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1 Introduction

In this chapter we elaborate on the well-established map approach for ob-
taining stationary solutions to the one-dimensional (1D) discrete nonlinear
Schrödinger (DNLS) equation. The method relies on casting the ensuing sta-
tionary problem as a recurrence relationship that can in turn be cast into a
two-dimensional (2D) map [1, 2, 3, 4, 5]. Within this description, any orbit for
this 2D map will correspond to a steady state solution of the original DNLS
equation.

The map approach is extremely useful in finding localized solutions such
as bright and dark solitons. As we will see in what follows, this method allows
for a global understanding of the types of solutions that are present in the
system and their respective bifurcations.

This chapter is structured as follows. In Sec. 2 we introduce the map ap-
proach to describe steady states for general 1D nonlinear lattices with nearest
neighbor coupling. In Sec. 3 we present some of the basic properties of the
2D map generated by the 1D DNLS lattice and how these properties, in turn,
translate into properties for the steady state solutions to the DNLS. We also
give an exhaustive account of the possible orbits that can be generated using
the map approach. Specifically, we describe in detail the families of extended
steady state solutions (homogeneous, periodic, quasi-periodic and spatially
chaotic) as well as spatially localized steady states (bright and dark solitons
and multibreather solutions). In Sec. 4 we study the limiting cases of small
and large couplings. We briefly describe the bifurcation process that is re-
sponsible for the mutual annihilation of localized solutions through a series of
bifurcations. For a more detailed account of the bifurcation scenaria for the
DNLS using the map approach please see Ref. [3].

‡ URL: http://nlds.sdsu.edu
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2 The 2D map approach for 1D nonlinear lattices

The 2D map approach that we present can be used in general for any one-
dimensional nonlinear lattice as long as the coupling between lattice sites
is restricted to nearest neighbors. The most common form of such coupling
scheme is the discrete Laplacian ∆un = un−1−2un+un+1. In order to describe
the map approach in its more general form let us consider a generic nonlinear
lattice of the form:

u̇n = G(un−1, un, un+1) + F (un), (1)

where G is the nearest neighbors coupling function and F corresponds to the
onsite nonlinearity. The case of the DNLS with the standard cubic nonlin-
earity is obtained by choosing G = ǫ

i
∆ and F (u) = β 1

i
|u|2u, where ǫ ≥ 0

is the coupling constant and β = ±1 corresponds to defocusing and focusing
nonlinearities respectively. For the map approach to be directly applicable we
need to rewrite the steady state solution of Eq. (1) as a recurrence relation-
ship. Therefore, the only requirement for the map approach to work in the
general case of the system (1) is that the coupling function needs to be invert-
ible with respect to un+1 such that G(un−1, un, un+1) = G0 can be explicitely

rewritten as un+1 = G−1(un−1, un, G0). In particular, this is the case for any
coupling function defined as a linear combination of nearest neighbors (which
is the case of the discrete Laplacian). For the sake of definitiveness, let us con-
centrate on the DNLS with cubic nonlinearity but keeping in mind that the
technique can be applied in more general scenaria (for example, in Refs. [4]
and [6] unstaggered and staggered solutions of the cubic-quintic DNLS are
studied in detail).

Let us then start with the 1D DNLS with cubic onsite nonlinear term

iu̇n = −ǫ∆un + β|un|2un. (2)

It can be shown [7] that any steady state solutions to Eq. (2) must be obtained
by separating space and time as un = exp(iΛt)vn, where Λ is the frequency
of the solution, which yields the steady state equation for the real amplitudes
vn:

Λvn = ǫ(vn−1 − 2vn + vn+1) − βv3
n. (3)

It is worth noting at this point that in the 1D case the stationary state is
determined, without loss of generality, by the real amplitude vn. In higher
dimensions, for topologically charged solutions such as discrete vortices and
supervortices in 2D [8, 9, 10, 11, 12], discrete diamonds and vortices in 3D
[13, 14], and discrete skyrmion-type solutions [15], it is necessary to consider
a complex steady state amplitude vn where the 2D map approach is no longer
applicable.

The steady state equation described by Eq. (3) can now be rewritten as
the recurrence relationship:
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vn+1 = R(vn, vn−1) ≡
1

ǫ

[

(Λ + 2ǫ)vn − ǫvn−1 + βv3
n

]

, (4)

which in turn can be cast as the 2D map

(

vn+1

wn+1

)

= M

(

vn

wn

)

, M :

{

vn+1 = R(vn, wn)

wn+1 = vn

, (5)

where the second equation defines the intermediate variable wn ≡ vn−1. it is
important to stress that, by construction, any orbit of the 2D map (5) will
correspond to a steady state solution of the DNLS (2). In particular, any given
initial condition P0 = (v0, w0)

T for the 2D map will generate the orbit de-
scribed by the doubly-infinite sequence of points (..., P−2, P−1, P0, P1, P2, ...)
where Pn+1 = M(Pn) and negative subindexes correspond to backwards iter-
ates of the 2D map [Pn−1 = M−1(Pn)]. This 2D orbit will in turn correspond
to the steady state {..., w−2, w−1, w0, w1, w2, ...} where wn = [Mn(P0)]y is the
y-coordinate (projection) of the n-th iterate of P0 through M . Alternatively,
one could also obtain the steady state as: {vn}∞n=−∞ where vn = [Mn+1(P0)]x
is the x-coordinate (projection) of the (n + 1)-th iterate of P0.

It is also important to mention that the 2D map approach, although help-
ful in describing/finding steady state solutions of the associated nonlinear
lattice, does not give any information about the stability of the steady states
themselves. This is a consequence of separating time from the steady state
where one looses all the temporal information (including stability properties).
Nonetheless, the 2D map approach does indicate the genericity or paramet-
ric/structural stability of certain types of orbits. Specifically, if the type of
steady state that is been considered corresponds to a 2D map orbit (includ-
ing fixed points, periodic orbits, quasi-periodic orbits, etc...) that is isolated
(i.e., away in physical and parameter space) from a bifurcation point, then
this orbit will still exist in the presence of, small, generic parametric and

external perturbations. This genericity property might be useful in realistic
applications where the presence of a) small errors in the determination of the
parameters of the system and b) external noise is ubiquitous. Note, however,
that if the steady state is unstable to start with, the parametric perturbation
will not modify its existence but it will remain unstable.

3 Orbit properties and diversity in the DNLS

Now that we have established the equivalence between a steady state of the
DNLS (2) and orbits of the 2D map (5), let us discuss the different types of
orbits that can be generated using the 2D map approach, their bifurcations
and some of their basic properties.
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3.1 Symmetries and properties of the cubic DNLS steady states

All symmetries and properties inherent to the 2D map (5) generate respective
symmetries and properties for the steady state solutions to the DNLS. In
particular, for the cubic DNLS [cf. Eq. (4)], we have the following symmetries
and properties:

a) The inverse map M−1: M−1(vn, wn)T = (vn+1, wn+1)
T is identical to M

after exchanging v ↔ w. Therefore any forward orbit of the 2D map will
have a symmetric backward orbit that is symmetric with respect to the
identity line.

b) Exchanging vn → (−1)nvn and wn → (−1)nwn transforms the 2D map M
onto (−1)n M with Λ → −Λ − 4ǫ and β → −β. This corresponds to the
so-called staggering transformation where every solution to the focusing

(β = −1) cubic DNLS has a corresponding solution to the defocusing

(β = +1) cubic DNLS with adjacent sites alternating signs (and after a
rescaling of the frequency).

c) The 2D map is are preserving and, as a consequence, the steady state
solutions to the DNLS have the following properties. (i) Linear centers
of the 2D map are also nonlinear centers and thus there will be periodic
and quasi-periodic orbits around (linearly) neutrally stable fixed points.
These 2D map orbits correspond, respectively, to spatially periodic and
quasi-periodic steady state solutions to the DNLS (see below). (ii) Saddle
fixed points of the 2D map will have stable and unstable manifold with
the same exponential rates of convergence. Thus, localized steady state
solutions of the DNLS will have symmetric tails at n → ±∞.

3.2 Homogeneous, periodic, modulated, and spatially chaotic
steady states

In this section we concentrate on describing steady states that are spatially
extended (i.e., not localized in space). These correspond to a) fixed points, b)
periodic orbits, c) quasi-periodic orbits, and d) chaotic orbits of the 2D map
M .

Homogeneous steady states. The most straightforward orbit that can
be described by the 2D map approach is a fixed point. Suppose that P ∗ =
(v∗, w∗)T is a fixed point of M , namely M(P ∗) = P ∗. This trivial orbit gen-
erates the homogeneous steady solution vn = v∗. Note that, by construction,
all fixed points of M must satisfy v∗ = w∗. For the DNLS case under con-
sideration, the 2D map fixed point equation (Λ + βv2)v = 0 has three fixed
points v∗ = {0,±

√

−Λ/β}, that in turn correspond to the two spatially-

homogeneous solutions un(t) = 0 and un(t) =
√

−Λ/β exp(iΛt).

Periodic steady states. Let us now consider a periodic orbit of the 2D map.
Suppose that {P0, P2, ..., Pp−1} is a period-p orbit of M (i.e., M(Pp−1) = P0).
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This periodic orbit for M will generate a spatially-periodic steady state solu-
tion for the DNLS where vn = [Pn mod(p)]y. A particular case of this spatially-
periodic steady state stems from period-2 orbits {T0, T1}. There are at most
3 such period-2 solutions depending on the (ǫ, Λ, β)-parameter values. One of
these solutions as the form T0 = −T1 = (+a,−a)T where a =

√

−(Λ + 4ǫ)/β.
This symmetric period-2 orbit is a consequence of the symmetry of the 2D map
under consideration where the transformations v ↔ −v and w ↔ −w leave
the equations invariant. This symmetric period-2 orbit generates an oscilla-
tory steady state profile of the form vn = (...,−a,+a,−a,+a, ...). In general
a period-p orbit of the 2D map generates an spatially-periodic steady state
with spatial wavelength (period) of p.

−1 0 1

−1

0

1

v
n

w
n

−25 −15 −5 5 15 25

−1

−0.5

0

0.5

1

n

w
n

Fig. 1. Periodic, quasi-periodic and chaotic orbits of the 2D map (left). The right
panel depicts the corresponding steady state solutions to the DNLS. Circles (squares)
correspond to a quasi-periodic (chaotic) orbit. Parameter values correspond to: Λ =
−0.1, β = −1, and ǫ = 1.

Quasi-periodic steady states. An interesting steady state solution is gener-
ated when one considers quasi-periodic solutions of the 2D map. For example,
the origin is a nonlinear center for −4ǫ < Λ < 0 in both the focusing and de-
focusing case. Around this center point the 2D map exhibits a infinite family
of quasi-periodic solution rotating about the origin (cf. Fig. 1). These 2D map
orbits correspond to steady state modulated waves about the fixed point (in
this case the origin) for the DNLS. An example of such an orbit is depicted in
Fig. 1. In the left panel of the figure we depict with circles the quasi-periodic
orbit around the origin, while in the right panel with depict (also with circles)
its corresponding steady state solution to the DNLS. The spatial periodicity
of these modulated waves is approximately determined by the argument of
the eigenvalues of the Jacobian at the fixed point.

Spatially chaotic steady states. As a last example of a non-localized steady
state let us considered the next level of complexity for a 2D orbit: a chaotic



6 R. Carretero-González

orbit. Chaotic orbits will be a common occurrence in nonlinear maps. For the
case under consideration, the 2D map induced by the DNLS becomes chaotic
close to the separatrix between higher periodic orbits. In Fig. 1 we depict such
a chaotic region around the separatrix of a pair of period-7 orbits (see outer
orbits). Such a chaotic orbit naturally generates a steady state solution (see
squares in the right panel) that resembles a period-7 orbit that is chaotically
modulated. It is important to mention that, typically, these chaotic orbits ex-
hibit “stickiness” close to the separatrix (see Ref. [16] and references therein
for more details on chaotic transport) and thus will stay close to a periodic
orbit for some time. However, the chaotic orbit is eventually expelled (both
in forward and backward time) and therefore the steady state becomes un-
bounded at n → ±∞. See Ref. [17] for a discussion of the relationship between
these chaotic orbits and the transmission properties in nonlinear Schrödinger
type lattices.

3.3 Spatially localized solutions: solitons and multibreathers

Undoubtedly, the most interesting steady state solutions are generated by
homoclinic and heteroclinic orbits of the 2D map. These orbits correspond,
respectively, to bright and dark solitons of the DNLS.

Homoclinic orbits. Let us concentrate our attention in homoclinic orbits
emanating from the origin. A homoclinic orbit corresponds to an orbit that
connects, in forward and backward time, a fixed point with itself. In turn,
this corresponds to a non-trivial steady state solution that decays to the fixed
point for n → ±∞. This is the so-called bright soliton solution. A sufficient
condition for the existence of a homoclinic orbit for a 2D map is that the
stable (W s) and unstable (Wu) manifolds of the fix point intersect. Thus, a
necessary condition for the existence of these manifolds is that the fixed point
must be a saddle. This latter condition, in turn, translates into a necessary
(but not sufficient) condition on the parameters of the system. For example, in
the Λ < 0 case, one needs a coupling constants ǫ < −Λ/4 to ensure the origin is
a saddle point (for Λ > 0 the origin is always a saddle point). It is important
to stress that the existence of a saddle does not guaranty the existence of
a homoclinic connection since the stable and unstable manifolds might not
intersect at all. It is possible to formally establish the existence of homoclinic
orbits of nearly integrable 2D maps through the Mel’nikov approach [18]. This
method has been successfully applied to the a single DNLS chain [1] as well
to systems of coupled DNLS equations [19] by means of a higher-dimensional
Mel’nikov approach [20]. Another approach to establish the existence of the
homoclinic orbit is to expand them in power series using center manifold
reduction [1, 7, 21, 22]. This has the advantage that one is able to extract
an approximation for the homoclinic orbits and thus be able to approximate
their bifurcations [23]. Please see Ref. [21] for a comprehensive list of different
techniques to approximate the homoclinic connections arising from the DNLS
system.
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Fig. 2. Homoclinic connection of the 2D map (left). Stable and unstable mani-
folds are depicted by solid and dashed lines respectively. The right panel depicts the
corresponding bright soliton steady state solutions to the DNLS. Circles (squares)
correspond to a bond (site) centered bright soliton solution generated by the initial
condition depicted in the left panel by P0 (Q0). The bond centered solution is dis-
placed upwards (wn → wn + 0.25) for clarity. Also, for clarity, the displacement δ
corresponds to δ = 0 for the site centered solution and δ = 0.5 for the bond centered
solution. Parameter values correspond to: Λ = 0.75, β = −1, and ǫ = 1.

Any intersection between the stable and unstable manifolds (a so-called
homoclinic point) will generate a localized steady state solution for the DNLS.
Generically, the stable and unstable manifolds cross transversally giving rise
to a so-called homoclinic tangle (see left panel of Fig. 2 for a typical exam-
ple). The transversality of the intersection of the manifolds establishes the
parametric stability for the existence of homoclinic points and thus localized
solutions. This property is extremely important for applications since is guar-
antees that, despite inaccuracies in the model parameters and external per-
turbations, localized solutions will still survive. This, for example, allows for
approximate dynamical reductions to the interactions of continuous chains of
bright solitons to be able to perform localized oscillations [24]. Two examples
of soliton solutions generated by a homoclinic point of the focusing (β = −1)
2D map are depicted in Fig. 2 and they correspond to bond centered (circles)
and site centered (squares) solutions. These two families are generated by the
odd and even crossing of the stable and unstable manifolds starting at the
points labeled by the points Q0 and P0 in the left panel. In general, the 2D
map approach not only establishes the existence of bright soliton solutions (as
well as dark soliton solutions, see below) but also determines their decay rate.
Specifically, the eigenvalues λ± (λ− < 1 < /λ+) for the saddle fixed point
supporting the homoclinic orbit (the origin in the case under consideration)

determine the exponential decay λ
|n|
− = λ

−|n|
+ for n → ±∞ (λ− = λ−1

+ is a con-
sequence of the properties described in Sec. 3.1). In our case the eigenvalues
at the origin are given by 2ǫλ± = Λ + 2ǫ ±

√

Λ(Λ + 4ǫ).
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The staggering transformation generated by the symmetry described in
Sec. 3.1.b establishes the existence of a staggered companion to the above
described bright soliton. In Fig. 4 we depict with circles such a staggered
bright soliton emanating from the initial condition labeled with P0 in the left
panel. The decaying properties for the staggered bright soliton are the same
as for its unstaggered sibling.
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Fig. 3. Heteroclinic connection of the 2D map (left). Stable and unstable manifolds
are depicted by solid and dashed lines respectively. The right panel depicts the
corresponding staggered dark soliton steady state solution to the DNLS generated
by the initial condition depicted in the left panel by P0. Parameter values correspond
to: Λ = 3, β = −1, and ǫ = 1.

Heteroclinic orbits. Instead of considering connections involving a single
fixed point, consider the stable manifold W s(x∗

1) emanating from the fixed
point x∗

1 and the unstable manifold Wu(x∗
2) emanating from the fixed point

x∗
2 (x∗

1 6= x∗
2). If these manifold intersect then it is possible to induce an

orbit that connects, in forward time, x∗
1 with, in backward time, x∗

2. This is
a so-called heteroclinic connection and it corresponds to a steady state that
connects to distinct homogeneous steady states (x∗

1 and x∗
2), namely a dark

soliton (or front).
Two examples of dark solitons generated by heteroclinic orbits of the 2D

map are depicted in Figs. 3 and 4. Figure 3 depicts a dark soliton in the
focusing case which has staggered tails, while Fig. 4 depicts (see orbit depicted
with squares emanating from the initial condition labeled by P0) a standard
dark soliton for the defocusing case.

The decaying properties for the tails of the dark soliton can be obtained,
as in the case of the bright soliton, by the appropriate eigenvalues of the fixed
points supporting the solution.

Multibreathers. By following higher order intersections of the homoclinic
connections it is possible to construct localized solutions with more than one



A Map Approach to Stationary Solutions of the DNLS 9

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

v
n

w
n

P
0

Q
0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

n

w
n

Fig. 4. Homoclinic and heteroclinic connections of the 2D map (left). Stable and
unstable manifolds are depicted by solid and dashed lines respectively. The right
panel depicts the corresponding dark soliton (squares) and staggered bright soliton

(circles) steady state solutions to the DNLS generated by the initial conditions
depicted in the left panel by Q0 and P0 respectively. Parameter values correspond
to: Λ = −4.5, β = 1, and ǫ = 1.
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Fig. 5. Higher order homoclinic connections corresponding to multibreather solu-
tions. The three multibreather solutions correspond to: (a) symmetric two-hump
multibreather generated by the initial condition P0 (see circles), (b) asymmetric
two-hump multibreather generated by the initial condition Q0 (see squares), and
(c) three-hump multibreather generated by the initial condition R0 (see triangles).
Parameter values correspond to: Λ = 0.75, β = −1, and ǫ = 1.
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localized hump [2, 3]. These solutions, usually referred to as multibreathers,
correspond to the discrete equivalents of the multisoliton solutions to the
continuous nonlinear Schrödinger equation that can be generated from the
single soliton solution by using the inverse scattering theory [25]. In Fig. 5
we depict three examples of bright multibreathers for the same parameters
but starting at different intersections on the homoclinic tangle. For a detailed
classification of these multibreather solutions see Refs. [2] and [3]. Naturally,
multibreather solutions are also possible in the defocusing case in the form
of dark multisolitons (several contiguous troughs asymptotic to the constant
homogeneous steady state background).

4 Bifurcations: the road from the anti-continuous to the

continuous limit

One of the most appealing aspects of the map approach to study steady states
of nonlinear lattices is not only the elucidation of the extremely rich variety
of structures that can be described but, perhaps more importantly, to fully
describe their bifurcations. The idea is to start at the so-called anti-continuous
[26] (uncoupled) limit, ǫ = 0, where any solution solution vn ∈ {0,±

√

−Λ/β}
is valid. It is known that all possible solutions for ǫ = 0 can be continued to
finite coupling ǫ∗ > 0 [26]. In fact, several works have been dedicated to find
bounds for ǫ∗ (threshold for coupling below which any solution can be found)
and they range from ǫ∗ > 1/(10+4

√
2) ≈ 0.0639 to ǫ∗ > (3

√
3−1)/52 = 0.0807

[27, 7, 3]. In terms of the 2D map description, the existence of any solution
vn ∈ {0,±

√

−Λ/β} is a consequence of the fractal structure of the homoclinic
tangle for small coupling. In fact, for small ǫ the homoclinic tangles tend to
accumulate close to the basic nine points (x, y) with x, y ∈ {0,±

√

−Λ/β}
allowing orbits consisting of any combination of states vn ≈ {0,±

√

−Λ/β}
to be possible [3]. This effect can be clearly seen in panel (a) of Fig. 6 that
corresponds to a very weak coupling ǫ = 0.05 that is below the critical coupling
ǫ∗ and thus any orbit connecting any possible combination of neighboring basic
points is valid.

As the coupling parameter ǫ is increased from the anti-continuous limit,
solutions start to dissappear through mutual collisions in saddle-node and
pitchfork bifurcations. A detailed description of this scenario pertaining to
the DNLS can be found in Ref. [3]. This work was in turn inspired by a sim-
ilar analysis performed on the Hénon map [28]. In both Refs. [28] and [3] it
is conjectured (the so called “no-bubbles-conjecture”) that, as the coupling
ǫ grows, only annihilation of solutions (through saddle-node and pitchfork
bifurcations) occurs and that no new solutions emerge. In Fig. 6 we show
the progression of the homoclinic tangle of the origin as the coupling param-
eter is increase from the anti-continuous limit toward the continuous limit.
As it is clearly suggested by the figure, the amount of crossings between the
different stable/unstable manifolds is greatly reduced as ǫ is increased. The
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Fig. 6. Homoclinic tangle progression as the coupling parameter in increased from
the anti-continuous limit towards the continuous limit. The coupling for each panel
corresponds, from left to right, to ǫ = 0.05, 0.2, 0.6, 1, and 1.5. In panel (a) the
nine black circles corresponds to the areas of the 2D map points giving rise to any
possible combination vn ≈ {0,±

√

−Λ/β} close to the anti-continuous limit. The
other parameter values correspond to: Λ = 0.75 and β = −1.

disappearance of these crossings is accounted by a series of saddle-node and
pitchfork bifurcations —the saddle-node being the most common one. By fol-
lowing the number of different possible homoclinic connections as the coupling
is increased one would obtain a Devil (fractal) staircase [29, 30, 31] as it is
evidenced in Fig. 14 of Ref. [3].

In the limit ǫ → ∞ (the continuous limit), the homoclinic tangle of the
origin gets thiner and asymptotically tends towards a simple homoclinic con-
nection where the stable and unstable manifolds coincide exactly and corre-
spond to a simple loop as it can be observed from panel (e) of Fig. 6. In
this continuous limit both, the bond-centered and the site-centered solutions,
coalesce into the bright soliton solution to the standard continuous nonlinear
Schrödinger equation.
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González, Phys. Rev. Lett. 93, 080403 (2004).
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15. P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, B.A. Malomed,
and F.K. Diakonos, Phys. Rev. E 75, 026603 (2007).

16. S. Balasuriya, Physica D, 202, 155 (2005).
17. D. Hennig, N.G. Sun, H. Gabriel, P. Tsironis, Phys. Rev. E, 52, 255 (1995).
18. M.L. Glasser, V.G. Papageorgiou, and T.C. Bountis, SIAM J. Appl. Math. 49,

692 (1989).
19. M. Kollmann and T. Bountis, Physica D 113, 397 (1998).
20. T. Bountis, A. Goriely, and M. Kollmann, Phys. Lett. A 206, 38 (1995).
21. G. James, B. Sánchez-Rey and J. Cuevas. Preprint. arXiv:nlin.PS/0710.4114
22. J. Cuevas, G. James, B.A. Malomend, P.G. Kevrekidis and B. Sánchez-Rey.

Preprint (2007). ArXiv:nlin.PS/0712.1837
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