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Abstract

The interpretation and measurement of the structural architecture of mitochondria

depend heavily upon the availability of good software tools for filtering, segment-

ing, extracting, measuring and classifying the features of interest. Images of mito-

chondria contain many flow-like patterns and they are usually corrupted by large

amounts of noise. Thus, it becomes necessary to enhance them by denoising and

closing interrupted structures. We introduce a new approach based on anisotropic

nonlinear diffusion and bilateral filtering for electron tomography of mitochondria.

It allows noise removal and structure closure at certain scales, while preserving both

the orientation and magnitude of discontinuities. This technique facilitates image

enhancement for subsequent segmentation, contour extraction, and improved visu-

alization of the complex and intricate mitochondrial morphology. We perform the

extraction of the structure-defining contours by employing a variational level set

formulation. The propagating front for this approach is an approximate signed dis-

tance function which does not require expensive re-initialization. The behavior of

the combined approach is tested for visualizing the structure of a HeLa cell mito-

chondrion and the results we obtain are very promising.
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diffusion, bilateral filter

PACS: 68.37.-d, 07.05.Pj, 87.63.lm

∗ Corresponding author.
Email addresses: carlos.bazan@sdsu.edu (Carlos Bazán),

miller.michelle.m@gmail.com (Michelle Miller), blomgren@terminus.sdsu.edu (Peter

Blomgren).

2



1 Introduction

To date, it is firmly established that mitochondrial function plays an important role in

the regulation of apoptosis (Green and Reed, 1998; Obeid et al., 2007). For instance,

following a variety of cell death signals, mitochondria exhibit early alterations in

function and morphologic changes, such as the opening of the permeability transition

pore or mitochondrial megachannel (Frank et al., 2001; Zamzami et al., 2007). There

is also strong evidence that defects in function may be related to many of the most

common diseases of aging, such as Alzheimer dementia, Parkinson’s disease, type II

diabetes mellitus, stroke, atherosclerotic heart disease, and cancer. This is founded

on the observation that mitochondrial function undergoes measurable disturbance

accompanied by drastic morphologic alterations in the presence of these multisystem

diseases (Frey et al., 2006; Munnich and Rustin, 2001; Tandler et al., 2002).

Concurrent with the aforementioned conceptual advances there has been a significant

increase in the types of tools available to study the correlation between mitochondrial

structure and function. Along with the now classic methods for isolating mitochondria

and assaying their biochemical properties, there are new and powerful methods for

visualizing, monitoring, and perturbing mitochondrial function while assessing their

genetic consequences (Marco et al., 2004; Pon and Schon, 2007). Electron tomog-

raphy (ET) has allowed important progress in the understanding of mitochondrial

structure. This imaging technique currently provides the highest three-dimensional

(3D) resolution of the internal arrangement of mitochondria in thick sections (Hender-

son, 2004; Perkins and Frey, 1999). Nevertheless, the interpretation and measurement

of the structural architecture of mitochondria depend heavily on the availability of

good software tools for filtering, segmenting, extracting, measuring and classifying

the features of interest (Frey et al., 2002; Perkins et al., 1997).
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This paper is organized as follows: section 2 presents an overview of anisotropic non-

linear diffusion models in image processing in general, and in electron microscopy in

particular. The level set method is also presented briefly as it is applied to the extrac-

tion of contours in images. In section 3 we propose a new image smoothing and edge

detection technique for electron tomography as an extension to the model proposed

by Bazan and Blomgren (2007). This approach employs a combination of anisotropic

nonlinear diffusion and bilateral filtering. In section 4 we exhibit the performance of

the combined approach for visualizing the structure of a HeLa cell mitochondrion

with very promising results. We end this paper with a summary and discussion in

section 5.

2 Related Work

In this section we present an overview of anisotropic nonlinear diffusion models in

image processing in general, and in electron microscopy in particular. The level set

method is also presented briefly as it is applied to the extraction of contours in images.

We only review here the works that serve as background to the model we propose in

section 3. For an excellent and comprehensive survey of diffusion methods in image

processing we refer the interested reader to the book by Weickert (Weickert, 1998)

and the references therein. Two very good references for the level set method are the

books by Osher and Fedkiw (2003) and by Sethian (1999).

2.1 Nonlinear Diffusion in Image Processing

Nonlinear diffusion is a very powerful image processing technique used for the reduc-

tion of noise and enhancement of structural features. It was first introduced to the
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image processing community by Perona and Malik (1990) as an attempt to overcome

the shortcomings of linear diffusion processes, namely the blurring of edges and other

localization problems. Their model accomplishes this by applying a process that re-

duces the diffusivity in areas of the image with higher likelihood of belonging to edges.

This likelihood is measured by a function of the local gradient |∇u|. The model can

be written as

ut −∇ ·
(
g

(
|∇u|2

)
· ∇u

)
= 0, (1)

for t > 0, on a closed domain Ω, with the observed image as initial condition

u (x, 0) = u0 (x), and homogeneous Neumann boundary conditions 〈g · ∇u,n〉 = 0,

on the boundary ∂Ω. Here, n denotes the outward normal to the domain’s boundary

∂Ω, and 〈·, ·〉 indicates the inner product
∫
∂Ω (g · ∇u) · n. In this model the diffusiv-

ity has to be such that g
(
|∇u|2

)
→ 0 when |∇u| → ∞ and g

(
|∇u|2

)
→ 1 when

|∇u| → 0.

Notwithstanding the practical success of the Perona-Malik model, it presents some

serious theoretical problems such as (i) ill-posedness (Nitzberg and Shiota, 1992; We-

ickert and Schnörr, 2000); (ii) non-uniqueness and instability (Catté et al., 1992;

Kichenassamy, 1997); (iii) excessive dependence on numerical regularization (Ben-

hamouda, 1994; Fröhlich and Weickert, 1994). The last observation motivated an

enormous amount of research towards the incorporation of the regularization directly

into the PDE, to avoid too much implicit reliance on the numerical schemes. A va-

riety of spatial, spatio-temporal, and temporal regularization procedures have been

proposed over the years (Alvarez et al., 1992; Catté et al., 1992; Cottet and Germain,

1993; Weickert, 2001, 1994b, 1996b; Whitaker and Pizer, 1993). In subsection 2.2 we

describe one of the variants to the Perona-Malik model that has been successfully

used in electron microscopy, and in section 3 we propose a new model based on a
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combination of anisotropic nonlinear diffusion and bilateral filtering.

2.2 Anisotropic Nonlinear Diffusion in Electron Tomography

One way of introducing regularization to the Perona-Malik model is through anisotropic

diffusion. The main advantage of anisotropic diffusion models over their inhomoge-

neous isotropic counterparts is that they not only account for the modulus of the

edge detector, but also its directional information. Isotropic diffusion will inhibit dif-

fusion near edges, making it hard to eliminate noise near them. Anisotropic diffusion,

on the other hand, will allow diffusion parallel to the edges while avoiding diffusing

perpendicular to them.

Förstner and Gülch (1987) and Bigün and Granlund (1987) concurrently introduced

the matrix field of the structure tensor for image processing and it is the basis for

today’s anisotropic diffusion models. The main idea behind these models is to con-

struct the orthogonal system of eigenvectors v1, v2, of the diffusion tensor Dσ in such

way that they will reveal the presence of edges, i.e., v1 ‖ ∇uσ (parallel) and v2⊥∇uσ

(perpendicular). Then one chooses appropriate (corresponding) eigenvalues that will

allow smoothing parallel to the edges and avoid doing so across them. The diffusion

tensor Dσ steers the diffusion process in such a way that the eigenvectors prescribe the

diffusion directions and the corresponding eigenvalues determine the amount of diffu-

sion along these directions. Cottet and Germain (1993) and Weickert (1994a, 1996a)

were among the first authors to propose anisotropic nonlinear diffusion models for

image processing. Weickert (1994c) has also provided a mathematical foundation for

continuous anisotropic nonlinear diffusion filtering as a scale-space transformation,

adequate for simplifying images without renouncing the edge enhancing capability.
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Anisotropic nonlinear diffusion in electron microscopy was introduced by Frangakis

and Hegerl (2001, 1999). They proposed solving

ut −∇ · (Dσ · ∇u) = 0, on Ω× (0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

(2)

where the diffusivity matrix Dσ is structured as follows:

Dσ =



v1 v2 v3







λ1 0 0

0 λ2 0

0 0 λ3







vT
1

vT
2

vT
3




. (3)

The vectors vi are the eigenvectors of the image’s structure tensor Jσ = ∇uσ · ∇uT
σ

or its convolved version Jρ = Gρ ∗ Jσ, where uσ = Gσ ∗ u and Gσ, Gρ are Gaussian

kernels of width σ, ρ, respectively. The parameters λi are functions of the eigenvalues,

µ1 ≥ µ2 ≥ µ3, of the structure tensor Jσ (or Jρ). Together, the eigenvalues µi and

the eigenvectors vi, characterize the local structural features of the image u, within a

neighborhood of size O (ρ). Each eigenvalue µi reflects the variance of the gray level

in the direction of the corresponding eigenvector vi, while each parameter λi controls

the diffusion flux in the direction of vi and has to be chosen carefully.

Based on the works of Weickert (1998, 1999a,b), the authors in (Frangakis and Hegerl,

2001, 1999) chose the parameters λi to create a hybrid model that combines both edge

enhancing diffusion (EED) and coherence enhancing diffusion (CED). EED is based

on the directional information of the eigenvectors of the structure tensor Jσ, and its

aim is to preserve and enhance edges. CED is based on the directional information of

the eigenvectors of the convolved structure tensor Jρ, and is intended for improving

flow-like structures and curvilinear continuities. For EED, Frangakis and Hegerl (2001,
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1999) chose the parameters λi following the Perona-Malik model:

λ1 = λ2 = g
(
|∇uσ|2

)
,

λ3 = 1,

(4)

while for CED, they are defined according to

λ1 = λ2 = α,

λ3 =





α if µ1 = µ3

α + (1− α) exp
(
−C

/
(µ1 − µ3)

2
)

else,

(5)

with user-defined free parameters α (regularization constant, typically set to 10−3)

and C > 0. Structures with (µ1 − µ3)
2 > C will be regarded as line-like patterns and

will be enhanced.

To combine the advantages of EED and CED, the approach presented by Frangakis

and Hegerl (2001, 1999) uses a switch based on comparing an ad hoc threshold pa-

rameter to the local relation between structure and noise (µ1 − µ3). The threshold

parameter is based on the mean value of (µ1 − µ3) in a subvolume of the image

containing only noise. EED is used when the difference (µ1 − µ3) is smaller than the

threshold parameter. When it is larger, the model switches to CED. In a separate pub-

lication, Frangakis et al. (2001) applied the hybrid model to two-dimensional (2D)

and 3D electron tomography data and compared it with conventional methods as

well as with wavelet transform filtering. They concluded that the model exhibits ex-

cellent performance at lower frequencies, achieving considerable improvement in the

signal-to-noise-ratio (SNR) that greatly facilitated the posterior segmentation and

visualization.

Fernández and Li (2003, 2005) proposed a variant to the model by Frangakis and

Hegerl (2001, 1999) for ET filtering by anisotropic nonlinear diffusion, capable of re-
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ducing noise while preserving both planar and curvilinear structures. They provided

their model with a background filtering mechanism that highlights the interesting bi-

ological structural features and a new criterion for stopping the iterative process. The

CED model presented in Eq. (5) diffuses unidirectionally along the direction of min-

imum change, v3, and efficiently enhances line-like structures (where µ1 ≈ µ2 À µ3).

It was argued by Fernández and Li (2003) that a significant number of structural fea-

tures from biological specimens resemble plane-like structures at local scale. Therefore,

they defined a set of metrics to discern whether the features are plane-like, line-like

or isotropic. The metrics they defined are:

P1 =
µ1 − µ2

µ1

, P2 =
µ2 − µ3

µ1

, P3 =
µ3

µ1

, (6)

which satisfy 0 ≤ Pi ≤ 1, ∀ i and P1 + P2 + P3 = 1. In Eq. (6) µ1, µ2 and µ3 are

the eigenvalues of the convolved structure tensor Jρ. These metrics are such that

when P1 > P2 and P1 > P3, we have a plane-like structure; when P2 > P1 and

P2 > P3, we have a line-like structure; and when P3 > P1 and P3 > P2, we have an

isotropic structure. To achieve planar enhancing diffusion, Fernández and Li (2003,

2005) modified Eq. (5) as follows:

λ1 = α,

λ2 =





α if µ1 = µ2

α + (1− α) exp
(
−C2

/
(µ1 − µ2)

2
)

else,

λ3 =





α if µ1 = µ3

α + (1− α) exp
(
−C3

/
(µ1 − µ3)

2
)

else.

(7)

For the case of isotropic structure, the model employs what Fernández and Li (2005)

call ‘background diffusion’ based on Gaussian smoothing.

Brox and Weickert (2002) argued that the linear structure tensor Jρ derived from Jσ
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by smoothing each component by a Gaussian kernel with standard deviation ρ, closes

structures of a certain scale very well and removes the noise appropriately. However,

it only preserves orientation discontinuities and does not preserve magnitude disconti-

nuities, causing object boundaries to dislocate. Brox et al. (2005) argued that as soon

as the orientation in the local neighborhood is not homogeneous, the local neighbor-

hood induced by the Gaussian filter integrates ambiguous structure information. This

information might not belong together and could lead to erroneous estimations. They

proposed two alternatives to overcome this problem. The first solution involves the

use of robust statistics for choosing one of the ambiguous orientations (van den Boom-

gaard and van de Weijer, 2002). The second solution is to adapt the neighborhood

to the data by using the Kuwahara-Nagao operator (Bakker et al., 1999; Kuwahara

et al., 1976; Nagao and Matsuyama, 1979). van den Boomgaard (2002) showed that

the classic Kuwahara-Nagao operator can be regarded as a ‘macroscopic’ version of

a PDE image evolution that combines linear diffusion with morphologic sharpening.

Other similar approaches involve the choosing of the local neighborhood via adaptive

Gaussian windows (Middendorf and Nagel, 2001, 2002; Nagel and Gehrke, 1998), and

the use of nonlinear diffusion that can perform data-adaptive smoothing that prevents

the integration of ambiguous data (Brox et al., 2004, 2006; Weickert and Brox, 2002).

Brox and Weickert (2002) proposed to address the aforementioned problem by replac-

ing the Gaussian convolution by a discontinuity preserving diffusion method. This is

obtained by considering the structure tensor Jσ as and initial matrix field that is

evolved under the diffusion equation

∂tuij −∇ ·

D





∇σ 4

√∑

k,l

u2
kl


 ·


∇σ 4

√∑

k,l

u2
kl




T

 · ∇uij


 = 0, (8)

∀ i, j, where the evolving matrix field uij (x, t) uses Jσ (x) as initial condition for

t = 0. The matrix D (A) = T (g (λi)) ·TT is the diffusion tensor for A = T (λi) ·TT.
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The latter represents a principal axis transformation of A with the eigenvalues λi as

the elements of a diagonal matrix, diag (λi), and the normalized eigenvectors as the

columns of the orthogonal matrix, T. For the diffusivity, g = 1−exp
(
−c

/
(s/λ)8

)
, for

c > 0 and λ the contrast parameter. In Eq. (8), ∇σ denotes the nabla operator where

Gaussian derivatives with standard deviation σ are employed. This approach tends

to prevent boundary dislocations while keeping the desirable properties of the linear

structure tensor. In section 3 we introduce a new approach based on anisotropic

nonlinear diffusion and bilateral filtering for electron tomography. It allows noise

removal and structure closure at certain scales, while preserving both the orientation

and magnitude of discontinuities

2.3 Contour Extraction Using the Level Set Method

Osher and Sethian (1988) developed a framework relying on a PDE approach for

modeling propagating interfaces. These methods have been applied to recover shapes

of 2D and 3D objects from visual data, as shown by Malladi et al. (1996). This

modeling scheme makes no a priori assumptions about the object’s shape and starts

with an arbitrary function, propagating it in the direction normal to the curve along

its gradient field with a certain speed, to recover shapes in the image.

The level set formulation allows both forward and backward motion of the initial

front through the creation of a higher dimensional function φ(x, t) where the initial

position of the front is embedded as the zero level set. The evolution of the function

φ(x, t) is then linked to the propagation of the front itself through a time-dependent

initial value problem. Thus, given any time t, the position of the front is given by the

zero level set of the time-dependent level set function φ (Γ (t) = {x |φ (x, t) = 0}).
The evolution equation, or level set equation (Sethian, 1999), for φ given by Osher
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and Sethian (1988) can be written as follows:

φt + F |∇φ| = 0, given φ (x, t = 0) . (9)

Many implementations (Osher and Fedkiw, 2003) of the level set method utilize a zero

(or initial) level set such that φ(x, t = 0) = ±d(x), where ±d(x) is the signed distance

to Γ (0). This choice of φ allows for both conceptual simplifications and computational

savings (Osher and Fedkiw, 2003, section 4.2). Throughout the evolution of the front,

in order to avoid the formation of shocks, very flat shapes, and/or very sharp shapes, a

re-initialization process is often used periodically to restore a signed distance function.

One approach widely used for re-initialization is to solve the equation

φt = sign (φ0) (1− |∇φ|) , (10)

given the function to be re-intialized φ0 and the sign function sign(φ) (Osher and

Fedkiw, 2003). The process of re-initialization, using the PDE-based method above

or similar variation, can be complicated and expensive. There is no simple way to

determine how and when the level set function should be re-initialized to a signed

distance function.

Li et al. (2005) presented a variational formulation whose propagating front is an

approximate signed distance function yet does not require re-initialization. The vari-

ational energy functional consists of both an internal energy term that forces the level

set function to be kept as an approximate signed distance function, and an external

energy term that drives the zero level set toward the sought object contours in the

image. The total energy functional is given by

E (φ) = µP (φ) + Eg,λ,ν (φ) . (11)

The first term in the sum is the internal energy. It helps prohibit the deviation of φ

from a signed distance function, where µ > 0 is the parameter controlling the effect
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of the penalizing the deviation. P (φ) is a metric that characterizes how close φ is to

a signed distance function whose definition follows from Eq. (10):

P (φ) =
1

2

∫

Ω
(|∇φ| − 1)2 dx. (12)

The second term in the sum of Eq. (11) is the external energy term that moves

the zero level curve toward the object boundaries. Given an image u we can define

the following edge indicator function where Gσ is the Gaussian kernel with standard

deviation σ:

g =
1

1 + |∇Gσ ∗ u|2 . (13)

With this we can further specify our external energy term:

Eg,λ,ν (φ) = λLg (φ) + νAg (φ) (14)

for constants: λ > 0, ν and terms: Lg (φ) =
∫
Ω gδ (φ) |∇φ|dx andAg (φ) =

∫
Ω gH (−φ) dx

where δ (·) is the univariate Dirac function and H (·) is the Heaviside function. The

energy term Lg(φ) computes the length of the zero level curve of φ while Ag(φ) is the

weighted area on the interior of the zero level set and speeds up the curve evolution.

The coefficient ν serves to control both the speed and direction of the curve propa-

gation and should be chosen appropriately depending on the relative location of the

initial contour to the object of interest. For an initial contour outside the object, ν

should be a negative value so that the contours may shrink to the object boundary;

whereas, a positive value should be chosen for ν if the initial contour is inside the

object so that the contours might expand to the boundary.

The use of this energy functional completely eliminates the need for the expensive

re-initialization as the evolution of the level set function is the gradient flow that

minimizes the overall energy functional. The internal energy term maintains the level

set function as an approximate signed distance function while the external energy
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term drives the propagation. The evolution equation is determined using calculus of

variations to differentiate E and setting its Gâteaux derivative equal to zero, yielding

the steepest descent process for minimization of the functional E :

∂φ

∂t
= µ

(
∇2φ−∇ ·

( ∇φ

|∇φ|

))
+ λδ (φ)∇ ·

(
g
∇φ

|∇φ|

)
+ νgδ (φ) . (15)

3 Anisotropic Nonlinear Diffusion and Bilateral Filter in Electron To-

mography

In subsection 2.2 we discussed the application of anisotropic nonlinear diffusion in

electron tomography. The approach used by Frangakis and Hegerl (2001, 1999) and

Fernández and Li (2003, 2005) is based on a hybrid EED/CED denoising mechanism

that performs very well on data containing low– to mid-frequency signal components.

The technique greatly facilitates image enhancement for subsequent segmentation and

improved visualization of complex biological specimens. In this section we propose a

new image smoothing and edge detection technique for electron tomography as an ex-

tension to the model proposed by Bazan and Blomgren (2007). This approach employs

a combination of anisotropic nonlinear diffusion and bilateral filtering. Jiang et al.

(2003) introduced bilateral filtering for the removal of noise from biological electron

microscopy data. They showed that bilateral filtering is a very effective mechanism

for suppressing the noise in tomograms while preserving high resolution secondary

structure features. Our model aims at incorporating the best of both approaches in

a single computationally robust implementation. The model is equipped with the

diffusion stopping criterion proposed by Bazan and Blomgren (2007), based on the

second derivative of the correlation between the noisy image and the filtered image

(see Appendix A for details on this diffusion stopping criterion).
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3.1 Local Structure Analysis

The structure tensor of a 3D tomogram u is a symmetric positive semidefinite matrix,

Jσ. This structure tensor is the most stable and reliable descriptor of local structure

of an image (Weickert, 1995). Similar to the approach in (Bazan and Blomgren, 2007),

we propose using a refined estimate of the gradient of u at voxel x = (x, y, z) obtained

by applying a bilateral filter in place of the Gaussian kernel. Bilateral filtering is a

technique for smoothing images while preserving edges. The first application of this

method is attributed to Aurich and Weule (1995) and it was subsequently rediscovered

by Smith and Brady (1997) and Tomasi and Manduchi (1998). Since its introduction,

the bilateral filter has been successfully employed in various contexts (Aleksic et al.,

2006; Bae et al., 2006; Bennet and McMillan, 2005; Eisemann and Durand, 2004;

Petschnigg et al., 2004; Ramanath and Snyder, 2003; Winnermöller et al., 2006).

The bilateral filter’s characteristics and behavior have been the subjects of extensive

theoretical studies that have made bilateral filtering a fairly well understood process

(Barash and Comaniciu, 2004; Buades et al., 2006; Mrázek et al., 2006; Paris and

Durand, 2006).

The basic idea underlying bilateral filtering is to combine domain and range filter-

ing, thereby enforcing both geometric and photometric locality. The model can be

expressed as

Gbf ∗ u (x) =
1

W (x)

∫

Ω
Gσd

(ξ,x) Gσr (u (ξ) , u (x)) u (ξ) dξ, (16)

with the normalization constant

W (x) =
∫

Ω
Gσd

(ξ,x) Gσr (u (ξ) , u (x)) dξ. (17)

Typically, Gσd
will be a spatial Gaussian that decreases the influence of distant pixels,
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while Gσr will be a range Gaussian that decreases the influence of pixels u (ξ) with

intensity values that are very different from those of u (x), e.g.

Gσd
= exp

(
−|ξ − x|2

2σ2
d

)
, Gσr = exp

(
−|u (ξ)− u (x)|2

2σ2
r

)
. (18)

The parameters σd and σr dictate the amount of filtering applied in the domain and

the range of the image, respectively.

The new structure tensor is therefore Jbf = ∇ubf ·∇uT
bf . The image’s local structural

features can be determined by performing the eigen-analysis of the structure tensor

Jbf where, as before, the eigenvalues provide the average contrast along the eigen-

directions, and the corresponding eigenvectors give the preferred local orientations.

We will take advantage of the information provided by the structure tensor at each

voxel x, to devise a robust anisotropic structure enhancement model for 3D electron

tomograms of mitochondria. Images of mitochondria contain many flow-like patterns

and they are often perturbed large amounts of noise (including the artifacts related

to the limited tilt range.) Thus, it becomes necessary to denoise and enhance them

by closing interrupted structures. To exploit the coherence and curvilinear continuity

while connecting possible interrupted lines and planes, we will average the structure

tensor Jbf over a region by applying bilateral filtering in the form Jbf = Gbf ∗ Jbf .

The directional information is thereby averaged, although the structure of the region

is still preserved.

3.2 Diffusion Tensor Construction

The diffusion tensor, Dbf ∈ R3×3, controls the smoothing across the 3D tomogram.

Similar to how it was done above, we define the diffusion tensor as a function of the
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structure tensor Jbf ,

Dbf =



v1 v2 v3







λ1 0 0

0 λ2 0

0 0 λ3







vT
1

vT
2

vT
3




, (19)

where vi are the structure tensor’s eigenvectors. The eigenvalues of the diffusion

tensor, λi, define the strength of the smoothing along the eigen-directions, vi, and

allow the application of different diffusion processes: (i) Linear diffusion or Gaussian

smoothing is applied when λi = 1, ∀ i; (ii) Nonlinear diffusion is applied if λi =

g
(
|∇u|2

)
, ∀ i; (iii) Anisotropic diffusion can be applied by setting the values λi so

they would reflect the image’s underlying local structure.

As presented earlier, it is now common to use a hybrid approach that switches the

diffusion process from EED to CED and vice versa, based on selected ad hoc thresh-

olds. Switching to a third diffusion mode, Gaussian diffusion (GD), in areas where

the image becomes predominantly isotropic (based on another ad hoc threshold) has

also been suggested. We propose to use the anisotropic diffusion process where the

model switches among the three modes, EED/CED/GD, automatically based on in-

formation extracted locally from the signal. The model can be regarded as ‘structure

enhancing diffusion’ (SED), where the eigenvalues are defined as

λ1 = g
(
|∇ubf |2

)
,

λ2 =





g
(
|∇ubf |2

)
if µ1 = µ2

g
(
|∇ubf |2

)
+

(
1− g

(
|∇ubf |2

))
exp

(
−C2

/
(µ1 − µ2)

2
)

else,

λ3 =





g
(
|∇ubf |2

)
if µ1 = µ3

g
(
|∇ubf |2

)
+

(
1− g

(
|∇ubf |2

))
exp

(
−C3

/
(µ1 − µ3)

2
)

else.

(20)
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Coherence measures (µ1 − µ2)
2 and (µ1 − µ3)

2 are computed based on the eigenvalues

of the averaged structure tensor Jbf , and the parameters C2 and C3 act as thresholds

such that structures where (µ1 − µ2)
2 > C2 and (µ1 − µ3)

2 > C3 are regarded as

planar patterns, while structures where (µ1 − µ2)
2 < C2 and (µ1 − µ3)

2 > C3 are re-

garded as linear patterns. In practice, the logical ‘if µ1 = µ2 then’ and ‘if µ1 = µ3 then’

are unnecessary if we use exp
(
−C2

/(
(µ1 − µ2)

2 + ε
))

and exp
(
−C3

/(
(µ1 − µ3)

2 + ε
))

,

for small ε.

In Eq. (20), g
(
|∇ubf |2

)
is a monotonically decreasing function such as Perona-Malik’s

g
(
|∇ubf ) |2

)
=

1

1 + |∇ubf |2
/

λ2
, (21)

with λ > 0 the typical contrast threshold parameter. There are several ways to set

this parameter. Perona and Malik (1990) suggested using the idea presented by Canny

(1986) and set λ as a percentile, p, of the image gradient magnitudes at each iteration

(they recommended the value p = 90%.) A by-product of this approach is a decreasing

λ, which has an stabilizing effect on the diffusion process (Mrázek, 2001).

x

y

x
u

y
u

Fig. 1. Fragment of an image where an edge pixel’s gradient has components

uy = 0 and 0 < |ux| 6 1, depending on the gray values in the two regions.

The advantages of the proposed definitions for the diffusion tensor’s eigenvalues be-

come evident when we perform a 2D analysis of the behavior of λ1 and λ2. Assume

we are standing on an edge pixel of an image u ∈ [0, 1], as shown in Fig. 1. In this

case, uy = 0 and 0 < |ux| 6 1, depending on the gray values in the two regions.

The typical hybrid approach will use a chosen threshold to switch between EED and
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CED (see Eq. (4) and Eq. (7)), and set the diffusion tensor’s eigenvalues to: either

λ1 = g
(
|∇u|2

)
or λ1 = α; and either λ2 = 1 or λ2 = α+(1− α) exp

(
−C

/
(µ1 − µ2)

2
)
.

Assuming for example the values, α = 10−3 and C = 4.5×10−4, and considering that

(µ1 − µ2)
2 =

(
u2

x − u2
y

)2
+4 (uxuy)

2, we can plot λ1 and λ2 along uy = 0 and interpret

the following (see Fig. 2):
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Fig. 2. Eigenvalues λ1 and λ2 for the EED, CED and SED models. The hybrid

EED/CED model switches sharply between the EED and CED curves based

on an ad hoc threshold.

(i) For high gradients, |ux| → 1, the EED, CED and SED models will assume similar

values for λ1, and so will the hybrid EED/CED and SED models;

(ii) For mid-range gradients, 0 < |ux| < 1, the values for λ1 must increase to prevent

diffusing across the edge. Since the EED/CED switch is a function of the gradient ux,

the hybrid EED/CED will switch from λ1 = α to λ1 = g
(
|∇u|2

)
in a sudden jump.

After the switch, as |ux| → 0, both the hybrid EED/CED and SED models will set
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the same values for λ1;

(iii) For high gradients, |ux| → 1, the EED, CED and SED models will assume similar

values for λ2, and so will the hybrid EED/CED and SED models;

(iv) For mid-range gradients, 0 < |ux| < 1, the values for λ2 must decrease to prevent

creating artificially sharpened edges. Both the hybrid EED/CED and SED models will

set the same values for λ2 until the switch triggers and changes the hybrid EED/CED

model to EED mode, and makes λ2 sharply jump to a value of 1;

(v) As |ux| → 0, both models must set λ2 → 1 to assume GD mode. The hybrid

EED/CED will switch from CED to EED where λ2 = 1, while the SED model will

asymptotically assume λ2 = 1.

(vi) The above rationale for the 2D case extends naturally to 3D. Also, if a voxel

belongs to a linear structure, µ1 ≈ µ2 À µ3, then (µ1 − µ2) → 0 and consequently

the term exp
(
−C2

/
(µ1 − µ2)

2
)
→ 0, making the switch between planar and linear

structures automatic.

4 Image Acquisition and Processing

4.1 Image Acquisition

The electron tomogram employed in our experiments corresponds to a HeLa cell and

it was obtained from a 250 nm semi-thick section across a mitochondrion expressing

cytochrome c-GFP. In the interest of research not discussed here, apoptosis was in-

duced in the mitochondria with 100µM etoposide for 15 hours. The imaging occurred

before the release of cytochrome c or loss of membrane potential allowing the mainte-
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nance of normal mitochondrion profiles; however, the treatment caused elongation of

the crista junctions. The use of a semi-thick section is advantageous because it allows

accurate depiction of the inner membrane topology of the mitochondrion.

The microscope used was the FEI Tecnai 12 Transmission Electron Microscope (TEM)

with magnification set at 11000. The EM tomography single-tilt series 3D reconstruc-

tion was obtained from the semi-thick sample by progressively tilting the specimen

and recording images using a Teitz 214 digital camera. The tilting was conducted in

increments of 2 degrees over an angular range of ±60◦; the angular range is limited

by the geometry of the apparatus that holds the sample. Once the tilt-series was col-

lected on the digital camera, the IMOD Software Suite (Kremer et al., 1996) was used

to process the images and obtain the 3D reconstruction of the electron tomogram.

3D models are constructed using the electron tomogram. The 3D tomogram can be

represented as a series of parallel sections, one pixel thick, of constant z. (Here, the

image pixel size is 1.27 nm.) Constructing the models then requires the tracing of the

membrane profiles of the outer membrane, inner membrane, and cristae structures

in each of many parallel sections of the tomogram. These tracings form a stack of

membrane contours that, when input to a computer display program, create a 3D

model that can be rotated and viewed at any angle Frey et al. (2002). The tracing of

the mitochondrial structures in the tomogram is currently done manually. However,

by applying the proposed variational level set algorithm, the process is made less

tracer-dependent.
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4.2 Image Smoothing and Structure Enhancement

After the 3D tomogram of the HeLa cell mitochondrion has been reconstructed, we

apply the algorithm described in section 3 for the removal of noise and the enhance-

ment of the structural features. This step is critical for the posterior segmentation

and extraction of the structure-defining contours. The problem to solve is

ut −∇ · (Dbf · ∇u) = 0, on Ω× (0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dbf · ∇u,n〉 = 0 on ∂Ω× (0,∞) .

(22)

We adopt the following notation for the components of the diffusion tensor:

Dbf = λ1v1 · vT
1 + λ2v2 · vT

2 + λ3v3 · vT
3 =




d11 d12 d13

d21 d22 d23

d31 d32 d33




, (23)

then, we can expand Eq. (22) and write

ut − ∂x (d11ux + d12uy + d13uz)

− ∂y (d21ux + d22uy + d23uz)

− ∂z (d31ux + d32uy + d33uz) = 0,

(24)

for t > 0, with the observed image as initial condition, and homogeneous Neumann

boundary conditions. We can apply the standard explicit finite difference scheme

using central difference to approximate the spatial derivatives, and forward difference

to approximate the time derivative. The condition for stability, assuming δx = 1, is
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given by δt = 1/6 (Weickert et al., 1998). The update will be

ut+1 = ut + δt [ ∂x (d11ux + d12uy + d13uz)

+ (d21ux + d22uy + d23uz)

+ ∂z (d31ux + d32uy + d33uz) ] .

(25)

Fig. 3 shows some results of the proposed approach applied to a slice taken from

the 3D electron tomogram of the HeLa cell mitochondrion. The proposed approach

achieves excellent noise reduction while preserving the salient edge features. In order

to facilitate extraction of the structures, we synthetically enhance the contrast by

applying the confidence connected segmentation algorithm (Meier et al., 1997). In

this context, this simple region-growing segmentation method produces sufficiently

good results for the extraction stage, but more flexible methods such as the water-

shed technique (Volkmann, 2002) or the Chan and Vese (2001) algorithm can easily

be substituted. After segmentation, the features are extracted using the level set

approach described in subsection 2.3.

4.3 Contour Extraction

We adopt the formulation by Li et al. (2005) presented in subsection 2.3 to extract the

contours in the mitochondrion images. One significant advantage of this formulation

is the liberty allowed in selecting the initial level set function. Traditionally, using

level set methods requires the initial level set to be a signed distance function φ0

so that re-initialization can be applied. However, with this need eliminated, a much
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Fig. 3. Results of the proposed approach as a slice taken from the 3D elec-

tron tomogram of the HeLa cell mitochondrion. (upper-left) The noisy image.

(upper-right) The filtered image after applying the structure enhancing dif-

fusion method. We observe the good denoising capability of the proposed

approach along with its excellent ability of preserving the edges. The filtered

image facilitates the segmentation and posterior extraction of the structure’s

contours. (lower-left) The image segmented with the ‘confident connected’

segmentation algorithm. (lower-right) A fragment of the image’s contours

over which the structure tensor’s term λ2v2 · vT
2 was superimposed.

simpler initial function may be defined:

φ0(x) =





−η, x ∈ Ω0 − ∂Ω0

0 x ∈ ∂Ω0

η, Ω− Ω0

(26)
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given arbitrary Ω0, a subset in the image domain Ω where ∂Ω0 is the set of points on

the boundary of Ω0, and η > 0. For our implementation η = 4 is selected; however,

most any constant would work. For the purposes here we use a Dirac function δ(x)

in Eq. (15) that is slightly smoothed. We define the regularized Dirac function δε(x)

as follows

δε(x) =





0, |x| > ε

1
2ε

(
1 + cos(πx

ε
)
)
, |x| ≤ ε

(27)

and utilize ε = 1.5 for our implementation.

Fig. 4. (right) Results of extraction of the interior structures and outer mem-

brane of a mitochondrion in an ET image. Algorithm was applied twice to

the segmented image (Fig. 3) using parameters: λ = 5.0, µ = .04, τ = 5.0,

ν = −25 for interior initial contour and ν = 10 for outer initial contour. Final

contours were plotted on the original ET image slice. (left) Fragment of the

3D rendering of the structural contours extracted from the mitochondrion

image.

In implementing the proposed level set method we carefully selected both our timestep

τ and coefficient µ to be safely within the range required for stability (τµ < 1
4

as

explained in Li et al. (2005)), τ = 5 and µ = .04. The level set functions were

initialized as the function φ0 defined by Eq. (10) with η = 4 using selected regions

Ω0. Fig. 4 shows the successful extraction of both the crista structures and outer
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membrane of the 718 × 763 pixel mitochondrion image. Identification of the interior

structures was conducted separately from the identification of the outer membrane

due to the required opposite direction of contour evolution for each. In order that the

initial contour expand to identify the inner structures ν was chosen to be −25 and the

evolution required 53 iterations, whereas for the second initial contour, used to shrink

to identify the outer membrane, η was chosen to be 10 and the evolution required

38 iterations. These selections allowed accurate visualization of the boundaries of

interest. Note that the algorithm was run on the image in Fig. 3 (lower-left) and the

resulting contours have been displayed on the original electron tomogram image slice.

5 Summary and Discussion

We have presented a multi-stage approach for extracting the mitochondrial structures

from electron tomograms. In particular, we apply the strategy to a 3D tomogram of

a HeLa cell mitochondrion.

In the initial reconstruction, or noise reduction phase, we propose a structure enhanc-

ing anisotropic nonlinear diffusion strategy: the local structure tensor Jbf is formed

from the gradient information of a bilaterally smoothed version of the current image.

In order to close gaps in structures caused by imaging limitations, the local structure

tensor is further smoothed with a bilateral filter, forming a smoothed version of the

structure tensor, Jbf . The eigenvectors vi, of the smoothed structure tensor form the

basis for the diffusion tensor Dbf , where the eigenvalues are prescribed so that there

is a smooth interpolation, rather than a hard threshold switching of the diffusion

characteristics between image areas of differing structure properties.

After the noise reduction phase, we synthetically enhance the contrast by applying
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the confident-connected segmentation algorithm. Following which, structures are ex-

tracted using a level set formulation which includes a term that drives the level set

function toward a signed distance function. This both simplifies the initialization of

the algorithm and removes the need for re-initialization. Strictly speaking the seg-

mentation stage is not necessary, as showcased in Li et al. (2005). However, for the

image size (718× 768) of the tomogram at hand, we found that the pre-segmentation

relieved us from tedious parameter tuning in a two-dimensional parameter space, and

thus reduced total runtime.

The extracted contours are visualized in Fig. 4. The left panel shows the successful

result of extracting both the outer membrane and the inner structures; in the right

panel we show a 3D-rendering of a ‘stack’ consisting of 25 extracted contours. The

results are very encouraging. This computational approach is potentially much faster,

and is more robust than hand-tracing of structures.

A Appendix: Diffusion Stopping Criterion

Bazan and Blomgren (2007) proposed a new (very simple) diffusion-stopping crite-

rion inspired by observation of the behavior of the correlation between the noise-free

image and the filtered image, corr (f, u), and the correlation between the noisy image

and the filtered image, corr (u0, u). Although the former measure is only available

in experimental settings it helps validate the usefulness of the latter. The nonlinear

diffusion process starts from the observed (noisy) image, u0 (x), and creates a set of

filtered images, u (x, t), by gradually removing noise and details from scale to scale

until, as t → ∞, the image converges to a constant value. During this process the

correlation between the noise-free image and the filtered image increases as the fil-

tered image moves closer to the noise-free image. This behavior continues until it
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Fig. A.1. The correlation coefficient between the noise-free image and the

filtered image increases as the filtered image moves closer to the noise-free

image. When the measure reaches a peak it decreases as the filtered image

moves slowly towards a constant value. The correlation coefficient between

the noisy image and the filtered image decreases gradually from a value of

1.0 (perfect correlation), to a constant value as the filtered image becomes

smoother.

reaches a peak from where the measure decreases as the filtered image moves slowly

towards a constant value. During the same process the correlation between the noisy

image and the filtered image decreases gradually from a value of 1.0 (perfect corre-

lation), to a constant value, ≈ corr (f, u0), as the filtered image becomes smoother

(see Fig. A.1). By comparing both measures we observe that as corr (f, u) reaches its

maximum (best possible reconstructed image), the curvature of corr (u0, u) changes

sign. This suggests that a good stopping point of the diffusion process is where the

second derivative of corr (u0, u) reaches a maximum. The performance of the stopping

criterion can be observed in Fig. A.1 along with the reconstructed images of ‘Lena’

and the ‘Clown’ (Fig. A.2). We observe that the stopping criterion is almost optimal,

allowing the diffusion process to stop near the point where the three filtering methods

reach their best possible image reconstructions.
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Fig. A.2. (left) Stopping criterion performance along with the reconstructed

image of Lena using the Catté et al. (1992) model. The measure corr (f, u)

suggests stopping the diffusion process after 18 iterations, while the proposed

stopping criterion suggests to stop the diffusion process after 15 iterations.

(right) Stopping criterion performance along with the reconstructed image

of the Clown using the Catté et al. (1992) model. The measure corr (f, u)

suggests stopping the diffusion process after 16 iterations, while the proposed

stopping criterion suggests to stop the diffusion process after 15 iterations.
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