stilbene. Chiang and Laane87 carried out an ex-

tensive study of the the phenyl torsions in trans-stilbene (Fig. 5) and the torsion about the

C=C bond. Based on symmetry considerations, the PES function is selected to take the

form

V (φ1, φ2) =
V2

2
[2 + cos(2φ1) + cos(2φ2)] + V12 [cos(2φ1) cos(2φ2)] + V ′

12 [sin(2φ1) sin(2φ2)] ,

(38)

where φ1 and φ2 are the phenyl torsional angles, V2 determines the torsional barrier, and

V12 and V ′
12 represent the potential energy coupling between the two rotors. The point

φ1 = φ2 = 0 corresponds to the conformation where both phenyl rings are perpendicular to
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TABLE XI: Calculated Fundamental Vibrational Frequencies (cm−1) in Gas Phase PANO

FGHa FEMb

νOH νOO νOH νOO

full Hamiltonian 1733 278 1741 353

equilibrium Grs 1729 350

averaged Grs 1732 350

variable Grs, ∂Grs/dq = 0 1730 349

aStare and Balint-Kurti.19
bThis work.

FIG. 5: The phenyl rotors in trans-stilbene.

the CCCC plane, and φ1 = φ2 corresponds to the two rings lying in parallel planes.

Chiang and Laane87 derived the G-matrix element functions for the kinetic energy oper-

ator based on the vector method31,88:

Gij = Gij
(0) +G(2) [cos(2φ1) + cos(2φ2)] +G(4) [cos(4φ1) + cos(4φ2)]

+G(c) cos(2φ1) cos(2φ2) +G(s) sin(2φ1) sin(2φ2). (39)

Since φ1 and φ2 are equivalent, G11 and G22 are identical functions. Parameters for the

potential and kinetic energy models were taken from Chiang and Laane for both the S0

ground and S1 excited states.87
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TABLE XII: Observed and Calculated Frequencies (cm−1) for the Phenyl Rotations.

state S0 S1

(v37, v48) Expta variable Gb constant Gb Expta variable Gb constant Gb

(2,0) 9 8.9 9.1 35 35.1 35.1

(4,0) 19 20.0 20.2 70 70.0 70.1

(6,0) 31 32.3 32.7 104.8 104.4

(8,0) 45 45.7 46.2 142 139.5 139.0

(10,0) 59 60.0 60.5

(12,0) 76 75.0 75.6

(0,2) 118 117.8 111.6 110 110.5 104.9

(4,2) 133 134.2 128.8 146 144.9 139.7

(8,2) 160 158.6 159.5 179 179.2 174.2

aChiang and Laane.87
bThis work. Constant G calculations used only the leading coefficients G11

(0) and G12
(0).

The VSE was solved on a 200 × 200 QUAD8 grid over the region [0, π] × [−π, 0] us-

ing quadratic Lagrange polynomials. The results appear in Table XII. The v37 and v48

modes correspond to the orthogonal antisymmetric and symmetric torsions. The agreement

between calculated and observed energy levels is excellent. In the FEM constant-G calcu-

lation, the G-matrix elements were set equal to Gij
(0), which dominate Eq. 39. The results

show that variation of the system mass does not have a large impact on the calculated energy

levels.

IV. CONCLUSION

We have developed a program suite for determining the vibrational eigenvalues and eigen-

states on an arbitrary, multi-dimensional, anharmonic, and coupled molecular PES. The

vibrational Hamiltonian is formulated and solved within the FEM framework, which com-

bines advantages of grid-based and basis set-based approaches, and enables high accuracy

through global hp-refinement. The large generalized eigenvalue problem is solved using the

Jacobi-Davidson algorithm. The approach has been successfully tested on several systems
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with diverse and highly anharmonic surfaces, parametrized using bond lengths, bond angles,

torsions, and linear combinations of these.

Further development is needed in a few areas. (i) The methods described in this work

can be applied to any bounded VSE, including strongly hindered torsions as in stilbene,

but we have not yet formulated the scripts to handle periodic coordinates. This would al-

low the accurate modeling of torsional states at energies above the barrier to full internal

rotation. (i) Once the PES is available, fitting of the points to an analytical function is

not yet straightforward in multiple dimensions. A desirable alternative is a reliable multi-

dimensional interpolation using spline or weighted techniques5 which can be constructed

within the framework of the integration scheme. (ii) Singularities in the G-matrix elements

can be avoided by careful choice of an appropriate coordinate system, and it may be bene-

ficial to explore non-traditional coordinate systems such as the Radau vectors,89 scattering

coordinates,90,91 valence coordinates,92 Pekeris-Jacobi coordinates93 or even mixed coordi-

nate systems. Significant advantages can be gained, including the possibility of evaluating

the exact kinetic energy operator and taking into account the symmetry or the constraints

of the process under study more efficiently. (iii) The current FEM framework is designed to

model dynamics up to three dimensions, and new finite element types need to be developed

to solve the VSE over more coordinates. Recent higher dimension calculations employ the

vibrational self-consistent field (VSCF) method,94,95 the correlation-corrected VSCF (CC-

VSCF)96,97 and the Jacobi-Wilson method.98,99 Many of these methods are based on a variant

of multi-dimensional DVR with a contracted basis set approach100–103 for the integration in

hyperspace and a block Lanczos or Davidson algorithm for matrix diagonalization. Other

schemes may include the quadrature discretization method (QDM)104 and the discrete sin-

gular convolution (DSC).105

While a user-friendly package is in development by the authors, the current set of imple-

mentation instructions and accompanying scripts for this protocol is available on request.
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APPENDIX A: LIBMESH IMPLEMENTATION

The LibMesh library42 is an open source software tool for numerical simulation of partial

differential equations on serial and parallel platforms, using the finite element method and

developed in C++. It provides a C++ interface to the user, simplifying many programming

details. LibMesh allows discretization of one, two and three dimensional stationary and tran-

sient problems using a wide variety of finite element types and interpolation polynomials.

LibMesh includes interfaces for standard high performance libraries such as SLEPc106, incor-

porating linear equation and eigenvalue solvers. The choice of appropriate solvers is made

by the user at runtime. The PETSc and LASPack packages are integrated into LibMesh,

providing several linear equation solvers, including GMRES, CG, Bi-CGSTAB, and QMR.

The rich selection of finite element types in LibMesh simplifies the definition of the global

basis functions and the approximation over arbitrary domains. Because the domain in the

context of the molecular vibrational problem is in conventional shape, (e.g., line for 1D,

square or quadrilateral for 2D and hexahedral in 3D), these elements are our first choice.

The domain discretization is handled by the Mesh and Elem classes in LibMesh. The dis-

cretization is composed of elements and nodes which are stored in the mesh, but the manner

in which these data are stored is encapsulated by abstract classes with implementation-

independent interfaces. This data encapsulation has allowed for refactoring of the mesh

class with minimal impact on the external application programming interface.

Following the partitioning of the domain into the elements, the degrees of freedom (DOFs,

equal to the number of global basis functions) are numbered consecutively. The most com-

mon implementation uses standard Lagrange elements with nodal value degrees of freedom.

Each DOF is also associated with one particular entry in the eigenvectors. The index of

that entry corresponds to the index i of the global basis function φi. Because the DOFs

correspond to values of the function at particular nodes, the DOFs are called node variables.

The DofObject class handles these different types of degrees of freedom generically. Ex-

amples of DofObjects are element interiors, faces, edges, and vertices. An element interior

has associated degrees of freedom for those shape functions whose support is contained
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within the element. Face degrees of freedom correspond to shape functions contained within

the two elements sharing a face, edge degrees of freedom correspond to shape functions for

all elements sharing an edge, and vertex degrees of freedom correspond to shape functions

supported on all elements sharing a single vertex.

The LibMesh library provides a number of interpolation polynomial functions to approx-

imate the solution. The classic first-and second-order Lagrange polynomials are supported,

as well as C0 hierarchic polynomials of arbitrary order. Mapping between physical and

computational space is performed with the Lagrange basis functions that are natural for a

given element. For example, mapping of a three-node triangle is performed with the linear

Lagrange basis functions, while a 27-node hexahedral element is mapped with a tri-quadratic

Lagrange basis. For many mesh geometries, quadratic Lagrange elements are only mapped

linearly from computational space. Provisions are made in the library to detect this and use

the minimal polynomial degree required for an accurate map.

Support for C1 continuous elements is provided in the library. Clough-Tocher and reduced

Clough-Tocher107 triangular macroelements can be generated on arbitrary 2D meshes, as well

as tensor products of cubic or higher Hermite polynomials on rectilinear meshes in up to 3

dimensions. Either choice of element gives a function space with continuous values and first

derivatives, suitable for the solution of fourth-order problems.

Discontinuous finite element spaces are also supported. For these approximation spaces

the degrees of freedom are wholly owned by the elements. The library offers monomial

function bases for these spaces. LibMesh also provides higher order interpolation functions

such as Bernstein and SZABAB polynomials.

The user specifies the shape function family and the initial approximation order to be used

for each variable in a system. The abstract FEBase class provides the generic interface for

all polynomial families, and specific cases are instantiated with template specialization. The

FEBase class provides essential data for matrix assembly routines, such as shape function

values and gradients, the element Jacobian, and the location of the quadrature points in

physical space. These calculations were implemented in the library to simplify users’ physics

code, but as an additional benefit this modularity has allowed many LibMesh upgrades, from

C1 function spaces to p (polynomial order) adaptivity support, to be accessible to users

without requiring changes to their physics code. C++ templates are used extensively in the

finite element hierarchy to reduce the potential performance overhead of virtual function
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calls.

APPENDIX B: SOLUTION TO THE GENERALIZED EIGENVALUE PROB-

LEM

The Jacobi-Davidson algorithm50 borrows ideas from Jacobi’s Orthogonal Component

Correction (JOCC) and the Davidson algorithms108 to calculate eigenvalues and eigenvec-

tors of symmetric diagonal dominant matrices. Davidson’s method is often used in quantum

chemistry applications where the matrices are large, symmetric and strongly diagonally

dominant. It is reported that for these applications the Davidson method is substantially

faster than the Lanczos method108, and it can be extended to matrices that are not diago-

nally dominant. The Jacobi-Davidson algorithm adopts Jacobi’s idea to keep the correction

orthogonal to the eigenvector approximation. The Jacobi-Davidson algorithm incorporates

the orthogonality requirement into the correction equation (as in JOCC) instead of ex-

plicit post-orthogonalization (as in the Davidson method). Geus109 and others110 describe

an efficient implementation of the Jacobi-Davidson algorithm for the symmetric eigenvalue

problem (JDSYM).

The generalized eigenvalue problem may be written

Ax = λMx, (B1)

with a real, symmetric matrix A and a real, symmetric and positive definite matrix M .

Equation B1 has the same eigensolutions as the standard eigenvalue problem

M−1Ax = λx. (B2)

Then two matrices X and Λ exist such that

XT AX = Λ and XT MX = I. (B3)

Λ is a diagonal matrix holding the eigenvalues λk of M−1A on its diagonal. The columns

of xk of X are the associated eigenvectors of M−1A.

The task of the algorithm is to compute a partial eigenvalue decomposition of dimension

kmax for the eigenvalue problem Eq. B1. So, we look for a Q ∈ �n×kmax and a diagonal

matrix Λ ∈ �kmax×kmax, such that

AQ = MQΛ with QTMQ = I. (B4)
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The algorithm shall compute the kmax eigenvalues (together with associated eigenvectors),

that are closest to a given target value τ . The converged eigensolutions (qk, λk) are required

to satisfy

‖rk‖2 = ‖Aqk − λkMqk‖2 < ε; (B5)

i.e., the 2-norm of the associated residual rk is smaller than a given bound ε.

To improve the convergence speed of the iterative solver, we choose a preconditioner

K, a symmetric matrix approximating A− τM . The preconditioner improves the spectral

properties of the matrix, reducing the number of steps required for convergence. We use black

box preconditioners, operating on the system matrix only, without requiring information

about the underlying problem. The Jacobi and the Symmetric Successive Over Relaxation

(SSOR) iterations both fall into this category, and also belong to the family of stationary

methods, i.e., methods with a constant iteration matrix. Applying such a preconditioner

is equivalent to performing a few steps of the iterative method. Numerical experiments

have shown that the preconditioners significantly speed up the inner iteration. The SSOR

preconditioner often yields significantly better performance than the Jacobi preconditioner,

and has relatively modest memory requirements.

Because we deal mostly with large, symmetric, sparse matrices, we employ the Symmetric

Sparse Skyline (SSS) format111, which stores all non-zero entries of the lower triangle of the

matrix. The SSS format is closely related to the Compressed Sparse Row (CSR) format,

but is used for sparse symmetric matrices. The diagonal is stored in a separate (full) vector

and only the lower triangle of the matrix is stored in CSR format. The SSS format is much

more efficient than other formats because it requires about half of the memory, and the

matrix-vector multiplication can be implemented to perform quickly. It is not feasible to

store the global matrices A and M in SSS format during the assembly process because

it is very expensive to add non-zero entries. The assembled global matrices are stored in

MATLAB sparse matrix format and later converted to SSS format by the way of Matrix

Market Coordinate (MMC) format because disk storage demands are usually less critical

than memory.
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80 N. Elghobashi and L. González, J. Chem. Phys. 124, 174308/1 (2006).

81 S. Hirata, K. Yagi, S. A. Perera, S. Yamazaki, and K. Hirao, J. Chem. Phys. 128, 214305/1

38



(2008).

82 T. Steiner, A. M. M. Schreurs, M. Lutz, and J. Kroon, Acta Crystallographica Section C 56,

577 (2000).

83 J. Stare and J. Mavri, Comput. Phys. Commun. 143, 222 (2002).

84 K. Szczepaniak, W. B. Person, and D. Hadzi, J. Phys. Chem. A 109, 6710 (2005).

85 J. Stare, J. Panek, J. Eckert, J. Grdadolnik, J. Mavri, and D. Hadz̆i, J. Phys. Chem. A 112,

1576 (2008).

86 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

87 W.-Y. Chiang and J. Laane, J. Chem. Phys. 100, 8755 (1994).

88 J. Laane, M. A. Harthcock, P. M. Killough, L. E. Bauman, and J. M. Cooke, J. Mol. Spectrosc.

91, 286 (1982).

89 F. T. Smith, Phys. Rev. Lett. 45, 1157 (1980).

90 A. M. Arthurs and A. Dalgarno, Proc. Royal Soc. London. Series A 256, 540 (1960).

91 J. Tennyson, Computer Physics reports 4, 1 (1986).

92 M. J. Bramley and N. C. Handy, J. Chem. Phys. 98, 1378 (1993).

93 X. G. Wang and J. T. Carrington, Can. J. Phys. 79, 623 (2001).

94 J. M. Bowman, Acc. Chem. Res. 19, 202 (1986).

95 M. A. Ratner and R. B. Gerber, J. Phys. Chem. 90, 20 (1986).

96 J. O. Jung and R. B. Gerber, J. Chem. Phys. 105, 10332 (1996).

97 J. O. Jung and R. B. Gerber, J. Chem. Phys. 105, 10682 (1996).

98 C. Leforestier, A. Viel, F. Gatti, C. Munoz, and C. Iung, J. Chem. Phys. 114, 2099 (2001).

99 F. Ribeiro, C. Iung, and C. Leforestier, J. Chem. Phys. 123, 054106 (2005).

100 J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).

101 R. A. Friesner, J. A. Bentley, M. Menou, and C. Leforestier, J. Chem. Phys. 99, 324 (1993).

102 X.-G. Wang and J. T. Carrington, J. Chem. Phys. 117, 6923 (2002).

103 H. Wei and J. T. Carrington, J. Chem. Phys. 101, 1343 (1994).

104 B. D. Shizgal and H. Chen, J. Chem. Phys. 104, 4137 (1996).

105 G. W. Wei, J. Chem. Phys. 110, 8930 (1999).

106 V. Hernandez, J. E. Roman, and V. Vidal, ACM Transactions on Mathematical Software 3,

351 (2005).

107 P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam,

39



1978).

108 E. R. Davidson, Computers in Physics 7, 519 (1993).

109 P. Arbenz and R. Geus, Numerical Linear Algebra with Applications 6, 3 (1999).

110 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the Solution of

Algebraic Eigenvalue Problems: a Practical Guide (SIAM, Philadelphia, 2000).

111 Y. Saad, Tech. Rep., Research Institute for Advanced Computer Science, NASA Ames Research

Center, Moffet Field, CA (1990).

40


	Introduction
	Methods
	Determination of the Wilson G-matrix
	Fitting surfaces to pointwise V and G-matrix values
	Formulation of  in internal coordinates
	Solution using FEM
	Formulation of the Schrödinger Equation
	The Finite-Element Basis
	Solution to the Generalized Eigenvalue Problem


	Results and Discussion
	Conclusion
	Acknowledgments
	LibMesh Implementation
	Solution to the Generalized Eigenvalue Problem
	References

