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In this paper we study localized modes on the surface of a three dimensional lattice. We numeri-
cally compare the stability of these structures with the corresponding bulk solitons. Typically, the
surface increases the region of stability. An extreme example of this being the 3 site horseshoe,
which is completely unstable in the bulk, while at the surface it is stable near the anti-continuum
limit. We also examine the effect of the surface on a lattice vortex. It is noted that when parallel
to the surface the same stabilizing effect as above is observed, while it cannot exist normal to the
surface.

I. INTRODUCTION

Surface waves have been observed and studied in a va-
riety of areas such as physics (surface plasmons on a con-
ductor [1], and optical solitons in waveguide arrays [2]),
chemistry (surface waves in magnetic isotropic magnetic
gels) [3] and biology (ocean water waves). Often times
the properties and features exhibited by such modes have
no analogue in the corresponding bulk media, and thus
makes their study both interesting and relevant. Of par-
ticular interest here are nonlinear surface waves in optics,
which have been extensively studied. It has been theo-
retically shown [4] and experimentally observed [5] that
discrete nonlinear waves can be supported at the edge of a
semi-infinite array of nonlinear optical waveguide arrays.
Such solitary waves were predicted to exist not only in
focusing media as in the references discussed above, but
also between uniform and self-defocusing media in [4, 6]
and were subsequently observed both for quadratic [7]
and for photorefractive [8, 9] nonlinearities. In the 2D
setting, stable topological solitons have been predicted
in a saturable medium [10], which constitute generaliza-
tions to stable asymmetric vortex solitons predicted in
Ref. [11]. Stable discrete vortex solitons have been exper-
imentally observed in a self-focusing bulk photorefractive
media in [12]. Results for a variety of species of discrete
surface solitons in 2D was reported in Ref. [13–16]. It was
observed there that the surface can have a stabilizing ef-
fect on ordinary solitons, while impeding the existence of
some. Subsequent work resulted in the experimental ob-
servation of 2D surface solitons (both of the fundamental
and of multi-pulse soliton structures) in photorefractive
media [17], as well as in asymmetric waveguide arrays in
fused silica [18]. More recently, surface solitons in more
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complex settings such as chirped optical lattices in 1d and
2d [19, 20], between photonic crystals and metamaterials
[21] and even in nonlocal settings [22, 23] have emerged.

To the best of our knowledge, however, most of these
efforts have been constrained to 1d or 2d settings. The
only 3d setting examined was that of truncated 2d pho-
tonic lattices incorporating the effect of time evolution
to produce 3d “surface light bullets” in [24] (the corre-
sponding 2d surface structures were examined in [25]).
Our aim in the present paper is to extend the latter set-
ting to surface solitons in genuinely 3d lattices which may
be relevant e.g., to crystals built of microresonators trap-
ping photons [26] or polaritons [27], or to Bose-Einstein
condensates in the vicinity of 2d surface of a 3d optical
lattice [28, 29]. In particular, in this manuscript we re-
port results for surface solitons at the surface of a 3D
lattice: we study 3D solitons that are analogous of those
studied in Ref. [13] such as dipoles and 3 site horseshoes,
and also look at some configurations that are specific to a
3D lattice. A variety of species of solitons will be exam-
ined and their stability on the surface will be compared
to that in the bulk. In some cases, e.g. the dipole, the
soliton may be placed either normal or parallel to the
surface. Typically, increased contact with the surface in-
creases the region of stability of the structure. This is
qualitatively reasonable, since the surface allows interac-
tions with fewer neighbors, rendering the system “more
discrete”, and hence in our case more stable. In some
cases, this effect becomes more pronounced as e.g. in the
3-site horseshoes which are never stable in the bulk but
become stabilized in the presence of the surface. In some
other cases, the surface may have an adverse effect, in-
hibiting the existence of a particular mode. As such an
example, we note the discrete vortex (see below), which
when parallel to the surface has increased stability as
compared to the bulk mode, but when normal to the
surface, it cannot exist.

The model we examine here is based on the discrete
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nonlinear Schrödinger (DNLS) equation on the 3D lat-
tice:

iφ̇m,n,l + ε∆(3)φm,n,l + |φm,n,l|2φm,n,l = 0 (1)

where φm,n,l is the complex field, ε is the coupling con-

stant, φ̇ = dφ/dz, and ∆(3)φm,n,l is the discrete Lapla-
cian in 3D:

∆(3)φm,n,l ≡ φm+1,n,l + φm−1,n,l + φm,n+1,l + φm,n−1,l

+φm,n,l+1 + φm,n,l−1 − 6φm,n,l. (2)

for l ≥ 2 and all m,n. Along the surface, l = 1, the
discrete Laplacian is modified by dropping the term with
subscript index l − 1.

We look for stationary solutions φm,n,l =
exp (iΛz)um,n,l. The steady state equation corre-
sponding to Eq. (1) is then

(Λ − |um,n,l|2)um,n,l − ε∆(3)um,n,l = 0. (3)

Our presentation will be structured as follows. In the
following section, we will briefly summarize the theoreti-
cal background for the theoretical existence and stability
predictions that will follow. We then provide a bifurca-
tion analysis of the various structures of interest at the
surface (in comparison with their bulk siblings) as a func-
tion of the coupling parameter ε in section III. Section IV
illustrates the instability dynamics of the surface struc-
tures. Finally, section V summarizes our findings and
presents our conclusions.

II. THEORETICAL BACKGROUND

We find solution families by starting from the anti-
continuum (AC) limit, ε = 0 [30]. In the anti-continuum
limit, we consider only a few excited sites which deter-
mine the profile of the configuration. The continuation of
the structure to ε > 0 is determined from the Lyapunov
Reduction Theorem [31]. More specifically, the solution
is expanded as a power series in ε and the solvability con-
dition at each order is that the projection to the kernel of
the previous order in the reduction will yield no secular
terms [30].

Linear stability is then determined using the perturba-
tion ansatz

φm,n,l = eiΛz(um,n,l + δam,n,le
−iωz + δbm,n,le

iω∗z), (4)

where δ is a formal small parameter, ω is the correspond-
ing eigenvalue with associated eigenvector {am,n,l, b

∗

m,n,l}
and (·)∗ stands for complex conjugation. Substituting
this ansatz into Eq. (1) yields the following linearized
system:

− ωam,n,l = −ε∆(3)am,n,l + Λam,n,l − 2|um,n,l|2am,n,l

− u2
m,n,lb

∗

m,n,l

ω∗bm,n,l = −ε∆(3)bm,n,l + Λbm,n,l − 2|um,n,l|2bm,n,l

− u2
m,n,la

∗

m,n,l (5)

This system can be written as

σHψ = iλψ, (6)

where λ = iω. Here σ is the matrix consisting of the 2×2
blocks

σn,m =

(

0 1
−1 0

)

δn,m, (7)

and the matrix H has entries:

Hn,m =

(

1 − 2|vn,m|2 −v2
n,m

−v̄2
n,m 1 − 2|vn,m|2

)

− ǫ (s+1,0 + s−1,0 + s0,+1 + s0,−1)

(

1 0
0 1

)

.(8)

It is shown in Ref. [30], that the linear stability eigenval-
ues of the full problem, λ, are related to the eigenvalues,
γ, of the matrix H, to leading order through the equation
λ =

√
2γǫs/2, where s is the number of lattice sites that

separate adjacent excited nodes of the configuration at
the AC limit.

III. BIFURCATION ANALYSIS

In this section we numerically exhibit the existence
and stability of various 3D configurations and compare
these results with the corresponding analytical predic-
tions. These configurations are obtained by starting from
the AC limit (ε = 0), and are continued for small ε > 0,
by using a fixed point iteration. For all the numerical
results presented in this work we choose without loss of
generality Λ = 1 and we use a lattice of 13× 13× 13 un-
less stated otherwise. We start by examining parallel and
normal surface dipoles. In Fig. 1, the top panel shows the
norm (N =

∑

l,n,m |um,n,l|2) versus the coupling ε while
the second panel depicts the imaginary part of the linear
stability eigenvalue for the bulk dipole from the theory
described in the previous section (black dashed line) and
from the numerics (solid blue line). The theoretical pre-
diction for the stability eigenvalues is λ = ±2

√
εi, which,

as expected is the same as in an out of phase (so-called
twisted) 1D mode analyzed in [32], as the structure is
essentially 1D along the line connecting the two excited
sites. The third panel in the figure compares the largest
instability growth rate (versus ε) for the bulk (dash-
dotted line), normal (dashed line) and parallel dipoles
(solid line). It is seen that the interval of stability of the
dipole is increased with increased contact with the sur-
face, as rationalized above. In the case of a bulk dipole,
the instability sets in between ε0 = 0.114 and ε1 = 0.115.
From now on, when reporting the computed instability
thresholds, we will use the lower bound for ε (cf., ε0 in
the previous example) and the accuracy of our numeri-
cal computation (i.e., the chosen ε-step) will be denoted
by a number in parenthesis after the reported thresh-
old. Thus, using this notation, the threshold for the bulk
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FIG. 1: (Color Online) Features for the parallel and normal
surface dipoles. The top panel shows the norm N versus the
coupling ε. The second panel shows the imaginary part of the
linear stability eigenvalue and compares the numerical (solid
blue line) and analytical results (black dashed line). The third
panel depicts the real part of the critical (in)stability eigen-
value. The red dashed and blue solid lines depict the nor-
mal and parallel surface dipoles respectively, while the green
dash-dotted line corresponds to the bulk dipole. The fourth
panel depicts the (in)stability eigenvalue for the parallel sur-
face dipole when placed at distances starting at the surface
up to 5 units away (curves right to left). The bottom two
sets of four panels show the configurations (respective top
panels) and spectral stability plane (respective bottom pan-
els) just before (respective left panels) and just after (respec-
tive right panels) the stability threshold. The level contours
shown corresponding to Re(ul,m,n) = ±0.5 max {um,n,l} are
shown, respectively, in blue and red (dark gray and gray, in
the black-and-white version). The thresholds for the paral-
lel and normal dipoles are, respectively, ε = 0.117(1) and
ε = 0.120(1). For comparison, the threshold for the bulk
dipole is ε = 0.114(1).
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FIG. 2: Stability for the 3 site horseshoe. The panels are sim-
ilar to those in Fig. 1. The third panel compares the critical
stability eigenvalue versus the lattice coupling for the surface
horseshoe (solid line) with the bulk (dash-dotted line). It
is seen that the bulk horseshoe is always unstable (due to a
higher order eigenvalue), while the corresponding surface con-
figuration has a region of stability (the corresponding eigen-
value becomes imaginary in this case). The bottom set of four
panels corresponds to the surface horseshoe just before (left)
and just after (right) the stability threshold at ε = 0.239(1).

dipole is ε = 0.114(1). For the normal dipole, we observe
the instability at ε = 0.117(1), while for the parallel one
at ε = 0.120(1). In Fig. 1, we also depict (see the bottom
two sets of four panels) the normal and parallel surface
dipole, just before and just after the instability threshold
along with the corresponding spectral stability planes.

The surface (stabilizing) effects depend in great mea-
sure on the distance of the configuration to the surface.
The further away the configuration is from the surface
the lesser the effect. This natural phenomenon is clearly
seen in the fourth panel of Fig. 1 where we plot the
(in)stability eigenvalue as a function of the coupling for
several distances of a parallel surface dipole. The curves,
from right to left, depict results for a dipole 0, 1, ..., 5
sites away from the surface (0 sites away from the sur-
face refers to a surface dipole). As the panel indicates,
the stability interval is reduced as the dipole is pulled
away from the surface converging towards a bulk dipole.

Let us now turn our attention to a type of configura-
tion for which the surface may play a critical role on their
stability, namely horseshoes. In Fig. 2 we depicted the
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FIG. 3: Stability for the 5 site horseshoe. The panels are
identical to those in Fig. 2. In this case the stability threshold
occurs at ε = 0.211(1). For reference, the bulk 5 site horse-
shoe destabilizes at ε = 0.205(1). The bottom four panels
depict the configuration an its stability spectrum just before
(left, ε = 0.211) and just after (right, ε = 0.212) the destabi-
lization.

properties of a 3 site horseshoe that is a truncated ver-
sion of a quadrupole. As before, the first panel in Fig. 2
shows the norm versus ε, while the second and third pan-
els compare the stability results for the bulk horseshoe
(dash-dotted line) to the surface one (solid line). Numer-
ically we see that the bulk structure is always unstable,
similarly to its 2D analog [13]. However, its surface coun-
terpart is stable for small ε, eventually destabilizing at
ε = 0.239(1). The lower set of four panels in Fig. 2 shows
the configurations for the coupling just before and just
after the point of instability, along with the correspond-
ing spectral planes. The stable eigenvalues are found to
be λ = 0, λ = ±2

√
3εi, λ = O(ε2) (cf. [13]).

Fig. 3 illustrates the same features as before but for the
5 site horseshoe. Unlike its three site cousin, the bulk 5
site horseshoe is stable for up to a critical value of the
coupling, with the surface variant showing increased sta-
bility. In the bulk the 5 site horseshoe becomes unstable
at ε = 0.205(1), while on the surface, the corresponding
threshold is ε = 0.211(1). The stability eigenvalues in
this case can be computed analogously to the 3-site case
[13], as outlined in the theoretical section above (cf. also
[30]) and are λ = 3.8042εi, λ = 2.8284εi, λ = 2.3511εi,
λ = O(ε2) and λ = 0.
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FIG. 4: Stability for the quadrupole. The layout is similar to
the one in Fig. 3. In the third panel, due to the close proxim-
ity of the thresholds, the panel shows a close-up of the critical
stability eigenvalue versus the lattice coupling for the parallel
surface mode (solid line), the normal surface mode (dashed
line) and the bulk mode (dash-dotted line). The thresholds
for the bulk is ε = 0.068, while for the normal and parallel
quadrupoles it is, respectively, ε = 0.070(1) and ε = 0.071(1).
As before, the two set of four panels show the configurations
before and after stability along with their corresponding spec-
tral planes.

Next we consider the quadrupole configuration (results
depicted in Fig. 4). The surface has again a stabiliz-
ing effect, albeit a small one, when the quadrupole is
placed normal and parallel to the surface. In the bulk,
the quadrupole loses stability at ε = 0.068(1), while,
the normal and parallel surface quadrupoles have sta-
bility thresholds located, respectively, at ε = 0.070(1)
and ε = 0.071(1). The stability eigenvalues can again

be computed in this case and are λ =
√

8εi (a double
eigenvalue) λ = 2

√
εi, and a zero eigenvalue.
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FIG. 5: Stability for the four site vortex in a grid of size
11 × 11 × 11. The dash-dotted line represents the bulk vor-
tex, while the solid line represent the parallel surface ver-
sion. The layout is similar to those before, with the third the
panel being a close-up of the second panel showing a small
island of instability for the parallel surface vortex. Instabil-
ity in the bulk occurs at ε = 0.438(1), while for the par-
allel surface vortex the instability occurs at ε = 0.505(1).
Note that a vortex cannot exist normal to the surface. The
bottom four panels show the parallel surface vortex before
(left, ε = 0.485) and after (right, ε = 0.490) the insta-
bility threshold. As in the previous figures, the level con-
tours corresponding to Re(ul,m,n) = ±0.5 max {um,n,l} are
shown, respectively, in blue and red (dark gray and gray,
in the black-and-white version), while the imaginary ones,
Im(ul,m,n) = ±0.5 max {um,n,l}, are shown by green and yel-
low (light and very light gray, in the black-and-white version)
hues, respectively

In Fig. 5 we present the results for the four site vortex.
This configuration, in contrast to the previous ones, is a
complex solution. In the AC limit, the vortex occupies
the same excited sites as the above mentioned quadrupole
but the phase profile emulates a a vortex of charge one
with the distribution {0, π/2, π, 3π/2} [11, 30]. The bulk
four site vortex (which was discussed in [33]) destabi-
lizes at ε = 0.438(1) while the parallel surface vortex
is stabilized further with the threshold of stability at
ε = 0.505(1). The presence of the surface in this case
however inhibits the existence of a normal vortex at the
surface layer, similarly to what was the case in the 2D
counterpart of that structure in [13]. The fact that the
surface appears to “push” the vortex away is an inter-
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FIG. 6: Stability for the four site pyramid. This configuration
consists of a base in the form of a rhombus and an “out of
plane” site with zero phase. Three variants of this configura-
tion are displayed in the bottom row of panels (from left to
right: bulk, normal and parallel surface). As it can be noticed
from the third panel, the stability properties for the three dif-
ferent variants of this pyramid are almost identical. It seen
that all three are unstable and that their (in)stability prop-
erties are almost identical. The surface is unable to stabilize
this type of pyramidal structure, as the instability arises at
the lowest order in the eigenvalue calculation.

esting feature that it would be particularly valuable (al-
though, it may be equally difficult) to understand theo-
retically.

Finally, we examine a pyramidal structure with charac-
teristics displayed in Fig. 6, which has a base of four sites
in a “rhombic” shape. The out of plane site must have
phase 0 or π, since the π/2 and 3π/2 variants do not exist.
This set of pyramids (bulk, normal, parallel), are all com-
pletely unstable, as seen in the third panel of Fig. 6. The
surface has no stabilizing effect in this case (the insta-
bility arises at the lowest order in the eigenvalue calcula-
tions). Theory yields, eigenvalues λ = 2

√
5εi, λ = 2

√
2εi,

λ = 2ε, λ = 0 and λ = O(ε2) .

IV. DYNAMICS

In this section we examine the evolution of the various
configurations (see Figs. 7–11). In each case the dynam-
ics is initiated for a value of the coupling ε just beyond
the threshold of stability and a perturbation is applied
to the initial conditions in order to expedite the onset of
the instability.

In each case, we display the evolution of the instabil-
ity at six different times starting at t = 0, and ending
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FIG. 7: Dynamics for the unstable dipoles: a) bulk dipole, b)
parallel dipole, and c) normal dipole. In all cases the unstable
dipole suffers from oscillatory instability that is responsible
for the eventual concentration of most of the norm at a single
site (i.e., a monopole). The parameters are Λ = 1, ε = 0.2,
the lattice has a size of 13×13×13 and the times are indicated
in the panels. All iso-contour plots are done at Re(um,n,l) =
±0.75 = Im(um,n,l) and the initial steady state configuration
was perturbed with a random noise of amplitude 0.01. The
color coding for the iso-contours is as follows: blue and red
(dark gray and gray, in the black-and-white version) are real
iso-contours while the green and yellow (light and very light
gray, in the black-and-white version) correspond to imaginary
iso-contours.

at a time well beyond the point at which the instabil-
ity has manifested itself. All unstable configurations,
as predicted by the presence of imaginary parts in the
(in)stability eigenvalue λ, exhibit instability dynamics
eventually resulting in a different configuration. In the
case of the dipoles and horseshoes (see Figs. 7–9), a sin-
gle site persists, while in the case of the vortex and the
pyramid (see Figs. 10–11), a few sites may remain. The
single site structure is the most robust dynamical state
of the lattice system with the widest interval of stability
among the discrete structures; it only becomes unstable
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FIG. 8: Dynamics for the unstable 3 site horseshoes: a) bulk 3
site horseshoe and b) normal 3 site horseshoe. For both cases
the unstable horseshoe suffers from oscillatory instability that
is responsible for the eventual concentration of most of the
norm at a single site (i.e., a monopole). The iso-contours and
parameters are the same as in Fig. 7 except for ε = 0.3.

(for a given Λ) at the coupling value of ε ≈ Λ [33]. An-
other structure with a relatively wide stability region is
the dipole (which is more stable, the wider the distance
between its constituent sites), which is consonant with
the observation that some of the structures (especially
ones with a large number of excited sites, such as vor-
tices and pyramids) dynamically transform into such a
waveform. It is important to stress that the exact details
of the evolution and the final state depend, in general, on
the details of the initial perturbation. Each configuration
is shown using iso-level contours of different hues. The
blue and red (dark gray and gray, in the black-and-white
version) are real iso-contours while the green and yellow
(light and very light gray, in the black-and-white version)
correspond to imaginary iso-contours.

V. CONCLUSIONS

In this work, we have presented a generalization of sur-
face modes in the vicinity of a two-dimensional surface
within a three-dimensional prototypical dynamical lat-
tice. We have illustrated that the surface has a variety of
interesting properties including the stabilization of struc-
tures that are unstable in the bulk (such as 3-site horse-
shoes), the inhibition of formation of structures that do
exist in the bulk (such as vortices normal to the surface,
although ones parallel to the surface do exist), and, per-
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FIG. 9: Dynamics for the unstable 5 site horseshoes: a) bulk 5
site horseshoe and b) normal 5 site horseshoe. For both cases
the unstable horseshoe suffers from oscillatory instability that
is responsible for the eventual concentration of most of the
norm at a single site (i.e., a monopole). The iso-contours and
parameters are the same as in Fig. 8.
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FIG. 10: Dynamics for the unstable vortices: a) bulk vortex
for ε = 0.3 and b) parallel surface vortex for ε = 0.6, Λ =
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Im(um,n,l).
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FIG. 11: Dynamics for the unstable pyramids: a) bulk pyra-
mid, b) normal pyramid, and c) parallel pyramid for ε = 0.2.

haps the most typical of its attributes, the expansion of
the stability intervals of various solutions that exist in
the bulk and survive in the presence of the surface. The
latter feature we have attributed to the corresponding de-
crease (in the presence of the surface) of the number of
neighbors that the excited sites encounter, since the ap-
proach to the continuum limit is what leads to the insta-
bility (or disappearance) of all the stationary structures
of this model which possesses no known stable stationary
waveforms in its continuum limit.

On the other hand, while the techniques of [30, 32, 34]
are quite useful in understanding the dominant stability
properties of the solutions, the surface appears to have
some particularly subtle effects (such as the stabilization
of higher order solutions or the inhibition of some types
of vortex structures) which cannot be directly inferred by
the bulk considerations of the above works. It would thus
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be of particular interest to develop a version of the ex-
istence and stability techniques based on the Lyapunov-
Schmidt reductions of [30, 32, 34] which accounts for the

effects of the surface. Such a development may shed light
on the nature of configurations that may be inhibited or
stabilized by the surface.
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