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Abstract

We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional
nonlinear Schrödinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian
functional of the NLS in order to form a quasi-one-dimensional azimuthal equation of motion, and then applying a stability analysis
in Fourier space of the azimuthal modes. We formulate predictions of growth rates of individual modes and find that vortices are
unstable below a critical azimuthal wave number. Steady state vortex solutions are found by first using a variational approach to
obtain an asymptotic analytical ansatz, and then using it as an initial condition to a nonlinear equation numerical optimization
routine. The stability analysis predictions are corroborated by direct numerical simulations of the NLS. We briefly show how to
extend the method to encompass nonlocal nonlinearities that tend to stabilize solutions.
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1. Introduction

The nonlinear Schrödinger (NLS) equation has been used
to describe a very large variety of physical systems since it is
the lowest order nonlinear (cubic) partial differential equa-
tion that describes the propagation of modulated waves
[1]. Two interesting systems described by the NLS that our
study is relevant to are Bose-Einstein Condensates (BECs)
[2], and light propagation in nonlinear optical crystals [3].

A BEC is an ultra-cold (on the order of 10−8K) gas of
103–106 atoms which have predominantly condensed into
the same quantum state, and therefore behaves like one
large macroscopic atom. Its dynamics can be described
(through a mean-field approach) by a variant of the NLS
called the Gross-Pitaevskii (GP) equation that includes an
external potential trapping the condensed atoms [4]:

i~Ψt = − ~
2

2ma
∇2Ψ + Vext(r)Ψ +

4π~
2a0

ma
|Ψ|2Ψ, (1)

∗ Corresponding author
URL: http://www-rohan.sdsu.edu/∼rcarrete/ (R.

Carretero-González).
1 URL: http://nlds.sdsu.edu/

where ~ is the reduced Planck constant, ma is the mass of
one of the atoms in the condensate, Vext(r) is the external
potential, ∇2 is the three-dimensional Laplacian, and a0 is
the s-wave scattering length (a0 < 0 corresponding to the
attractive [focusing] case while a0 > 0 to the repulsive [de-
focusing] case). The modulus squared of the wave function,
|Ψ|2, represents the density of the atoms in the condensate.
In BECs, a focusing nonlinearity has the physical meaning
that the particles in the condensate will feature attractive
interactions. This can cause the BEC to collapse into itself,
which in turn increases the kinetic energy of the particles,
and leads to an ‘explosive’ destruction of the BEC dubbed
a ‘Bosenova’ [5]. In the defocusing case, the particles have
repulsive interactions, in which case the BEC tries to ex-
pand (this is prevented by the external trap, when the latter
is present). Although BECs are three-dimensional objects,
by increasing the strength of the external trap in one trans-
verse direction, one can reshape the BEC into a quasi-two-
dimensional disk (or even a quasi-one-dimensional cigar-
shaped condensate in the case of two strong transverse di-
rections) [6]. Each of these situations can be described us-
ing appropriate forms of the two-dimensional (2D) and one-
dimensional GP equations [1,2,4].
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On the other hand, optical crystals exhibit a nonlinear
optical response when light propagates through them. A
common nonlinear response, called the Kerr effect, is when
the refractive index of the medium changes proportional
to the intensity of the light. Propagation of light through
a crystal exhibiting the Kerr effect can be modeled using
the NLS, where the modulus squared of the wave function
represents the intensity of the light. In such a case, a (2+1)-
dimensional NLS is used, where the two dimensions of the
wave function represent a cross-section of the crystal, while
the third dimension z (which represented time in the case
of BECs) represents the direction of propagation:

2iβ0Ψz + ∇2Ψ + β2
0

(

n2

n0

)

|Ψ|2Ψ, (2)

where ∇2 is the 2D Laplacian, and β0 is the propagation
constant. The parameters n0 and n2 form the index of re-
fraction in the crystal as n = n0 + n2|Ψ|2, where n0 is the
index of refraction of the crystal in the absence of light, and
n2 is the change in the index of refraction due to the inten-
sity of the light present in the crystal [7]. The defocusing
case here corresponds to a negative change in the refractive
index of the crystal (n2 < 0) which causes the light to de-
focus and spread out as it propagates through the crystal.
The focusing case (n2 > 0), on the other hand, corresponds
to a positive change in the refractive index of the crystal,
which acts to focus the light, increasing its intensity. This
focusing increases until the crystal is saturated, an effect
which is not accounted for in Eq. (2), but can be modeled
using an NLS, e.g., with a saturable nonlinearity [8] or by
including higher order (such as quintic) terms [3]. Despite
this, the stability study presented here is still directly rel-
evant because the saturation effects do not become impor-
tant until the growth in intensity is very strong, and our
study is limited to small perturbations.

The 2D NLS equation supports vortices. Vortices are
ring-shaped structures which have a rotational periodic an-
gular phase associated to them. A key property of the vor-
tex is its topological charge, denoted as m, which indicates
how many periods there are in the angular phase around
the vortex core [4]. For |m| > 0, the wave function at the
center of the vortex becomes identically zero, causing the
ring-like shape. As we will describe below, vortex solutions
of the NLS in the focusing case are modulationally unsta-
ble in the azimuthal direction. Thus, a vortex will exhibit
exponential growth of azimuthal modes, where each mode
(denoted by an integer value K) has its own growth rate.
This eventually leads to the collapse of the vortex into K fil-
aments. Our purpose in the present manuscript is to formu-
late and test a method for studying the azimuthal modula-
tional instability (MI) of vortex solutions to the NLS. The
goal is to predict the growth rates of the unstable modes,
and predict the critical mode, below which all modes are
unstable. Wherever relevant, we will make comparisons of
the semi-analytical methods presented herein to recent de-
velopments in the study of ring vortices of the NLS equa-
tion, such as Refs. [9,10].

The manuscript is organized as follows. In Sec. 2, using
the Lagrangian representation of the NLS, we formulate a
quasi-one-dimensional equation of motion for the dynam-
ics of separable steady-state vortex solutions to the NLS.
Then, in Sec. 3 we describe the azimuthal modulational
stability analysis yielding predictions of the growth rates of
unstable modes, as well as the critical mode, below which
all modes are unstable. In Sec. 4 a variational approach
is used to obtain a reliable ansatz for the radial profile of
steady-state vortices. In Sec. 5 the ansatz is refined into a
numerically ‘exact’ radial profile using optimization meth-
ods and then numerically integrated to extract azimuthal
growth rates and critical modes that are found to match
well to our analytical predictions. In Sec. 6 we show an ex-
tension of the technique to the NLS with nonlocal nonlin-
earity [11]. Finally, in Sec. 7 we summarize our results and
give some concluding remarks.

2. Azimuthal Equation of Motion

Both physical scenarios described above (BECs and opti-
cal crystals) can be modeled, under appropriate conditions,
by the 2D NLS. Let us then use the non-dimensionalized
NLS

iΨt + ∇2Ψ + s |Ψ|2Ψ = 0, (3)

where ∇2Ψ is the 2D Laplacian of the wave function Ψ and
s = +1 (s = −1) denotes the focusing (defocusing) case.
The action functional of Eq. (3) is:

S =

∫ ∞

0

Ldt, (4)

where the Lagrangian reads

L =

∫ 2π

0

∫ ∞

0

L r dr dθ, (5)

and its Lagrangian density, in polar coordinates, corre-
sponds to [12]

L =
i

2
(ΨΨ∗

t − Ψ∗Ψt) +

∣

∣

∣

∣

Ψr +
1

r
Ψθ

∣

∣

∣

∣

2

− s

2
|Ψ|4. (6)

In order to find the azimuthal equation of motion, we
assume a separable solution with a steady-state “frozen”
in time radial profile:

Ψ(r, θ, t) = f(r)A(θ, t), (7)

where all of the phase components of the solution are con-
tained in A, and therefore f(r) ∈ R. It is worth mentioning
that vortex solutions to Eq. (3) are not necessarily com-
pletely separable as per Eq. (7) and thus this property needs
to be checked (see Sec. 5.2 for more details).

When Eq. (7) is inserted into Eq. (5), since f(r) is
“frozen”, all radial integrals of Eq. (5) become constants.
This allows us to transform the 2D Lagrangian into a
quasi-one dimensional (in θ) Lagrangian which can be
used to find the equation of motion for A(θ, t). We use the
term ‘quasi-one-dimensional’ because although it becomes
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a one-dimensional problem, the radial direction is not
ignored, but shows implicitly in the values of the radial
integral constants.

First, we insert Eq. (7) into the Lagrangian density and
evaluate the radial integrals of the Lagrangian to obtain
our quasi-one-dimensional Lagrangian density:

L1D =
i

2
C1(AA∗

t − A∗At) + C2|A|2 + C3|Aθ|2 (8)

+ C5A
∗
θA + C6AθA

∗ − s

2
C4|A|4,

where

C1 =

∫ ∞

0

|f(r)|2 r dr, C2 =

∫ ∞

0

∣

∣

∣

∣

df

dr

∣

∣

∣

∣

2

r dr, (9)

C3 =

∫ ∞

0

1

r2
|f(r)|2 r dr, C4 =

∫ ∞

0

|f(r)|4 r dr,

C5 =

∫ ∞

0

1

r

df

dr
f(r)∗ r dr, C6 =

∫ ∞

0

1

r

(

df

dr

)∗

f(r) r dr.

We evaluate the variational derivative of the action func-
tional as shown in Ref. [12], which in this case takes the
form:

δS

δA∗
=

∂

∂t

∂L1D

∂ [A∗
t ]

+
∂

∂θ

∂L1D

∂ [A∗
θ]

− ∂L1D

∂A∗
= 0. (10)

Inserting Eq. (8) into Eq. (10) yields the evolution equation
for A(θ, t):

i C1At = C2A − C3Aθθ + (C5 − C6)Aθ − sC4|A|2A.

Since f(r) is real-valued, and C5 = C∗
6 , the Aθ term drops

out:
i C1At = C2A − C3Aθθ − sC4|A|2A. (11)

Applying the rescalings

A → A exp

(

−i
C2

C1
t

)

, (12)

and

t → C3

C1
t, (13)

yields the azimuthal NLS

iAt = −Aθθ − s
C4

C3
|A|2A, (14)

that we next study for its MI.

3. Stability Analysis

For the stability analysis, we assume a vortex solution of
Eq. (14):

A(θ, t) = ei(mθ+Ω
′

t), (15)

where m is the topological charge of the vortex, and Ω
′

is the
frequency of rotation of the complex phase. Notice that in
this context, the vortex waveform becomes an “azimuthal
plane wave”, and as such its stability analysis becomes the
standard modulational stability analysis of this plane wave
(which we briefly review for completeness purposes here)

[13]. The amplitude of the plane wave does not appear as an
explicit term because it is absorbed into the radial profile
f(r) of Eq. (7). Inserting Eq. (15) into Eq. (14), we get the
following dispersion relation:

Ω
′

= −m2 + s
C4

C3
. (16)

Let us now derive equations of motion for a complex
perturbation. Specifically, we wish to derive the amplitude
equations for each perturbed Fourier mode. We start by
perturbing Eq. (15) with a complex, time-dependent per-
turbation of the form:

A(θ, t) = (1 + u(θ, t) + iv(θ, t)) ei(mθ+Ω
′

t), (17)

where |u|, |v| ≪ 1.
If we rescale time according to the rotating vorticity

frame as:

τ = t +
1

2m
θ,

this yields

ut = −vθθ −
[

s
C4

C3

(

2uv + u2v + v3
)

]

, (18)

vt = uθθ + 2s
C4

C3
u +

[

s
C4

C3

(

v2 + 3u2 + v2u + u3
)

]

.

As in Refs. [13,14], in order to study MI, we seek am-
plitude equations for the azimuthal modes by expanding u
and v in a discrete Fourier series:

u(θ, t) =
1

2π

∞
∑

K=−∞

û(K, t)e−iKθ, (19)

v(θ, t) =
1

2π

∞
∑

K=−∞

v̂(K, t)e−iKθ,

where K is the mode number and its respective amplitude
is given by:

û(K, t) =

∫ 2π

0

u(θ, t) eiKθ dθ, (20)

v̂(K, t) =

∫ 2π

0

v(θ, t) eiKθ dθ.

Applying these to Eq. (18) yields two coupled nonlinear
ordinary differential equations describing the dynamics for
the amplitudes of u and v for each mode. Since we are not
interested in the long-term dynamics of the system, but
only in the MI of small perturbations, we drop the nonlinear
terms and write the resulting linearized system in matrix
form as:

d

dt







û

v̂






=







0 K2

(

2s
C4

C3
− K2

)

0













û

v̂






. (21)

The eigenvalues for this linear system are:

λ1/2 = ±
√

K2

(

2s
C4

C3
− K2

)

.
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We notice that for the defocusing nonlinearity (s = −1)
dark vortices are supported by a non-zero background, and
thus the Ci integrals do not converge, and therefore the
method employed above would need to be adjusted by ap-
propriately subtracting the background field in the La-
grangian integrals. Nonetheless, it is worth mentioning that
higher (m > 1) charge dark vortices are unstable since they
tend to split into unitary charge vortices [15–17]. However,
this instability is not of the modulational type and thus we
do not study it here, and therefore we focus on the case
of s = +1 (‘bright’ vortices) below. It is also interesting
to note that the presence of a confining potential, as it is
the case of a BEC, might stabilize higher order vortices in
certain parameter windows [18,10].

Returning to the case of interest, namely the focusing
case (s = +1), there is a bifurcation at a critical value of K:

Kcrit ≡
√

2s
C4

C3
, (22)

where K < Kcrit indicates a modulational instability. An
example of such MI is shown in Fig. 1.

Fig. 1. A typical numerical simulation of a vortex solution to the NLS
showing MI. The vortex shown is of charge m = 2 perturbed with

mode K = 5 starting with a perturbation amplitude of ǫ = 0.001.
(a) t = 0, (b) t = 8, (c) t = 10, and (d) t = 12.

To predict the actual growth rates for the perturbation
of each mode from the eigenvalues, the time rescaling of
Eq. (13) needs to be taken into account, in which case the
growth rates (in terms of Kcrit) are:

λ1/2 = ±C3

C1

√

K2 (K2
crit − K2). (23)

4. Variational Approach

Explicit solutions for two dimensional steady-state vor-
tices of the NLS are not available. Therefore, in order to find
a tractable, approximate, solution, we use a variational ap-
proach (VA) to get a reasonable ansatz, and then use that
ansatz as an initial condition to a nonlinear equation opti-
mization routine which finds the numerically ‘exact’ steady-
state profile, f(r). The VA-inferred seed may also be of
value as an initial guess to other numerical techniques that
have been previously used to obtain such vortices, including

shooting methods [9] or Newton-type, fixed point schemes
[10]. The modified Gauss-Newton scheme presented below
is intended as an alternative to the former ones.

To perform the VA, we use the technique described in
Ref. [12]. We insert a vortex ansatz with variable param-
eters into the Lagrangian of the NLS, and use the Euler-
Lagrange equations to find the ‘best’ values for the param-
eters. We start with a general, separable, steady-state so-
lution:

Ψ(r, θ, t) = f(r)ei(mθ+Ωt), (24)

where f(r) is the steady-state radial profile which we want
to find. Inserting this solution into the Lagrangian density
of the NLS yields:

L = 2π

(

ΩC1 + m2 C3 + C2 −
1

2
C4

)

, (25)

where we have now explicitly set s = +1 and the C-
constants are the same as in Eq. (9).

We use a one-dimensional soliton sech ansatz similar to
that used in Ref. [19]:

f(r) =
√

B sech

(

√

B

2
(r − rc)

)

, (26)

with parameters B and rc corresponding, respectively, to
the amplitude and location of the ring induced by the vor-
tex. Now assuming rc to be large, we can approximate the
C-constants as follows:

C1 =

∫ ∞

0

B sech2 (F ) r dr

= 2 ln (1 + E) ≈ rc

√
8B, (27)

C2 =

∫ ∞

0

B2

2
sech2 (F ) tanh2 (F ) r dr

=
B

3 (1 + E)
2

[

ln (1 + E)
(

E2 + E + 1
)

+ 2E
]

≈ 1

3
rc

√
2B3. (28)

C4 =

∫ ∞

0

B2 sech4 (F ) r dr = 4C2

≈ 4
√

2

3
rc B3/2, (29)

where E ≡ e
√

2Brc and F ≡
√

B
2 (r − rc). The C3 integral

does not converge due to the singularity at r = 0. However,
since we assume rc to be large, the r in the integrand can
be viewed as a constant (which we choose to be the center
of the sech, i.e. rc) and so we have:

C3 =

∫ ∞

0

1

r
B sech2 (F ) dr ≈ 1

rc

∫ ∞

0

B sech2 (F ) dr

=

√
8B

rc

e
√

2Brc

(1 + E)
≈

√
8B

rc
, (30)

Using these approximations, we obtain:
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L =
2π

3

√
2B rc

(

6Ω + 6
m2

r2
c

− B

)

.

The Euler-Lagrange equations:

∂L

∂B
= 0,

∂L

∂rc
= 0,

lead us to the solution:

B = 3Ω, rc =

√

2m2

Ω
, (31)

and so our VA ansatz is:

f(r) =
√

3Ω sech

[

√

3Ω

2

(

r −
√

2m2

Ω

)]

. (32)

Despite the obvious problem with this solution at r = 0
(where f(0) should identically be equal to 0), it captures
the shape and position of the numerically ‘exact’ solution
very well (see Fig. 2). Also for higher m, its value at r = 0
becomes very close to zero.

Using the VA ansatz with the asymptotic approximations
of Eqs. (27)–(30), we can calculate analytical expressions
for the growth rates and critical modes of the MI:

Kva
crit = ±2

√
2m, (33)

λva = KΩ

√
8m2 − K2

2m2
.

The advantage of the above formulae is that, although ap-
proximate, they describe in simple terms the MI experi-
enced by the vortex. Also, it should be noted that this an-
alytical prediction becomes more accurate for higher order
vortices as the VA is able to closely match the actual solu-
tion as depicted in Fig. 2.

5. Numerical Results

5.1. Numerical Optimization

To refine the ansatz profile into a numerically ‘exact’
solution, we implement a nonlinear optimization scheme
based on a modified Gauss-Newton scheme [20]. First, we
insert the following separable steady-state solution into
Eq. (3):

Ψ(r, θ, t) = f(r) ei(mθ+Ωt), (34)

which produces an ODE which can be discretized as:

Fi(fi(ri)) = −
(

Ω +
m2

r2
i

)

fi + D(fi) + f3
i = 0, (35)

where

D(fi) =
1

ri

1

∆r

(

ri+ 1

2

fi+1 − fi

∆r
− ri− 1

2

fi − fi−1

∆r

)

. (36)

We now want a profile, f0, which optimizes F towards the
specific value 0. To do this we iterate the trial profile using:

fk+1 = fk + αkpk,

where the step length αk, is found by:

min
α>0

M(fk + αpk) → αk,

and where M(fk) is the merit function defined by:

M(f) =
1

2

n
∑

i=1

(Fi(f))2. (37)

The step direction, pk is found using a modified Gauss-
Newton (GN) formulation:

pk = −(JT
k Jk + ΛkI)−1JT

k F (fk), (38)

where Λk is called the forcing term, which ensures that the
step is always defined, even near non-zero roots of M . The
forcing term is manually set to values which produce desired
results for our problem (Λk = 0.001). Some sample profiles
for various charges are shown in Fig. 2, where we can see
the very good agreement between VA and the numerically
‘exact’ solution, especially for higher charges.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

|f(
r)

|2

Fig. 2. (Color online) Comparison between the VA ansatz
(dashed/red lines) and the numerically ‘exact’ GN solution
(solid/blue lines) for charges m = 1, ..., 7 (curves left to right). We
notice that the VA captures the GN solution very well as m increases.

The apparent convergence of the VA ansatz with the GN
refined profile as |m| increases can be very useful. For very
large |m|, the GN computation using a high enough reso-
lution to avoid numerical errors can become very compu-
tationally expensive. Therefore, the analytic stability pre-
dictions of the VA [see Eq. (33)] can be used for predictions
without the need to run numerical computations at all.
Even for low charges, the VA ansatz accurately describes
the radius and maximum intensity of the vortex.

5.2. Two-dimensional Simulations

We now compare our predictions for the MI growth rates
for vortex charges m = 1, ..., 5 using Eq. (23) to numerical
results, see Fig. 3. To verify our predictions we use a polar-
grid finite-difference scheme where we treat the time deriva-
tive separately from the spatial derivatives. For the time
derivatives, we use the fourth order Runge-Kutta method.
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0.4
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m=1 m=2 m=3 m=4 m=5

Fig. 3. (Color online) Numerical predictions of growth rates of per-
turbations of azimuthal modes (K) for vortices with Ω = 0.25 and
charges m = 1, ..., 5 (left to right) using the GN routine to converge

the VA ansatz into a numerically ‘exact’ solution. The predictions
are made numerically integrating the constants of Eq. (9). We see
that for each m, after the critical mode, the growth rate predictions

for each K become 0 indicating that the perturbations after the
critical mode are stable.

For the spatial derivatives we use a second-order central
difference scheme:

∇2Ψi,j = D(Ψi) +
1

r2
i

Ψi,j+1 − 2Ψi,j + Ψi,j−1

∆θ2
.

For our simulations we use Ω = 0.25, ∆r = 0.35, ∆θ =
2π/80, ∆t = 0.0005, with a length of the simulation tmax =
15, and a perturbation amplitude ǫ = 0.00001.

Using this scheme, along with Dirichlet boundary condi-
tions, yields the results in Figs. 4 and 5 for m = 2 and m =
3, respectively. The growth rates are calculated by record-
ing the maximum and minimum of the modulus squared of
the crest of the vortex, and computing the average growth
rate of the perturbation growth.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

K

λ

 

 

Theory
Numeric

Fig. 4. (color online) Average growth rates from full two-dimen-
sional simulation of vortices of charge m = 2 perturbed with modes

K = 1, ..., 7 compared to numerical predictions. The predicted
growth rates are shown in blue circles, while the green squares rep-
resent the computed growth rates from the full simulation.
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Fig. 5. (color online) Same as in Fig. 4 for m = 3.

Overall, we see that our numerical simulations yield
growth rates that are close to those predicted, but typi-
cally slightly higher, with an error on the order of 10% for
modes far from Kcrit. For modes close to Kcrit, we observe
higher error. Also, for m = 2 and m = 3, the predicted
Kcrit is one mode off.

Through one-dimensional simulations, as well as numeri-
cal error analysis, we have accounted for much of this error.
It is observed that for modes closer to Kcrit, the simulations
are very sensitive to resolution. By increasing the resolution
to very high levels, the discrepancy in the one-dimensional
runs were virtually eliminated. Such high resolutions were
not used for the 2D simulations because the simulations be-
come very computationally expensive. Additionally, due to
the singularities in the C-constant integrals, the numerical
predictions derived from them also induce slight errors.

Another source of the discrepancy between our predic-
tions and the simulations (especially the fact that our criti-
cal mode prediction is off by one) is that the assumption of
separability used in Eq. (7) is not exact, but rather a good
approximation. This can be seen by plotting the 2D eigen-
vectors of the steady-state vortices as seen in Fig. 6. We see
that for low vortex charges, and small mode perturbations,
the eigenvectors are clearly non-separable into radial and
azimuthal parts. As one increases the charge and/or the
mode being perturbed, the eigenvector becomes more sep-
arable. Since our simulations were done on vortices of low
charge, some discrepancy due to the assumption of Eq. (7)
is to be expected [21].

Finally, we note in passing that our approach is some-
what complementary to the theoretical approach of Ref. [9],
while the combination of both is in some sense tantamount
to the theoretical analog of what is found numerically in
Refs. [9,10]. In Ref. [9], the so-called Vakhitov-Kolokolov
criterion was considered which is implicitly connected to
the K = 0 perturbation mode and the instability along that
eigendirection leads to collapse. On the other hand, here
the modulational type instability of higher K modes is ex-
amined, which initiates the unstable dynamics by breakup
of the azimuthal symmetry (and may, however, eventually
lead to collapse in conjunction with the K = 0 mode, as
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Fig. 6. (color online) Depiction of the modulus squared of numerically

derived unstable eigenmodes of vortices in the 2D focusing NLS of
charges m = 1, 2, 3, and 6 for modes K = 1, ..., 5 (the vortex of charge

m = 1 does not have unstable modes past K = 3). It is obvious
from the panels that the eigenmodes are not completely separable
into radial and azimuthal parts as assumed in Eq. (7), but can be
reasonably approximated by such a separable solution. We also see

that for higher charges and higher mode numbers, the eigenmodes
appear to become more separable, and thus the approximation of a
separable solution becomes more accurate.

shown in Fig. 1).

6. Nonlocal Nonlinearity

Here we briefly describe one of the possible extensions
to the theory, that of incorporating nonlocal interactions.
Such interactions correspond to various physical systems,
such as dipole-dipole interactions in a BEC of degenerate
dipolar atoms [22], and nonlinear crystals whose nonlin-
ear refractive index change due to the intensity of the light
present (determined by a transport process such as heat
conduction) [23]. As we will show, the nonlocality of the
nonlinearity will induce a stabilizing effect on the mod-
ulational stability of vortices. Other interesting effects of
the nonlocality of the nonlinearity include: changing, un-
der appropriate circumstances, the character of interaction
of dark solitons from repulsive to attractive [24]; changing
the interaction strength between solitons [25]; and stabi-
lization of dipole solitons [26] or 2D ring vortices such as
the ones considered herein [27]. We note that prior work
has demonstrated that for the case of nonlocal χ(3) nonlin-
earity, all three dimensional spatiotemporal solitons with
vorticity are unstable [28].

For nonlocal interactions, the NLS can be altered to have
a nonlocal nonlinearity [23]

iΨt + ∇2Ψ + sN
(

|Ψ|2
)

Ψ = 0, (39)

where the nonlocal nonlinearity takes the form of a convo-
lution integral:

N =

∫ 2π

0

∫ ∞

0

V (r′ − r, θ′ − θ) |Ψ(r′, θ′, t)|2 r′ dr′ dθ′,

and where V , the nonlocal response function, is taken to
be a Gaussian (which appears in relation to the nonlinear
crystal heat diffusion nonlocality [23]):

V (r′ − r, θ′ − θ) =
1

πσ2
exp

(

−|−→r ′ −−→r |2
σ2

)

,

were−→r = (r cos(θ), r sin(θ)) and−→r ′ = (r′ cos(θ′), r′ sin(θ′)).
Formulating the Lagrangian density of Eq. (39) yields:

L =
i

2
(ΨΨ∗

t − Ψ∗Ψt) +

∣

∣

∣

∣

Ψr +
1

r
Ψθ

∣

∣

∣

∣

2

− s

2
|Ψ|2N(|Ψ|2) ,

which, by the same method as in Sec. 2, yields the following
azimuthal equation of motion:

i C1At = C2A − C3Aθθ − sC(θ, t)A, (40)

where C is defined as:

C(θ, t) =

∫ 2π

0

∫ ∞

0

∫ ∞

0

V (r′ − r, θ′ − θ) × (41)

|f(r)|2|f(r′)|2|A(θ′, t)|2rr′ dr dr′ dθ′.

Note that the new, nonlocal, azimuthal NLS (40) is the
same as in the local case [see Eq. (11)] where the (local) C4

integral has been replaced by the (nonlocal) convolution C
integral (41).

We use the same stability analysis technique as in Sec. 2,
with a slight alteration. We notice that if we define:

R(θ′ − θ) =

∫ ∞

0

∫ ∞

0

V (r′ − r, θ′ − θ) × (42)

|f(r)|2|f(r′)|2 rr′ dr dr′,

then C is now a convolution term as follows:

C(θ, t) =

∫ 2π

0

R(θ′ − θ)|A(θ′, t)|2 dθ′ = R ∗ |A|2.

Inserting this into Eq. (40), and using the same rescalings
as in Eqs. (12) and (13), yields

iAt = −Aθθ −
s

C3
A(R ∗ |A|2).

Now, we perform a stability analysis identical to that of
Sec. 3, but along with the transforms of û and v̂, we also
add:

R̂(K) =

∫ 2π

0

R(θ)eiKθ,

in which case the convolution term becomes a product
(AR̂), and we get:

λ1/2 = ±C3

C1

√

√

√

√K2

(

2s
R̂(K)

C3
− K2

)

,

and, therefore, the critical mode is:

Kcrit = ±

√

2s
R̂(K)

C3
,
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which has the same form as the local nonlinearity case af-
ter replacing C4 with R̂(K). We see that depending on the
nonlocal response function, Kcrit can be damped, and if
R̂(K) <

∣

∣

C3

2s

∣

∣ then Kcrit < 1 and all modes become sta-
ble. Therefore, we see that one could have a vortex in the
focusing NLS with a nonlocal nonlinearity which would be
modulationally stable. In fact, this modulational stability
(as well as the stability against collapse) of the focusing
ring vortices of the nonlocal NLS equation has been con-
firmed in the work of Ref. [27] and is a feature that could
have practical applications, such as data storage and com-
munications using light vortices in Kerr optical media [29].

7. Conclusions

We have formulated a methodology for studying az-

imuthal modulational instability of vortices in the two-
dimensional NLS which can be extended to incorporate
any additional terms in the NLS as long as they have
a Lagrangian representation. (This expandability of the
method adds greatly to its usefulness and broad rele-
vance). The method relies on approximating a vortex
solution as being separable into its radial and azimuthal
parts, and using the Lagrangian functional of the NLS
to obtain a quasi-one-dimensional equation of motion for
the azimuthal direction. A stability analysis on modula-
tional perturbations of the equation, leads to predictions of
growth rates for each perturbed mode, and of the critical
mode. After obtaining a steady-state vortex solution using
a variational ansatz along with a nonlinear optimization
routine, we ran numerical simulations of the NLS, perturb-
ing individual modes and recording their growth rates to
confirm the predictions.

One key result that should not be overlooked is that of
the usefulness of the variational ansatz of the vortex pro-
files that we derived. Since this profile seems to converge
to the numerically exact solution as the vortex charge be-
comes large, experimenters can use it to make simple yet ac-
curate predictions of the vortex radius and intensity given
experimental parameters. Furthermore, it can be used as
in Ref. [9], in both local and nonlocal settings to yield an
approximate threshold for collapse dynamics.

We have also shown theoretical predictions of modula-
tional instability of vortices which exhibit a nonlocal re-
sponse by extending the NLS to incorporate a nonlocal non-
linearity. The results illustrate nonlocality can damp, or
completely eliminate, the modulational instability, poten-
tially leading to the complete stabilization of the nonlocal
vortices, as shown numerically, e.g., in Ref. [27].
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