
 

 
  

Computational Science & 
Engineering Faculty and Students 

Research Articles 
 

Database Powered by the 
Computational Science Research Center  

Computing Group & Visualization Lab 

 
COMPUTATIONAL SCIENCE 
& ENGINEERING  

  

 

 
 

Computational Science Research Center 
College of Sciences 

5500 Campanile Drive 
San Diego, CA 92182-1245 

(619) 594-3430 

 

 
© 2008 

Dynamics of Vortex Formation in Merging  
Bose-Einstein Condensate Fragments 

 
R. Carretero-González, B.P. Anderson, P.G. Kevrekidis,  

D.J. Frantzeskakis, and C.N. Weiler 
 

January 2, 2008 
 
 
 

Publication Number: CSRCR2008-11 
 



Dynamics of vortex formation in merging Bose-Einstein condensate fragments

R. Carretero-González,1 B. P. Anderson,2 P. G. Kevrekidis,3 D. J. Frantzeskakis,4 and C. N. Weiler2

1Nonlinear Dynamical Systems Group,*Department of Mathematics and Statistics, and Computational Science Research Center,
San Diego State University, San Diego, California 92182-7720, USA

2College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
3Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

4Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
�Received 2 November 2007; published 27 March 2008�

We study the formation of vortices in a Bose-Einstein condensate �BEC� that has been prepared by allowing
isolated and independent condensed fragments to merge together. We focus on the experimental setup of
Scherer et al. �Phys. Rev. Lett. 98, 110402 �2007��, where three BECs are created in a magnetic trap that is
segmented into three regions by a repulsive optical potential; the BECs merge together as the optical potential
is removed. First, we study the two-dimensional case; in particular, we examine the effects of the relative
phases of the different fragments and the removal rate of the optical potential on the vortex formation. We find
that many vortices are created by instant removal of the optical potential regardless of relative phases, and that
fewer vortices are created if the intensity of the optical potential is gradually ramped down and the condensed
fragments gradually merge. In all cases, self-annihilation of vortices of opposite charge is observed. We also
find that for sufficiently long barrier ramp times, the initial relative phases between the fragments leave a clear
imprint on the resulting topological configuration. Finally, we study the three-dimensional system and the
formation of vortex lines and vortex rings due to the merger of the BEC fragments; our results illustrate how
the relevant vorticity is manifested for appropriate phase differences, as well as how it may be masked by the
planar projections observed experimentally.

DOI: 10.1103/PhysRevA.77.033625 PACS number�s�: 03.75.�b, 52.35.Mw

I. INTRODUCTION

The formation, stability, and dynamics of vortexlike struc-
tures has been a long-standing theme of interest in many
areas of physics, including classical fluid mechanics �1�, su-
perfluidity and superconductivity �2–4�, and cosmology �5�.
Moreover, in the past decade, there has been a tremendous
growth of excitement in this topic in the branches of atomic
and optical physics. This has been propelled by considerable
experimental and theoretical advances in the fields of nonlin-
ear optics �6� and Bose-Einstein condensates �BECs� in di-
lute alkali vapors �7,8� �see also Ref. �9��.

Focusing more specifically on the rapidly growing area of
BECs �10�, one can recognize that the study of vortices has
been central to the relevant literature. In particular, as con-
cerns the experimental efforts, the original observations of
single �11,12� and multiple vortices �13� was soon followed
by the realization of robust lattices of large numbers of vor-
tices �14�. Subsequent studies turned to higher-charged struc-
tures such as vortices of topological charge S=2 and even
S=4 �15� and illustrating the potential dynamical instability
of these topological objects �16�. On the other hand, the
abundance of experimental results has stirred an intense the-
oretical interest in the conditions under which such vortices
and vortex lattices are formed and remain robust to be ex-
perimentally observable. Most often, vortex existence and
stability issues were examined in the framework of the stan-
dard parabolic confining potential �typically produced by
magnetic traps�. In that framework, and in the two-

dimensional �2D� case, vortices of charge S=1 were found to
be stable, while vortices of higher charge �S=2,3� were
shown to be potentially unstable �17� �depending on the atom
numbers�. Later, similar results were found for vortices of
S=4 �18�, while the availability of more substantial compu-
tational resources has more recently led to similar conclu-
sions in the fully three-dimensional �3D� case �19,20�. The
studies of Refs. �21� and �22� examined the various scenarios
of break-up of higher-charge vortices during dynamical evo-
lution simulations for repulsive and attractive interactions,
respectively. Furthermore, Ref. �23� considered such vortices
riding on the background of not just the ground state, but
also of higher, ringlike, excited states of the system. It should
also be mentioned that these advancements have motivated
the development of mathematically rigorous tools in order to
study the spectrum of such vortex modes. Such methods in-
volve the use of the Evans function �24�, or the use of the
index theorem evaluating the number of potentially unstable
eigendirections �25�.

Although the existence and stability of fundamental and
higher charge vortices has been examined extensively as in-
dicated above, the formation of such vortex structures is far
less studied. In particular, while seminal interference experi-
ments �demonstrating that BECs are coherent matter waves�
were reported as early as a decade ago �26�, the role of
interference between BECs in vortex generation was experi-
mentally studied only recently �27�. This work proposed and
examined the formation of vortices resulting from the inter-
ference and controlled merging of three condensed frag-
ments, where the fragments were essentially independent
BECs separated by an optical potential barrier. Such a pro-
cess has close ties to elements of topological defect forma-
tion in phase transitions, as proposed by Kibble �5� and*http://nlds.sdsu.edu/
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Zurek �4�. Interestingly, the experimental work was almost
concurrent with a theoretical study investigating simpler
elongated barriers separating two or more independent BECs
�28�; in the latter setting, the interference forms dark solitons
whose bending and subsequent breakup due to the manifes-
tation of the transverse modulational instability also result in
vortices. On the other hand, alternative methods for nucleat-
ing vortices have also been proposed, including, but not lim-
ited to, vortex formation by Bragg reflection from an optical
lattice �29� and vortex formation in turbulentlike regimes in
stirred condensates �30�. Furthermore, the formation of vor-
tex rings via soliton-vortex collisions has been experimen-
tally observed �31�.

In the present work, we expand on these considerations
and study in detail, by means of systematic numerical simu-
lations, the formation of vortices in a setting closely match-
ing the one of the experiment in Ref. �27�. Our purpose is to
get a deeper insight into this interference-induced vortex for-
mation mechanism, investigating fundamental features, such
as the number and lifetime of ensuing vortices. This is done
upon studying in detail the parametric dependences influenc-
ing the relevant experimental observations. Specifically, we
quantify the above-mentioned features as functions of the
elimination or ramping-down time of the optical barrier be-
tween the fragments and the initial relative phases between
the original independent fragments. Our investigation chiefly
refers to a 2D setting, but we also illustrate how the results
are generalized in the pertinent 3D case. Notice that our con-
siderations are motivated not only by their direct bearing on
the experiments of Ref. �27�, but also by their relevance to
studies of spontaneous symmetry breaking during phase tran-
sitions �4,5,32�.

Our presentation is structured as follows. In Sec. II, we
briefly summarize the setup of our computational experi-
ments. In Sec. III, we study the interference of three BEC
fragments in the 2D and 3D setup; special attention is paid at
the role of the relative phases between the different conden-
sates, and the ramp-down time of the laser sheet barrier re-
sponsible for separating the three fragments. In Sec. IV, we
briefly comment on the relation between numerical and ex-
perimental results. Finally, in Sec. V, we summarize our find-
ings, present our conclusions, and discuss some possible ex-
tensions of this work.

II. SETUP

We consider a BEC at a temperature close to zero, where
quantum or thermal fluctuations are negligible �note that fi-
nite temperature effects are briefly discussed at the end of
Sec. III�. This system can accurately be described by a mean-
field theoretical model, namely, the Gross-Pitaevskii equa-
tion �GPE� �10�:

i�
��

�t
= �−

�2

2m
�2 + V�r;t� + g���2�� , �1�

where �=��r , t� is the condensate wave function �with
n�r , t�����r , t��2 being the atomic density of the conden-
sate�, m is the atomic mass, the coupling constant g
=4��2as /m measures the strength of interatomic interactions

and as is the s-wave scattering length. The potential V�r ; t� in
the GPE is taken to be of the form

V�r;t� = VMT�r� + ��t�VL�r� , �2�

where the two components in the right-hand side of Eq. �2�
are a harmonic magnetic trap VMT�r�= 1

2m��x
2x2+�y

2y2

+�z
2z2�, with trapping frequencies �x=�y =2��7.4 Hz and

�z=2��14.1 Hz, and the three-armed time-dependent op-
tical barrier ��t�VL�r� used in the experiments of Ref. �27�.
This three-armed potential induces a separation of the
ground state of the condensate into three different fragments
�see top-left and top-center panels in Fig. 1 and Fig. 11�a��.
Note that the function ��t� in Eq. �2� describes the ramping
down of the optical barrier. The maximum initial barrier en-
ergy for the potential is taken to be �0���0�=26kB nK
�27�, where kB is Boltzmann’s constant.

In the numerical simulations, the ground state of the sys-
tem is obtained by relaxation �imaginary time integration�
initiated with the Thomas-Fermi �TF� approximation �see
top-center panel in Fig. 1�

��r,0� = 	max
0,� − V�r��/g	�r� , �3�

where �=8kB nK �27� is the chemical potential and 	�r�
contains the chosen phase of the different wells separated
into the three regions A, B, and C depicted in the top-right
panel of Fig. 1. Let us denote by 	1, 	2, and 	3 the initial
phases in regions A, B, and C, respectively. It is important to
note that while in the experiments of Ref. �27�. the different
fragments have uncorrelated �random� phases, in our numeri-
cal simulations we are able to control their initial phases and,
more importantly, their relative phases. Our numerical ex-

FIG. 1. �Color online� Top left: intensity profile of the optical
potential responsible for segmenting the potential well into three
local minima. Top center: Thomas-Fermi approximation used as an
initial condition for our relaxation method to obtain the ground state
of the system. Top right: regions A, B, and C with respective phases
	1, 	2, and 	3. The bottom row of panels depicts the evolution of
the phase during our relaxation �imaginary time relaxation� toward
the initial steady state with different phases for the fragments. This
example shows the phase for the case 	k=2�k /3 at the times indi-
cated. In all panels, the field of view is approximately 70 �m per
side. The axis numbers indicate x and y coordinates relative to the
center of the unsegmented harmonic trap.
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periments, emulating the experimental sequence of Ref. �27�,
are performed with the output of imaginary time relaxation
used as initial condition for the full dynamics of Eq. �1�. The
bottom row of Fig. 1 depicts the evolution of the phase for
the case 	k=2�k /3 during relaxation. As can be observed
from the figure, the initial “seed” �t=0� starts with sharp
phase boundaries around the localized fragments. As the re-
laxation procedure evolves, the phase boundaries become
smoother and adjust to the boundaries for the top-right panel
of the figure. The phase profile seems to settle after 10 ms of
imaginary time relaxation. In our simulations, 50 ms of
imaginary time relaxation was used to ensure proper conver-
gence to the steady-state solution.

III. NUMERICS

A. Two-dimensional BECs

For the 2D rendering of the experiment of Ref. �27�, we
restrict our system to the �x ,y� coordinates and we use the
same chemical potential as in Ref. �27�. First we explore the
effect of the ramp-down time of the potential barrier on the
formation of vortices through the merging of the different
fragments of the condensate. For this purpose we use a linear
ramp

��t� = max��0

tb
�tb − t�,0 , �4�

where �0���0� is the maximum barrier energy as defined
above and tb is the ramping time �in ms� of the barrier; note
that a similar ramp was used in the experiments of Ref. �27�.

We monitor the formation of vortices, as well as the over-
all vorticity of the system, using various diagnostics. These
are based on the corresponding fluid velocity of the super-
fluid given by Ref. �33�,

vs = −
i�

2m

�� � � − � � ��

���2
, �5�

where �¯�� stands for complex conjugation. The fluid vor-
ticity is then defined as �=��vs. The results for the merger
of the three BEC fragments with relative phases 	k=2�k /3,
k� 
1,2 ,3�, for different merging times are depicted in Fig.
2. As can be seen from the figure, the number of vortex pairs
nucleated by the merger is extremely sensitive to the ramp-
ing time tb. Shorter ramping times give rise to an extremely
rich vorticity pattern as the fragments merge �see, for ex-
ample, the top two rows in Fig. 2 corresponding to the in-
stantaneous �tb=0� removal of the barrier�, including the ap-
pearance of structures resembling vortex streets. However,
for longer ramp times, i.e., slower ramping, just a handful of
vortices are nucleated. In fact, for tb
100 ms �results not
shown here�, the only vortex that is nucleated is the central
one. It is evident that, independently of the ramping time, the
central vortex is always formed for this choice of relative
phases between the fragments. This vortex is the conse-
quence of the intrinsic vorticity present in the initial condi-
tion where the three fragments have been phase imprinted
with a total of a 2� phase gain about the condensate center.

In Fig. 3 we present a spatiotemporal rendering of the
vortex formation for the middle row example of Fig. 2 �i.e.,

phases given by 	k=2�k /3 and a ramp down time of tb
=25 ms�. In the figure we depict a space-time contour plot
of the vorticity where blue �red� contours correspond to
negatively �positively� charged vortices, respectively. The
figure clearly shows the formation of pairs of vortices with
opposite charge, some of which self-annihilate at later times,
while others oscillate together with the cloud: upon forma-
tion, they expand to the rims of the cloud and are subse-
quently reflected from its outskirts and contract anew, fol-
lowing the density profile oscillations resulting from the
merging process.

In order to measure the vorticity generated during the
merger of the condensate fragments at any given time, we

FIG. 2. �Color online� Evolution of the 2D condensate density
�respective top series of panels� and vorticity �respective bottom
series of panels� for three different ramp-down times of the optical
potential barriers. From top to bottom, the three sequences corre-
spond to tb=0 ms �first and second row�, tb=25 ms �third and
fourth row�, and tb=50 ms �fifth and sixth row�. The times are
indicated in the panels in ms and the field of view is approximately
70 �m per side. For the initial conditions in all cases, the different
condensed fragments have relative phases of 2� /3, namely, 	k

=2�k /3 �k� 
1,2 ,3��.
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compute the expectation value of the z component of the
angular momentum of the BEC

Lz = i�� �����dr � „�,�r̂ � p̂�z�… , �6�

where r̂ and p̂ denote the corresponding position and mo-
mentum operators, the subscript z indicates the component of
the corresponding cross-product, and �¯ ,¯� indicates the
complex inner product defined from C�C→C. Using Eqs.
�6� and �1�, we can evaluate the time derivative of this ex-
pectation value

dLz

dt
=

��t�
�
� ���2�r̂ � p̂�zVL�r�dr . �7�

In obtaining this result, we have assumed the isotropy of
VMT�r� in the �x ,y� plane. This result also has some impor-
tant consequences including the fact that during the ramp
down of the optical barrier, we should not expect the angular
momentum of the BEC to be conserved, while we should
expect such a conservation to appear once ��t�=0 or, more
generally, when the full potential is azimuthally isotropic in
the �x ,y� plane �see Figs. 4 and 6�. In the left column of Fig.
4 we depict the z component of the angular momentum. The
middle column of the same figure shows a quantity that we
refer to as total fluid velocity, defined as

S =
1

V
� �vs�dr , �8�

where V=�dr is the total volume of integration. Finally, the
right column of Fig. 4 shows the same quantity, as defined in
Eq. �8�, but only for the central portion of the cloud. The
central portion of the cloud was defined as a square, centered
at the center of the magnetic trap, with a side equal to 10% of
the integration domain. This area corresponds approximately
to the void area between the three initial fragments �see top-
center panel in Fig. 1�.

The three diagnostics defined above are shown in Fig. 4
for the same cases presented in Fig. 2. It is interesting to note
how the presence of a time-dependent component in the po-
tential generates angular momentum in the system. As can be
observed in the figure, the total angular momentum increases
�in absolute value� through the duration of the barrier ramp-

down and then settles to a constant value that is larger �in
absolute value� for slower ramps. Also, it is worth noting that
the initial value of the angular momentum is different from
zero �Lz�t=0��−800� due to the intrinsic vorticity carried by
the out-of-phase fragments �see also discussion below�. For
our initial condition, most of the total angular momentum is
seeded in the weak overlapping region between the frag-
ments where the phase gradient is large. What we can ob-
serve about the second and third diagnostics by comparing
the second row of Figs. 2 and 3 with �the second row of� Fig.
4 is roughly the following: the integrated �throughout the
cloud� velocity appears to peak when the filamentation in the
pattern of Fig. 3 is maximal, e.g., around times of 50 and 90
ms. On the other hand, the same diagnostic integrated within
the central core of the cloud peaks substantially earlier when
the vortices are formed through the collision of the fragments
around the end time of the ramp �i.e., around 25 ms�. Sub-
sequently, the latter quantity decreases.

We now turn to the examination of the effect of the rela-
tive initial phases between the different fragments. As an
example, we show in Fig. 5 the behavior of the cloud density
and its vorticity for three different phase combinations for a
fixed ramp-down time of tb=25 ms. As can be noticed, the
complexity of the vorticity field is similar for the three cases

FIG. 3. �Color online� Evolution of the vortex structures in the
2D condensate density for tb=25 ms and 	k=2�k /3 �cf. middle
rows in Fig. 2�.
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FIG. 4. �Color online� Vorticity indicators for the cases pre-
sented in Fig. 2 �namely, tb=0 ms, tb=25 ms, and tb=50 ms, from
top to bottom� with 	k=2�k /3. The left panels correspond to the
total angular momentum �Eq. �6�� normalized by �, while the
middle and right panels correspond to the total fluid velocity �Eq.
�8�� for the whole cloud �middle� and the central portion �see text�
of the cloud �right�.
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shown in the figure. However, the only phase combination of
the ones shown here that produces a vortex at the center of
the cloud corresponds to 	k=2�k /3, which can be under-
stood by the intrinsic vorticity already present in the initial
configuration �see explanation below�. In Fig. 6 we depict
the vorticity indicators for the three phase combinations of
Fig. 5. As can be seen in the figure, the angular momentum
Lz for 	k=0 �top-left panel� and 	k=�k /3 �bottom-left
panel� suffers almost no change since the initial configura-
tion does not carry any intrinsic vorticity and thus, its inter-
action with the ramping down barrier does not produce an-
gular momentum. However, for 	k=2�k /3 �middle-left
panel�, as explained before, the system does gain angular
momentum during the barrier removal. The total fluid veloc-
ity indicators �middle and right columns in Fig. 6� behave
similarly for the three phase combination with the notable
difference that for the 	k=2�k /3 �middle-left panel� case, its
final value is different from zero since the fragments produce

a vortex at the center of the trap �due to the intrinsic vorticity
carried by the initial condition�.

In order to follow in more detail the formation of vortices
in the central portion of the cloud as a function of the relative
initial phases of the different fragments, we perform system-
atic simulations for a large set of relative initial phases. The
results are presented in Fig. 7, where we show the existence
of vortices as a function of �	2 ,	3� for 	1=0. Darker shades
correspond to the presence of more vortices. The top panel of
Fig. 7 corresponds to an immediate release of the barrier
�ramp down time of tb=0 ms� where the presence of zero,
one, two, or three vortices �white, light gray, gray, and black,
respectively� can be observed for different phase combina-
tions. The middle panel depicts the same diagram, but for a
ramping-down time of tb=50 ms. It is clear that, for this
relatively slow ramp down, the formation of a vortex in the
central region is exclusively determined by the vorticity of
the initial configuration. Namely, if any of the relative phases
is larger than �, the initial configuration resembles more that
of a discrete vortex �see Refs. �34� and �6,35� for reviews�. In
particular, each fragment can be thought of a “unit” and the
whole configuration corresponds to a discrete vortex with
three units with a net vorticity different than zero. The
middle panel of the figure clearly reveals that only within an
arc of the second �and essentially symmetrically of the
fourth� quadrant of the plane of the phases �	2−� ,	3−��, a
single vortex will form at the center of the configuration. It is
interesting that discrete vortex-like configurations consisting

FIG. 5. �Color online� Same as in Fig. 2 for three different
relative phases and a ramp down of tb=25 ms. The top two, middle
two and bottom two series correspond, respectively, to �a� 	k=0,
�b� 	1=0, 	2=2� /3, and 	3=4� /3, and �c� 	1=0, 	2=� /3, and
	3=2� /3.
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FIG. 6. �Color online� Vorticity indicators for the cases depicted
in Fig. 5 �the different panels are presented in the same manner as
in Fig. 4�.
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of three fragments have been considered in the context of
nonlinear optics in Ref. �36� and even in genuinely discrete
systems as, e.g., in Ref. �37�. In the bottom panel of Fig. 7
we depict the difference between the top and middle panels
to show the amount of vortices that are created exclusively
by the fragment collision and not by the intrinsic vorticity of
the initial configuration. It is important to mention that some
of the vortices counted in the top panel come from vortices
that are created outside the central region but that migrate
toward the center as time progresses.

B. Three-dimensional BECs

As shown in the previous section, the 2D setting lends
itself to a more detailed examination of important features
such as the parametric dependence on the ramping time and
the relative phases of the fragments. Nevertheless, it is im-
portant to also consider some of the delicate points particular
to the 3D nature of the experiments and the observable quan-
tities available within the experimental images. For this rea-
son, we now focus on the 3D setting, presenting results of
the simulations relevant to the experiment of Ref. �27�. The
setup is the same as in the previous section but we now use
the full 3D space with the same chemical potential as before.
Typical results are shown in Figs. 8–10 for a ramping down
time of the potential barrier of 25 ms. Figure 8 corresponds
to the case of equal initial phases 	k=0, while Fig. 9 pertains
to initial phases 	k=2�k /3, and Fig. 10 to phases 	k
=�k /3. The figures depict contour plots of the density �top
rows� and vorticity �middle rows�, as well as a z projection
of the density �bottom rows� as it would be observed in the
laboratory. The vortex structure is considerably more com-
plex in the 3D scenario because the vorticity does not show
up as straight vortex lines but rather as a complex web of
vortex filaments in various directions. As in the 2D case,
there is the formation of a vertical vortex line at the center of
the cloud �cf. second row in Fig. 9� for the appropriate rela-
tive phases of the different fragments of the condensate with
the same conditions as before. Nonetheless, in the 3D case,
the central vortex line is prone to bending as can be clearly
seen in the later stages of the dynamical evolution presented
in the second row of Fig. 9. In fact, the vortex bending is
even clearly visible in the z projection �see third row of Fig.
9�. These 3D numerical experiments are quite revealing in
that the laboratory experiments can only show projections of
the density and thus missing to a great extent are the intricate
vortex line dynamics. Importantly also, between the bending
effect and the integrated view used in the experimental im-
ages, it is possible for the presence of vortexlike structures or
filaments to be blurred �as in the later stages of Fig. 9� or
entirely lost �as in the later stages of Figs. 8 and 10�.

As can be seen from Figs. 8–10, the vorticity emerges at
the early stages of the merger �t�20 ms�, through vorticity
sheets that nucleate some of the vortex line structures. None-
theless, it is interesting to note that most of the vorticity is
carried by vortex lines and vortex rings that are horizontal
�except the notable case of the vertical vortex line depicted in
the second row of Fig. 9�. This fact is also quite visible in the
density contour plots for t=60 ms where the horizontal vor-
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FIG. 7. Phase diagram for vortex formation at the trap center
region as a function of the relative phases of the merging fragments
�where 	1 is assigned the value of 0�. Top: Ramp down time of
tb=0 ms �i.e., instantaneous removal� of the barrier. The different
shades of gray indicate the amount of vorticity contained in the
central region after 100 ms. White, light gray, gray, black corre-
spond, respectively, to 0, 1, 2, and 3 vortices. Middle: Same as
above for a ramp down time of tb=50 ms. This case only produces
no vortices �white� or one vortex �gray�. Bottom: difference be-
tween top and middle diagrams. This corresponds to the vortices
formed by the collision of the fragments and not by the intrinsic
vorticity of the initial configuration �which depends on the relative
phases of the different fragments�.
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tex lines “pinch” the cloud and create peripheral horizontal
ridges around the cloud. It is also possible to observe some
vorticity in the bulk of the cloud that does not directly come
from the phase differences between the initial fragments, but
from the actual turbulence that is created by the fragment
collision. As an example, two small vortex rings are clearly

visible in Fig. 8 for t=60 ms �one close to the top of the
cloud and the other one 1/3 from the bottom�. We would like
to stress the difficulty of capturing the vorticity at the edge of
the cloud �where most vorticity is actually observed� in our
numerical experiments. This is due to the fact that the vor-
ticity is defined as the curl of the fluid velocity of Eq. �5� that

FIG. 8. �Color online� Vortex formation by the merging of three-dimensional BECs. Top row: contour surfaces of constant atomic density.
Middle row: contour surfaces of the corresponding absolute value of the vorticity. Bottom row: z projection of the density distribution �i.e.,
column density along z� as it would be observed in the laboratory. The snapshots are taken at the indicated times �in ms� for an initial phase
distribution corresponding to 	k=0 and a ramping down time of 25 ms. For the contour-surface images, the axis on the left side of each plot
represents the vertical �z� direction, expressed in units of microns.

FIG. 9. �Color online� Same as in Fig. 8 for an initial phase distribution corresponding to 	k=2�k /3.
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is normalized by the density. The numerical effect is that
close to the periphery �where the density is small� the fluid
velocity corresponds to the ratio of small numbers which
imposes great numerical difficulties. Nonetheless, by using a
fine grid of 301�301�121 we are able to capture most of
the delicate vorticity dynamics at the periphery of the cloud
consisting, mostly, of horizontal vortex lines that are parallel
to the periphery of the cloud.

Another interesting phenomenon is the oscillation of the
atomic cloud. The cloud starts with a larger horizontal extent
compared to the vertical one and after the merger creates an
almost spherical cloud, which in turn elongates again in the
horizontal direction after the fragments go “through” each
other. This behavior repeats a few times until the cloud takes
an approximate spherical shape �results not shown here�.

We have also monitored the effects of damping due to the
coupling of the condensed atoms to the thermal cloud. Equa-
tion �1� is obtained by supposing a dilute Bose gas at a
temperature close to absolute zero. However, at finite tem-
peratures, but still smaller than the critical temperature Tc for
condensation, a fraction of the atoms are not condensed and
form the so-called thermal cloud. In turn, this thermal cloud
induces a damping on the dynamics of the condensed cloud.
We used the approach of phenomenological damping �38�
described in Refs. �39,40� that relies on replacing the i in
front of the time derivative in Eq. �1� by �i−�, where  is
the damping rate, and by renormalizing the solution at each
iteration to keep the initial mass �number of atoms� constant
during integration. We tested values of  in the interval
�0.01, 0.1� that contains the value of 0.03 estimated in Ref.
�41� for a temperature T=0.1Tc. The results of the phenom-
enological damping are, qualitatively, very similar �results
not shown here� to the effects of ramping down the barrier
over longer time scales: larger damping resulting in a stron-
ger suppression of the vorticity generated by the merger of
the different cloud fragments.

IV. COMPARISON OF NUMERICAL AND
EXPERIMENTAL RESULTS

The simulations described in the present work were di-
rectly aimed at developing a more thorough understanding of
both the experimental results of Ref. �27� and the dynamics
of vortex formation during BEC merging and collisions. In
this section, we thus briefly discuss the observed similarities
and differences between the experimental and theoretical re-
sults.

In the laboratory experiment, an optical potential was
used to segment a harmonic trap before condensation was
achieved; with additional evaporative cooling, three initially
isolated and mutually independent �i.e., uncorrelated phases
between the different fragments� condensates were created.
A phase-contrast image of three such BECs is given in Fig.
11�a�, which can be directly compared with the simulated
data of Fig. 8 �bottom row, left image�. The initial condition
of incoherent condensate fragments serves as the conceptual
basis behind the motivation to impose and examine various
relative phases between the fragments in this work’s simula-
tions. In the experiment, the optical barrier was ramped off
approximately linearly over time scales between 50 ms and 3
s, significantly longer than the time scales considered in the

FIG. 10. �Color online� Same as in Fig. 8 for an initial phase distribution corresponding to 	k=k� /3.

FIG. 11. �a� In situ phase-contrast image of three BECs trapped
in a triple-well potential. �b�–�d� Absorption images of BECs after
56 ms of ballistic expansion. Each BEC was created by merging
three BECs, as described in the text.
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simulations. At the end of the merging process, immediately
after the barrier was completely removed, the fully merged
BEC was released from the harmonic trap and allowed to
ballistically expand for 56 ms to enable imaging of vortex
cores. Example images of merged and expanded BECs are
shown in Figs. 11�b�–11�d�. These images can be compared
with the simulated data of Figs. 8–10 �bottom rows�; note
that the simulations do not involve an expansion stage.

In both experimental results and in the simulations shown
here, we note the following important similarities. First, it is
clear that vortex cores may be formed during the merging
process. Second, as noted in the experimental work, the vor-
tex formation process should depend upon relative phases
between the condensates. This conclusion is borne out by the
present work. Specifically, the simple analysis of a slow
merging process leading to a 25% probability of vortex for-
mation, as presented in the experimental work, matches the
results of the simulations summarized in Fig. 7. Finally, ex-
perimental and simulated results show that faster merging
leads to more vortices initially created, but these vortices
may self-annihilate with time by holding the fully merged
BEC in the trap.

However, there is one notable quantitative difference be-
tween the experimental and numerical results. In the experi-
mental work, for barrier ramp-down times longer than 1 s,
single vortices were experimentally observed in approxi-
mately 25% of the images obtained directly at the conclusion
of the merging process. Multiple vortex cores were not ob-
served under these conditions. For faster ramps, experimen-
tal images containing either single or multiple cores were
more often obtained, with significantly more than 25% of the
images containing at least one vortex core. The results of the
numerical data show that the slow merging limit �where mul-
tiple vortices cease to be created during merging� is reached
for merging times that are much shorter than in the experi-
ment. In other words, images with multiple vortices are seen
in the experiment under conditions where the numerical re-
sults would suggest that a given BEC should have at most
one vortex.

There are a few possible sources of this discrepancy. At
first glance, it might appear that the spontaneous formation
of vortices in BECs during evaporative cooling in an axisym-
metric harmonic trap, as noted in Ref. �27�, could play a role
in higher percentage of vortices seen in the experiment. Such
vortex formation processes cannot be described by the GPE
and are thus not observable in the simulations of this work.
However, due to angular momentum damping and self-
annihilation of vortices in the asymmetric local potentials in
which the three BEC fragments grow, we believe that vorti-
ces that might be spontaneously created in one �or more� of
the three BECs are unlikely to survive at rates that would
affect the experimental observations of Ref. �27�. This pos-
sible source for the quantitative discrepancy could be tested,
for example, with simulation methods based on the stochas-
tic GPE �42�.

Perhaps a more likely source of the quantitative discrep-
ancy may lie in the optical potential energy or shape; differ-
ences between the experiment and simulations regarding bar-
rier heights, widths, and ramp-down trajectory might induce
more vortices to form during merging. For example, if

center-of-mass oscillations of the cloud were induced in the
experiment, atomic fluid flow around the central portion of
the optical barrier could induce formation of vortices and
lead to increased vortex observation rates in the experiment.
Such processes could be studied in future GPE simulations in
order to further characterize dynamical processes that may be
involved in vortex formation. It might also be possible that
imperfections in the true optical barrier used in the experi-
ment could pin vortices for a portion of the barrier ramp
process, and significantly alter the vortex formation and an-
nihilation process.

V. CONCLUSIONS

We have studied the formation and subsequent evolution
of vortex structures and filaments in a system directly simu-
lating the experimental setup of Ref. �27�. In particular, we
have considered the case of three independent fragments �of
variable initial relative phases� and how these merge upon
the ramping down and eventual removal of the optical barrier
that separates them. While there are many similarities be-
tween the numerical results and the experimental results of
Ref. �27�, the numerical simulations importantly show fea-
tures and new dynamics not discussed or observed in the
experimental work.

The first part of our study concerns the simpler two-
dimensional setting, where it is straightforward to observe
the interference of the independent matter waves, the ensuing
formation of vortices, as well as their motion within the
cloud, as a function of different parameters such as the
ramping-down time or the initial relative phases between the
fragments. Different diagnostics for the vorticity were devel-
oped in the process �such as the z component of the angular
momentum, or the integrated velocity of the flow throughout
the cloud or near its center� and their dynamics was ex-
plained based on the evolution simulations. Principal find-
ings of this part of the work included the formation of
smaller numbers of vortices as the ramping-down time was
increased and the formation of a single vortex in the core of
the condensate for appropriate, discrete-vortex-like relations
between the phases of the different fragments.

The second part of our work explored how the features
found in the two-dimensional setup are generalized in a fully
three-dimensional setting, and how these affect the measure-
ment process through, e.g., the projection of the BEC density
on the plane. Key features of the latter dynamical evolutions
involved the blurring of the vortex dynamics by the projec-
tion process coupled with the spontaneous vortex bending
even when the different fragments have the appropriate
phase relation to generate a vortex through their merging. In
the 3D setting, the vorticity emerged in the form of vorticity
sheets inducing vortex filaments �most often in a horizontal
form� which led to pinching effects at the vortex cloud pe-
riphery and the formation of corresponding ridges in the
atomic density profile.

Our work is related to a physical mechanism that has
previously been discussed in the context of topological de-
fect formation and trapping during phase transitions, often
referred to as the Kibble-Zurek �KZ� mechanism �4,5�. For
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the case of cooling of an atomic gas through the BEC phase
transition �43�, the KZ scenario involves the growth and sub-
sequent merging of phase-incoherent regions of the atomic
cloud, with vortices being trapped in the merging process as
the BEC grows in size and atom number. The full KZ mecha-
nism involves physics beyond the scope of the simulations of
this work; however, our simulations show dynamical pro-
cesses that may relate to the portion of the KZ mechanism
involving the merging of phase-incoherent regions of con-
densed atoms. Our numerical results showing the phase re-
lationships involved in vortex formation during merging are
consistent with basic notions of this portion of the KZ
mechanism.

There are many interesting questions to consider for fu-
ture work in the present framework. First, it is clear that
further analysis of experimental data and further variations of
simulation parameters will be needed in order to resolve the
quantitative differences between experimental and numerical
results, as discussed in Sec. IV. Perhaps additional light on
this question �and an interesting diagnostic in its own right�
would be the examination of the integrated density along the
�x ,z� plane which should perhaps detect some of the hori-
zontal vorticity filaments illustrated herein. A particularly
challenging �and more general� question along the same vein

concerns the extent to which it may be possible to recon-
struct the fully three-dimensional cloud density from such
projections.

Both from an experimental and from a theoretical point of
view it would be interesting to extend the present consider-
ations also to multicomponent condensates in order to exam-
ine the potential formation of vortexlike filaments and struc-
tures in settings similar to the ones presented herein �e.g.,
containing fragments from different components�. In the lat-
ter setting, there would exist an exciting interplay between
the interference mechanisms and the formation of the coher-
ent structures, and the phase separation dynamics between
the components; see, e.g., the recent experimental results of
Ref. �44�, and references therein.
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