
 

 
  

Computational Science & 
Engineering Faculty and Students 

Research Articles 
 

Database Powered by the 
Computational Science Research Center  

Computing Group & Visualization Lab 

 
COMPUTATIONAL SCIENCE 
& ENGINEERING  

  

 

 
 

Computational Science Research Center 
College of Sciences 

5500 Campanile Drive 
San Diego, CA 92182-1245 

(619) 594-3430 

 

 
© 2008 

Fast Wave Propagation by Model  
Order Reduction 

 
V. Pereyra, L. Carcione, J. Mould and R. Freund 

 
May 11, 2008 

 
 
 

Publication Number: CSRCR2008-17 
 



Fast Wave Propagation by Model Order Reduction

V. Pereyra, L. Carcione, J. Mould and R. Freund

May 17, 2007

1 Introduction

There are many applications that require the transient simulation of acoustic, elastic or electromagnetic wave
propagation. To name a few: structural analysis, blast on structures, vibrations of Navy vessels, sonar, design
of piezoelectric transducers for medical ultrasound, medical imaging and therapeutics uses of ultrasound,
earth seismic imaging for the Oil Industry and Earthquake Seismology, Optimization driven by Simulation
for material identification and optimal design. As such, any significant improvement in the performance of
numerical simulators would be very important.

Model Order Reduction (MOR) refers to a collection of techniques to reduce the number of degrees
of freedom of the very large scale dynamical systems that result after space discretization of time-dependent
partial differential equations in three space dimensions. Some of these techniques have been successfully em-
ployed in the simulation of VLSI circuits, computational fluid mechanics, real-time control, heat conduction
and other problems [1, 3, 5, 7]. Not much has been done for wave propagation, although it does not seem
that there are fundamental difficulties for its application [2].

However, since none of these techniques are trivial to interface with existing large scale high fidelity
codes, it is important to be able to select wisely the correct approach, in order to minimize development
costs. At this time we have centered our attention into the class of methods that go by the name of Proper
Orthogonal Decomposition (POD). We start from the premise that it is possible to run a few full
simulations. POD uses snapshots from these simulations to form an orthogonal basis for the solution space.
This is a problem-dependent modal decomposition, as opposite to the use of artificial basis functions (Fourier
expansions, wavelets). By using truncated Singular Value Decompositions it is possible to reduce even further
the size of this basis without sacrificing accuracy. The dynamic of a new problem is obtained by solving
projected collocation equations for the time dependent coefficients of a linear combination of the natural
basis functions.

A different class of methods, tailored to problems where even a few high fidelity simulations are not
an option, is based on Krylov subspace machinery for large-scale matrix computations [5]. These methods
generate reduced-order models that are in a certain sense optimal, directly from the large-scale data matrices
describing the given linear system. Interfacing these techniques with high-fidelity codes is less trivial, and
would require major modifications. Therefore, we will focus first on POD-type methods. In a later stage we
will explore hybrid approaches that combine the easy use of POD methods with the powerful approximation
properties of Krylov subspace-based order reduction.

2 Model Order Reduction

The purpose of Model Order Reduction (MOR) is to replace a large dynamical system by a smaller one that
still captures the dynamics of interest with sufficient accuracy. For wave propagation, when is possible to
perform some high-fidelity calculations using existing finite difference or finite element codes, the approach
that we will discuss here is called Proper Orthogonal Decomposition (POD), the Karhunen-Loeve Transform,
Principal Components Analysis or, in more modern terms, the Singular Value Decomposition. This technique
will allow us to analyze a complex spatio-temporal dynamic behavior and extract from it a (small) set of
dominant components (data driven modes), separating them from noise and inessential underlying dynamical
behavior, while still giving a sufficiently accurate description of the dynamics of interest.
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3 MODEL ORDER REDUCTION BY PROPER ORTHOGONAL DECOMPOSITION

It is similar to a mode analysis using Fourier, wavelets or other artificial bases, but in the approach under
discussion we will use snapshots extracted from a number of high-fidelity simulations that have appropriate
inputs, in order to extract the most important problem specific modes. The ideal application is one in which
we have a parametrized model that needs to be calculated many times, such as in optimization, parametric
studies, multiple inputs or source wavelets.

The procedure consists of the following steps:

• Some pre-processing in which a few large scale high-fidelity calculations are performed.

• An SVD of the matrix whose columns are spatial snapshots extracted from those simulations is calcu-
lated and truncated at the required error level.

• The space-time approximate solution is written as a linear combination of the m selected modes (left
singular vectors) with (unknown) time dependent coefficients.

• This Ansatz is replaced in the original equations and due to the orthogonality of the modes, a reduced
system of ODE’s will result. Solving for the coefficients of the linear combination for a problem with
new inputs, a very economical procedure results - compared to the original high-fidelity calculation.

3 Model Order Reduction by Proper Orthogonal Decomposition

Let us consider a first-order hyperbolic system already discretized in space:

∂w

∂t
= Aw + Bu(t), (1)

v = Cw,

where x ∈ Rn, w(t), B ∈ RM and A,C are appropriate matrices. Matrix A is sparse in the finite element
or finite differences case, but full if an spectral method is used. The vector u contains the inputs (forcing
function, time dependent boundary conditions), while the vector v contains the desired outputs (for instance,
seismograms at a few locations). For the state vector w, M is the number of degrees of freedom in space,
generally very large.
We assume that we either can observe (measure) the system for various inputs at different times or that we
can numerically simulate it. Let Φ = {φi} i = 1, ..., l (l << M), be the M × l matrix whose columns are
these spatial snapshots, and let Φ = UΣV T be its Singular Value Decomposition, where U, V are orthogonal
matrices and Σ contains the singular values σi in its diagonal, sorted in descending order of magnitude.
Since the vectors in U, V have norm l2 equal to 1, the singular values measure the ’energy’ contained in each
one of these modes. The total energy of the system (Frobenius norm) is:

E2 =
l∑

i=1

σ2
i .

If we truncate the SVD at the mth term, with m ≤ l << M then the error (or left-over energy) is:

δ2
m =

l∑

i=m+1

σ2
i .

Thus if we want to preserve a certain fraction of the total energy, say 0 < p ≤ 1, then m must be chosen
so that:

δ2
m
∼= (1− p2)E2.

Let the truncated set of left singular vectors of Φ be called Um. We now seek solutions of system (1)
(with the same spatial discretization), of the form:
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3 MODEL ORDER REDUCTION BY PROPER ORTHOGONAL DECOMPOSITION

w(x, t) = Uma(t), (2)

where a(t) is a vector of time dependent coefficients of dimension m to be determined. The coefficients a(t)
for a new input are determined via Galerkin collocation. We replace in system (1) the Anzatz (2), obtaining:

Umda/dt = AUma(t) + Bu(t),
v = CUma(t).

Multiplying by UT
m the differential equation and since the columns of Um are orthogonal, we get:

da/dt = UT
mAUm a(t) + (UT

mB) u(t),
v = (CUm) a(t), (3)

which is the reduced set of ODE’s of dimension m, whose solution will produce the time dependent coefficients
a(t). The matrix of the reduced system Am = UT

mAUm, is not sparse. Combining these coefficients with the
spatial modes Um as in (2) produces the full solution for a new problem.

Summary

The steps to follow then are:

1. Run s full simulations with the same spatial mesh (for instance, changing the source location).

2. Extract b snapshots from each simulation, for a total of l = b ∗ s columns in Φ.

3. Calculate the SVD of Φ (complexity of the SVD for a M × l matrix is O(M × l2)).

4. Truncate at energy level p < 1.

5. With the resulting m modes construct the matrices of the reduced system:

Am = UT
mAUm, Bm = UT

mB(x), Cm = C(x)Um.

6. To solve a new problem (say with the source in a different position, or diferent source input), we solve
the reduced systems of ODE’s for the coefficients aj(t), j = 1, ...,m, in the representation 2 of the
solution.

7. Validation: compare reduced results with full high fidelity results (at the sensors!).

Comments

In the previous algorithms there are some undetermined quantities, namely: the number of full simulations
s, the number of snapshots b and the energy level p. A possible way of deciding the proper number of
simulations and snapshots (besides some experimentation) would be to start with s = 1, and increment it
if necessary. A good indicator that we have enough snapshots would be when small singular values start
showing. Using an updating algorithm for the successive SVD’s would be an efficient way to proceed [6].

Since the real expense is in the simulation, one can take b reasonably large to start with, and let the SVD
analysis decide if some snapshots are not contributing energy to the reduced transfer function. In this way
there is no a priori guess and we would stop as soon as there is enough information content in our data set
of snapshots. With regards to the amount of energy that we want to preserve, that would be determined by
experimentation or further analysis and/or physical intuition.

The use of a high-order method, such as the one in the pseudo-spectral code SpectralFlex, provides
already a beneficial reduction in the initial number of spatial degrees of fredom (by a factor of up to 10,000
in 3D if compared with a second order finite element method). For realistic problems, the original system
will still be too large and too time consuming for wholesale real-time simulation, and thus we need to be
able to speedup the calculation further by using these order reduction techniques.
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5 NUMERICAL RESULTS

4 Example: Scalar wave equation
We consider as a simple test problem to validate these ideas the 1D scalar wave equation in a semi-infinite
homogeneous half space, writen in first order form:

vt = ρ−1px,

pt = Kvx,

where v, p are the velocity and the vertical component of the stress, respectively, while ρ,K are density and
the constrained modulus. The initial and boundary conditions are:

v(0, x) = 0,

p(0, x) = 0,

v(t, 1) = 0,

p(t, 0) = Ricker(t),

where the forcing function is a 50 Hz Ricker wavelet with amplitude 1. We take for this experiment,
ρ = 2000 k/m3, cp = 3000 m/s, M = 1.8× 1010P.

Once the problem is discretized in space (on a staggered mesh using centered differences) we obtain the
following block structure:

[
w1t

w2t

]
=

[
0 A12

A21 0

] [
w2

w1

]
+ 2/ρ B R(t),

where the vectors w1, w2 contain the discretized values of v and p respectively, A12, A21 are bi-diagonal
and B is a vector with all zeroes except for the first component that is equal to 1. The 2 in the forcing
term comes from the top and bottom free surface conditions. This is the full system of ODE’s that we want
to reduce. Due to the special structure it is convenient to continue the reduction in block form. Thus, let
Φ1,Φ2 be the matrices of snapshots for v, p respectively, and let

Φ1 = U1Σ1V
T
1 , Φ2 = U2Σ2V

T
2 ,

be their Singular Value Decompositions. Introducing the Ansatz:

w1 = U1a1(t), w2 = U2a2(t)

and replacing in the differential equation, after some additional manipulations we obtain the reduced system:
[

a′1
a′2

]
=

[
0 UT

1 A12U2

UT
2 A21U1 0

] [
a1

a2

]
+ 2/ρ

[
UT

1 B1

0

]
R(t).

Observe that we can choose a different number of modes for each of the two sets of variables.

5 Numerical Results
We run our finite elements code FLEX for 5000 time steps, with δt = 0.00033, corresponding to a CFL
condition of 0.99 for the problem above and collect 100 equally spaced time snapshots. FLEX uses leapfrog,
a second order explicit integrator in time and essentially symmetric differences (on an staggered mesh) in
space. For the reduced system we use as time integrator the code SVODE of Brown, Hirschman and Byrne
[4] in its stiff option.

The first experiment simply tries to reproduce the results of FLEX by solving the same problem but
within the reduced system. In Figure 1 we cross-plot the results of the 2 codes for a snapshot at the 1250th
time step. The results are good to eye-ball accuracy. Observe that the two sets of variables differ in about
7 orders of magnitude.
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Figure 1: Comparison of FLEX and MOR results. Ricker source at top (left end), t=0.4125. Top figure:
velocity; bottom figure: vertical component of the stress.

In the second experiment (Figure 3) we solve the reduced system with a Ricker source at x = 500,
with a frequency of 40 Hz and amplitude equal to 2 and show the snapshot at the 750th time step. We
still cross-plot with the results for FLEX with the original source in order to verify visually the change in
wave form and amplitude. Now we see wave pulses propagating in both direction from the center for the
velocity, some extraneous results for the vertical component of the stress and substantial high frequency
noise. Observe that the expected vertical stress amplitude is still 1, because of the way in which we apply
this forcing function.

Finally, we repeat the second experiment but taking only 66 left singular vectors (i.e., we drop the 40
vectors associated with the smallest singular values, see Figure 2). Now, as hoped, we get much cleaner
results and the system has 132 variables instead of 2000, a factor greater than 15 order reduction! (Figure
4).

These results will not be totally surprising to anyone familiar with least squares fitting. The bad results
obtained when using too many basis functions are just another manifestation of the phenomenon of over-
fitting; i.e., we are approximating very faithfully spurious noise and amplifying it as we integrate along.
Thus, it is doubly beneficial to filter out these highly oscillatory modes associated with the small singular
values, since we also get an additional reduction in the size of the problem, i.e., enhanced data compression
plus high frequency noise filtering.
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Figure 3: Source for MOR at x=500; Ricker wavelet, frequency = 40 Hz, amplitude = 2.
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Figure 4: Same as above, but MOR uses only 66 modes, instead of 100

References
[1] ”Full-wave algorithms for model order reduction and electromagnetic analysis of impedance and scatter-

ing”. T. J. Klemas, Ph D Thesis, MIT, Electrical Engineering (2005).

[2] ”Course Model Reduction”. S. Weiland, Dep. Electrical Engineering, Eindhoven University of Technology,
The Netherlands (2005).

[3] ”Reduced-order modeling: New approaches for computational physics”. P. S. Beran and W. A. Silva.
AIAA 2001-0853, NASA Report (2001).

[4] ”VODE: A Variable-Coefficient Ordinary Differential Equation solver”. Peter N. Brown, Alan C. Hind-
marsh and George D. Byrne, SIAM J. Sci. Stat. Comput., 10:1038-1051 (1989).

[5] ”Model reduction methods based on Krilov subspaces”. R. Freund, Acta Numerica 12:267-319 (2003).

[6] “An SVD updating algorithm for subspace tracking”. M. Moonen, P. Van Dooren and J. Vandewalle,
SIAM J. Matrix Analysis and Appl. 13:1015-1038 (1992).

[7] L. X. Wang, R. V. N. Melnik, ”Model reduction applied to square rectangular martensitic transformations
using proper orthogonal decomposition”. Applied Numerical Mathematics 57:510-520 (2007).

7


